Universal 3D Interaction Tasks

- **Navigation**
 - **Travel** – motor component
 - **Wayfinding** – cognitive component
- **Selection**
- **Manipulation**
- **System control**
- **Symbolic input**
Travel

- The motor component of navigation
- Movement between 2 locations, setting the position (and orientation) of the user’s viewpoint
- The most basic and common VE interaction technique, used in almost any large-scale VE

Travel Tasks

- Exploration
 - travel which has no specific target
 - build knowledge of environment
- Search
 - naive: travel to find a target whose position is not known
 - primed: travel to a target whose position is known
 - build layout knowledge; move to task location
- Maneuvering
 - travel to position viewpoint for task
 - short, precise movements
Travel Characteristics

- Travel distance
- Amount of curvature/number of turns in path
- Target visibility
- DOF required
- Accuracy required
- Other tasks during travel
- Active vs. passive
- Physical vs. virtual

A Technique Classification – Component Decomposition

Travel
 - Direction/Target Selection
 - gaze-directed
 - pointing
 - choose target from list
 - Velocity/Acceleration Selection
 - gesture
 - slow in, slow out
 - physical props
 - Conditions of Input
 - start/stop buttons
 - automatic start/stop
 - constant movement
Alternate Technique Classification - User Control Level

Travel Techniques

- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques
Physical Locomotion Techniques

- Walking techniques
 - large-scale tracking
 - Walking in place (GAITER)
- Treadmills
 - single-direction with steering
 - omni-directional
- Bicycles
- Other physical motion techniques
 - VMC / Magic carpet
 - Disney’s river raft ride

Physical Locomotion Devices (I)

- Omni-Directional Treadmill
- GaitMaster II
- Large Scale Tracking
Physical Locomotion Devices (II)

String Walker

Physical Locomotion Devices (III)

http://www.virtuix.com/
Steering Techniques

- continuous specification of direction of motion
 - gaze-directed
 - pointing
 - torso-directed
 - camera-in-hand
 - semi-automated
 - physical device (steering wheel, flight stick)

Steering - Gaze-Directed

- Move viewpoint in direction of “gaze”
- Gaze direction determined from head tracker
- Cognitively simple
- Doesn't allow user to look to the side while traveling
Steering – Gaze-Directed Implementation

- Each frame while moving:
 - Get head tracker information
 - Transform vector \([0, 0, -1]\) in head CS to \(v = [x, y, z]\) in world CS
 - Normalize \(v\):
 \[\hat{v} = \frac{v}{||v||} \]
 - Translate viewpoint by \((\hat{v}_x, \hat{v}_y, \hat{v}_z) \times \text{current _velocity}\)

Pointing Technique

- Also a steering technique
- Use hand tracker instead of head tracker
- Slightly more complex, cognitively
- Allows travel and gaze in different directions – good for relative motion
Pointing Implementation

- Each frame while moving:
 - Get hand tracker information
 - Transform vector \([0,0,-1]\) in hand CS to \(v=[x,y,z]\) in world CS
 - Normalize \(v\): \(\hat{v} = \frac{v}{||v||}\)
 - Translate viewpoint by \((\hat{v}_x,\hat{v}_y,\hat{v}_z) \times \text{current_velocity}\)

Semi-Automated Travel

- Example – Galyean’s river analogy (1995)
Route-Planning

- one-time specification of path
 - draw path
 - points along path
 - manipulating user representation

Target-Based Techniques

- discrete specification of goal
 - point at object
 - choose from list
 - enter coordinates
- Map/WIM-based target specification
Map-Based Travel Technique

- User represented by icon on 2D map
- Drag icon with stylus to new location on map
- When released, viewpoint animated smoothly to new location

Map-based Travel Implementation

- Must know
 - map scale relative to world: s
 - location of world origin in map CS: $o=(x_o, y_o, z_o)$
- On button press:
 - if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to $(x, 0, z)$ in map CS
Map-Based Travel Implementation (cont.)

- On button release:
 - Get stylus position in map CS: \((x, y, z)\)
 - Move icon to \((x, 0, z)\) in map CS
 - Desired viewpoint: \(p_v = (x_v, y_v, z_v)\) where
 - \(x_v = (x - x_o)/s\)
 - \(z_v = (z - z_o)/s\)
 - \(y_v = \text{desired height at } (x_v, y_v)\)
 - Move vector: \(m = (x_v - x_{\text{curr}}, y_v - y_{\text{curr}}, z_v - z_{\text{curr}}) \times (\text{velocity/distance})\)
 - Each frame for \((\text{distance/velocity})\) frames: translate viewpoint by \(m\)

Manual Manipulation – Grabbing the Air Technique

- Use hand gestures to move yourself through the world
- Metaphor of pulling a rope
- Often a 2-handed technique
- May be implemented using Pinch Gloves™
Grabbing The Air Implementation (one-handed)

- On pinch:
 - Obtain initial hand position in world CS: \((x_h, y_h, z_h)\)

- Each frame until release:
 - Obtain current hand position in world CS: \((x'_h, y'_h, z'_h)\)
 - Hand motion vector: \(m = ((x'_h, y'_h, z'_h) - (x_h, y_h, z_h))\)
 - Translate world by \(m\) (or viewpoint by \(-m\))
 - \((x_h, y_h, z_h) = (x'_h, y'_h, z'_h)\)

- Cannot simply attach objects to hand – do not want to match hand rotations

Viewpoint Orientation Techniques

- Head tracking
- Orbital viewing
- Non-isomorphic rotation
- Virtual sphere
Next Class

- Travel - Wayfinding
- Readings
 - 3DUI Book - Chapter 6