3D User Interface Hardware

Lecture #7: Input Devices
Spring 2016
Joseph J. LaViola Jr.

Interaction Workflow

[Diagram showing the interaction workflow between User, Input Device, System, and Output Device, including arrows for Percepts to User goals, Actions to Display, and Signals to System goals.]

Human transfer function
Percepts → User goals

User goals → Actions

Display → Perceptual information

Input Device

Actions → Signals

System goals → Display

System

System transfer function
Signals → System goals
Lecture Outline

- Input device characteristics
- Traditional input devices (e.g. 2D, Desktop)
- 3D spatial user input devices
 - active sensing
 - passive sensing
 - hybrids
 - 3D mice
- Other devices
- Speech and Brain
- Building special input devices

Input Devices

- Hardware that allows the user to communicate with the system
- Input device vs. interaction technique
- Single device can implement many ITs
Input Device Characteristics

- Degrees of Freedom (DOFs) & DOF composition (integral vs. separable)
- Type of electronics: Digital vs. analog
- Range of reported values: discrete/continuous/hybrid
- Data type of reported values: Boolean vs. integer vs. floating point

More Input Device Characteristics

- User action required: active/passive/hybrid
- Method of providing information: “push” vs. “pull”
- Intended use: locator, valuator, choice, ...
- Frame of reference: relative vs. absolute
- Properties sensed: position, motion, force, ...
Desktop Devices: Keyboards

- Chord keyboards
- Arm-mounted keyboards
- “Soft” keyboards (logical devices)

Desktop Devices: Mice and TrackBalls

- Many varieties
- 2D input to 3DUI
- Relative devices
Desktop Devices: Pen-based Tablets

- Absolute 2D device
- Either direct or indirect

Desktop Devices: Joysticks

- Isotonic vs. Isometric
3D Spatial Input Devices

- Require user's location and/or motion in 3D space
- Data categorization
 - fingers
 - hands
 - full body

Sensing Devices

- Active sensors
 - user holds device
 - user wears device
- Passive sensors
 - completely unobtrusive (mostly computer vision)
- Strengths and weaknesses for each approach
 - hybrids often used
Active Sensors – Finger Tracking

- Traditional approach – Data gloves

Images courtesy of http://www.cyberglovesystems.com

Image courtesy of http://www.5dt.com

Active Sensors – Bend-Sensing Gloves

- CyberGlove, 5DT
- Reports hand posture
- Gesture:
 - single posture
 - series of postures
 - posture(s) + location or motion
Active Sensors – Pinch Gloves

- Conductive cloth at fingertips
- Any gesture of 2 to 10 fingers, plus combinations of gestures
- > 115,000 gestures

Active Sensors – Finger Tracking

- Other approaches – wearing vision-based sensors

SixSense
Mistry and Maes 2009

Digits
Kim et al. 2012

Spring 2016
Active Sensors – Finger Tracking

- Other approaches – muscles and skin

- EMG Muscle Sensor
 Saponas et al. 2010

- Skinput
 Harrison et al. 2011

Active Sensors – Hand Tracking

- Sometimes knowing just hand position, orientation or motion is sufficient
- Close relationship with finger tracking
- Two main approaches
 - attach sensing device or reference to hand
 - hold sensing device
Active Sensors – Hand Tracking

- Approach: attach to hand

Image courtesy of http://www.timelapses.de

Wang and Popovic 2009

Active Sensors – Position Trackers

- Measure position and/or orientation of a sensor
- Degrees of freedom (DOFs)
- Types of active sensing trackers
 - magnetic
 - mechanical
 - acoustic
 - inertial
Other for Active Sensing Position Trackers

- Most VEs track the head
 - motion parallax
 - natural viewing
- Track hands, feet, etc.
 - “whole body” interaction
 - motion capture application
- Correspondence between physical/virtual objects
 - props
 - spatial input devices
Active Sensors – Magnetic Trackers

- Example: Razer Hydra
- Advantages
 - good range
 - no line of sight issues
 - moderately priced
- Disadvantages
 - metal or conductive material will distort the magnetic field
 - magnetic field can interfere with nearby monitors

Active Sensors – Mechanical Trackers

- Example: Fakespace BOOM tracker
- Advantages
 - low latency
 - very accurate
- Disadvantages
 - big and bulky
 - usually only one sensor
 - reduced mobility
 - expensive
Active Sensors – Acoustic Trackers

- Example: Logitech Fly Mouse
- Also known as ultrasonic tracking
- Advantages
 - no interference with metal
 - relatively inexpensive
- Disadvantages
 - line of sight issues
 - sensitive to certain noises

Active Sensors – Inertial Tracking

- Example: InterSense IS300, Wiimote
- Advantages
 - no interference with metal
 - long range
 - no need for transmitter
- Disadvantages
 - subject to error accumulation
 - only track orientation
Active Sensors – Hand Tracking

- Approach: handheld devices

Image courtesy of http://www.geeky-gadgets.com/

Active Sensors – Full Body Tracking

- Traditional approach: bodysuits and attachments

Active Sensors - Full Body Tracking

- **Humantenna**
 - treat body as antenna
 - not precise but provides info on body motion

Cohn et al. 2012

Passive Sensors

- Makes use of computer vision (also light and sound)
- Unobtrusive – user does not need to wear any special device or clothes
- Typically standard camera or depth camera (finger, hand and body)
Passive Sensors – Optical/Vision-based trackers

- Exs: Vicon, HiBall, ARToolkit, markerless tracking (SLAM, PTAM)
- Advantages
 - accurate
 - can capture a large volume
 - allow for untethered tracking
- Disadvantages
 - affected by environment
 - occlusion problem

Passive Sensors – Depth Cameras

- Structured light
 - use a known pattern of light projected into the scene
 - image sensor captures deformed light pattern based on the shapes in the scene
 - extract 3D geometric shapes using the distortion of the projected optical pattern
- Time of flight
 - illuminate it with a beam of pulsed light and calculate the time it takes for the light to be detected on an imaging device
- Stereo vision
 - use two calibrated cameras
 - depth for image pixels is extracted from binocular disparity

Image courtesy of http://www.display-central.com
Passive Sensors - Depth Cameras

- Good choice for body, hand, and finger tracking (depends on resolution and software)

Xbox 360 Kinect
Structured Light

Xbox One Kinect
Time of Flight

Point Grey Bumblebee
Stereo Camera

Passive Sensors - Other Approaches

SoundWave, Gupta et al. 2012

LightWave, Gupta et al. 2011
Active and Passive Sensors - Hybrid Tracking

- Example InterSense IS900, Playstation Move
- Advantages
 - puts two or more technologies together to improve accuracy, reduce latency, etc...
- Disadvantages
 - adds complexity

3D Mice

- Ring Mouse
- Fly Mouse
- Wand
- Cubic Mouse
- Dragonfly
- ...
Desktop-Based 3D Spatial Input

- 6 DOFs without tracking
- Often isometric
- SpaceBall, SpaceMouse, SpaceOrb

Eye Tracking
ShapeTape

Speech Input

- Frees hands
- Allows multimodal input
- No special hardware
- Specialized software
- Issues: recognition, ambient noise, training, false positives, …
Affective Sensing Devices

Brain Input

- Breathing device - OSMOSE
- Brain-body actuated control
 - muscle movements
 - thoughts!
Why Build 3D UI Devices?

- Assist in designing new interaction techniques
- Improve upon existing techniques
- Provide interfaces for specific 3D interactions and applications
- Give users more expressive power
- Develop new interaction styles
- Develop new and improved 3D interface hardware
- Fun!!!

Tools of the Trade

- Sensors, buttons, switches, controllers, etc...

http://www.uni-weimar.de/cms/medienvirtual-reality/research/interfaces/input-device-and-interaction-techniques.html
http://www.labri.fr/perso/hachet/CAT/

Spring 2016
CAP6121 – 3D User Interfaces for Games and Virtual Reality
©Joseph J. LaViola Jr.
3D Input Device Building Strategies

- **Device function**
 - What will the device sense?
 - force
 - motion
 - button presses
 - What physical device types are required?
 - Need to choose appropriate sensors
 - digital/analog
 - pressure, bend, potentiometers, thermistors
 - conductive cloth (great sensing material)

- **Sensor housing**
 - How will sensors be placed in the physical device?
 - Physical constraints
 - Physical comfort
 - How to build the housing?
 - Milling machine
 - Vacuum device
 - 3D printer
 - Lego bricks
 - Modeling clay

Device Ergonomics

- **Good ergonomic design is crucial**
 - Device housing
 - Control types

- **Issues to consider**
 - Device should be lightweight
 - Avoid fatigue
 - Simple to use
 - Easy to reach buttons and controls
 - Avoid undue strain
 - Don’t want to cause user pain

[Image: CyberGrasp by CyberGlove Systems](http://www.it.boton.ac.uk/staff/lp22/CS133/haptics.html)
Connecting Devices to the Computer

- Need to connect device to the computer
 - USB
 - serial port
 - Bluetooth
- Often need a microcontroller (not always)
 - small computer that can interface with other electronic components
 - Arduino
 - RaspberryPI
 - PIC (www.microchip.com)
 - BasicX-24 - easy to use
 - programming in Basic
 - has nice development kit
- A typical approach
 - build electronics with prototyping board
 - write code in IDE and download to board
 - test and debug
 - put electronics on circuit board
 - write device driver

Software for the Device

- Need to have software to use device in applications
- Several strategies
 - write driver from scratch
 - need to know something about OS - low level support functions
 - understanding of serial/USB communication protocols
 - typical functions - open, close, read, write
 - plug into API
 - utilize existing software - provide drivers for many devices and machinery to create new ones
 - VRPN - developed at U. North Carolina
 - VRJuggler - developed at Iowa State
 - interface device toolkits
 - Phidgets
 - I-CubeX
Case Study 1 – Interaction Slippers

- Providing more powerful methods of expression
- Offload functionality to the user’s feet
- Input Device
 - pair of commercial house slippers
 - embedded Logitech Trackman Live™ - wireless trackball
 - conductive cloth
- Allows for toe and heel tapping
- Interact with the Step WIM
 - miniature version of the world place on the floor
 - toe tap to invoke the WIM

Case Study 2 – Reinventing the Pinch™ Glove

- Pinch Gloves
 - determines of two or more fingertips are touching
 - uses conductive cloth
 - designed for pinching and grabbing gestures
 - at the time $2000
 - had problems with reliability
- Wanted to build custom device
 - less expensive ($200)
 - more flexibility
 - not just pinching gestures
 - plug-n-play
 - allow for a variety of switches

www.fakespacelabs.com

Conductive Cloth Button
Flex and Pinch Input

- Dealing with input device limitations
 - bend sensing gloves vs. pinch gloves
 - improve existing interaction techniques
- Input Device
 - 16 conductive cloth contacts
 - used with bend sensing glove
 - Can be placed anywhere
- Improve image plane interaction techniques
 - allow user to activate selection with primary hand
 - multiple flex button configurations

CavePainting Table

- Improve a specific application
 - explore prop-based interaction
 - used for painting 3D scenes
- Input Device
 - tracked paint brush
 - paint cup props
 - uses conductive cloth
 - bucket Tool
 - misc. knobs and switches
- Hold down brush button to paint
- Dip paint brush into paint cups to change strokes
- Use bucket to throw paint
FingerSleeve

- Inspiration for creating novel interaction techniques
- Pop through buttons
 - use light and firm pressure
- Input Device
 - worn on index finger
 - made from elastic fabric and flexible plastic
 - 6 DOF tracker attached to the back of the sleeve
 - interesting design issues with button style and placement
- Principle
 - light pressure used for temporary action
 - actions confirmed by firm pressure
- ZoomBack Technique
 - temporary and permanent travel
- Snapshot Technique

Case Study 3 - 3motion

- 3D gesture interaction system
 - developed by Keir et al. 2005, Digital Design Studio, Glasgow School of Art
 - designed as inexpensive tracking solution
 - used for gesture tracking
- Components
 - single chip 3-axis linear accelerometer
 - several buttons
 - wireless bluetooth communication
 - software SDK
- Tested in gaming environment and character manipulator
- Used on cell phone to play virtual golf
- Can you say, “Wii”?
From Lab to Production (1)

- Chord Gloves
 Mapes and Moshell (1995)

- Cubic Mouse
 Fröhlich and Plate (2000)

- Pinch™ Gloves
 By Fakespace

- Cubic Mouse
 By Fakespace

From Lab to Production (2)

- The CAT (Computer Action Table)
 Hachet et al. (2003)
 HiBall 6D Tracker

- HiBall
 Welch (1996)

- The CAT
 By Immersion SAS
 www.immersion.fr

- HiBall
 By 3rd Tech
 http://www.3rdtech.com/HiBall.htm
Prototyping Toolkits - Phidgets

- Phidgets (Greenberg and Fitchett 2001) - building blocks for low cost sensing/control
 - uses USB
 - clean separation of hardware and software
 - simple API
 - Don’t need to worry about
 - microprocessors
 - communication protocols
 - soldering
- Variety of sensors
 - touch
 - light
 - force
 - vibration
 - rotation
- Other tools
 - accelerometers
 - switches
 - RFID tags
 - etc...

Prototyping Toolkits - I-CubeX

- I-Cube (Mulder 1995) - uses the Musical Instrument Device Interface (MIDI)
 - MIDI - protocol for communicating control information
 - also uses Bluetooth (wireless)
 - similar advantages to Phidgets
 - no microcontroller programming
 - no circuit design
 - software API
- Variety of Sensors
 - air
 - touch
 - bend
 - temperature
 - magnetic
 - light
 - tilt
Next Class

- **Selection and Manipulation**
- **Readings**
 - 3DUI Book - Chapter 4