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Figure 1: Using visual information, kinesthetics and biofeedback from electromyograms (EMG), users can grasp, move and drop virtual objects.

ABSTRACT

Virtual Reality environments have the ability to present users with
rich visual representations of simulated environments. However,
means to interact with these types of illusions are generally unnat-
ural in the sense that they do not match the methods humans use to
grasp and move objects in the physical world. We demonstrate a
system that enables users to interact with virtual objects with nat-
ural body movements by combining visual information, kinesthet-
ics and biofeedback from electromyograms (EMG). Our method
allows virtual objects to be grasped, moved and dropped through
muscle exertion classification based on physical world masses. We
show that users can consistently reproduce these calibrated exer-
tions, allowing them to interface with objects in a novel way.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented and vir-
tual realities H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies

1 INTRODUCTION

Virtual reality environments utilize immersive experiences to in-
duce a feeling of presence [15]. While advancements in resolution
and refresh rate may add to the immersive capabilities of a virtual
reality system, they may not strengthen the user’s sense of pres-
ence. For instance, a study by Slater, et al. found that presence is
enhanced when interaction techniques are employed that permit the
user to engage in whole-body movement [16]. Barfield and Hen-
drix reported that the level of interactivity between the subject and
the virtual environment, rather than fidelity of the visual scene, was
related to the perception of presence [2]. In this sense, a virtual en-
vironment in which a person can interact naturally, intuitively and
instinctively will enhance the user’s illusion of presence [4].
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It is therefore beneficial for users to grasp, hold and manipulate
objects in a virtual world as they do in the physical world. Deter-
mining if the user is attempting to grasp an object is a more dif-
ficult task than simple collision detection [17]. Common grasping
triggers include button presses, hand gesture commands and speech
commands [11]. Hand pose gesture recognition attempts to match
natural interaction, but humans use their hands in many different
ways to pick up objects, not all of which are recognizable with hand
gesture systems, as shown by Zachmann [17].

We present the idea of virtual exertions, a method utilizing
biofeedback from electromyograms (EMG) along with visual and
kinesthetic information to manipulate virtual objects. Virtual exer-
tions are physical interactions with immersive virtual objects acted
on through body motions and muscle contractions, mimicking ex-
ertions against physical objects. Users control virtual objects with
hand and body movements and muscle contractions similar to those
used on physical objects.

2 PREVIOUS WORK

Bowman and Hodges evaluated grasping and manipulation tech-
niques, including virtual representations of arms and hands and ray
casting, in virtual environments [3]. Schlattmann et al. provided
a summary of interaction techniques for markerless handtracking
[14]. For much of this work, users were required to fit their hand to
a grasping pose to acquire an object, as no information of the ex-
ertion forces could be ascertained [17]. Exertion force studies gen-
erally require fixed position input devices [7, 10]. These devices
can provide haptic feedback, but their lack of mobility reduces the
user’s level of interactivity and immersion.

Researchers have used EMG sensors for human computer inter-
action, such as Costanza et al., who created intimate user experi-
ences by analyzing subtle movements [6]. Saponas et al. [13] ex-
plored methods to classify finger gestures using a muscle sensing
armband. Saponas et al. also used forearm EMG to classify finger
gestures on physical surfaces, allowing them to interpret four-finger
gestures with high degree of accuracy [12]. These studies focused
on gesture recognition and classification of physical actions using
EMG signals; we are interested in analyzing exertions as an inter-
face for virtual environments.
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Figure 2: System architecture. The information collected by the EMG and Kinect Server is sent to the CAVE system via TCP. The inset photo

(right) shows the aligned Kinect skeletal joints, shown in red for debugging, which indicate the user’s joint positions within the virtual environment.

3 METHOD

Our goal is to create an interface in which virtual objects react to
hand and body movements and contraction of muscles, similar to
the physical world. By using kinesthetic information and biofeed-
back, users have the ability to grasp, lift, move and drop objects.
Unlike previous work, our method gives virtual objects the illusion
of mass by requiring users to exert a calibrated amount of exer-
tion to grasp and hold them. Our system uses an EMG system, a
Microsoft Kinect and a Virtual Reality environment (Figure 2).

3.1 Biofeedback System
Virtual interactions, such as picking up objects, are defined by the
level of muscle activity required to manipulate corresponding phys-
ical objects. Our approach uses surface EMG to record the muscle
activity of the flexor capri ulnaris muscle. Although no forces are
exerted by the hands and body appendages, muscle activity in the
users forearm mimics the intensity of exertions made when acting
against physical objects. Brown and McGill [5] observed a lin-
ear relationship in the EMG moment relationship of trunk muscles
when measuring antagonist muscle co-activation.

The belly of the flexor capri ulnaris muscle was first located
while a subject performed an isometric contraction holding a 4.5 kg
load. Electrode positioning was performed according to the guide-
lines proposed by Mogk and Keir [9]. Electrode positioning over
the muscles was confirmed by palpation and signal response during
specific exertions [1, 9]. The skin was cleaned with 91% isopropyl
alcohol and allowed to dry for 1 minute. Silver-silver chloride elec-
trodes were located over the muscle belly, parallel to the muscle
fibers, with an inter-electrode distance of 2.5 cm. A reference elec-
trode was placed on the dorsal side of the opposite hand, away from
the electrically active area.

The surface EMG signals were amplified, integrated (IEMG),
converted and sampled using an analog-digital converter connected
to an Arduino NG microcontroller [8]. The IEMG signals are di-
rectly proportional to overall muscle activity and consequently to
forces biomechanically linked to the limbs and torso [5]. The IEMG
signals were calibrated using a series of exertions in the postures
assumed when performing the task to be mimicked in the virtual
environment.

As IEMG signals are very small in magnitude, they generally
contain large amounts of noise that can make exertion classifica-
tion difficult. Kalman filters estimate “true” values by predicting
a value, estimating the uncertainty and computing a weighted av-
erage of the predicted value and the measured value. We apply a
constant velocity Kalman filter in which we model the IEMG sig-
nal value and the derivative for the state variables. We determined
all parameter values for our filter through empirical observations
(for all data shown in this paper, filter parameters s2

a = .004, R =
1E�5and Dt = 0.033).

We selected peak-average value rather than a simple mean as it
tended to produce a more representative baseline. This produces a
better segmentation of action and non-action.

To calibrate each user we monitored the IEMG signals while
holding calibration objects, consisting of a masses weighing 0.74
kg (1.63 lbs), 1.13 kg (2.5 lbs), 1.36 kg (3 lbs), 2.27 kg (5 lbs) and
4.54 kg (10 lbs). The user was asked to grasp each object, hold it
for five seconds and then release.

As shown by Brown and McGill [5], the amount of exertion force
scales linearly with mass of the object. This simple linear conver-
sion from mass to exertion force enables each virtual object to be
assigned a Minimum Exertion Force (MEF) value. This MEF value
represents the amount of force required to pick up and hold an ob-
ject. Generally the linear fit equations had R2 values greater than
0.99 in our testing. The method used to grasp, move and drop ob-
jects is described in Section 3.3.

3.2 Kinesthetic System
We used a Microsoft Kinect system as a low cost and unobtrusive
means to capture the user’s posture information and skeleton using
Microsoft’s Kinect SDK Beta 2 (released November 1, 2011). As
the Kinect SDK operates in its own reference frame, the positions of
each skeletal joint is given as a distance from the Kinect camera. To
use this information, we need to convert from the Kinect reference
frame into the virtual reference frame.

We first align the Kinect system with the front wall of the CAVE
to remove rotational discrepancies for the yaw and roll axis. There
are still rotational discrepancies in the pitch axis, however (Figure
3). To correct for these, we calculate the Kinect’s “up” direction
by asking the user to stand straight up and recording the position
of their joints. From this we create a vector from the center of
the hip to the center of the shoulder that represents the user’s “up”
direction. We can then calculate the pitch rotational discrepancy
(q ).

To create our correction matrix, we first translate the Kinect
joints relative to the head joint position (I, J, K), rotate about the x-
axis (q ) and finally translate the joints in the virtual world to match
the virtual worlds head location (X, Y, Z). We require one more
correction—while the Kinect system locates the center of the head,
the head tracking system locates the users eyes, several centimeters
above. We compensate for this by applying a small offset in the z
direction (d ).

3.3 Virtual Reality Environment
The presented method is designed to work in a Cave Automatic Vir-
tual Environment (CAVE). For the methods involved in this paper,
it is necessary for the users to have the illusion that their hand can
grasp virtual objects. To achieve this effect, users must be head



Figure 3: Comparing the uncorrected skeleton (left) with the skeleton

after using the correction matrix (right). The skeleton joints, shown in

red for debugging, are positioned in front of the viewer for the uncor-

rected version, while the joints are aligned with the viewer’s perspec-

tive in the corrected version.

tracked and be receiving stereo 3D visual information. Other im-
mersive display technologies, such as head mounted displays, pro-
vide another way of generating these kinds of immersive experi-
ences.

Our method for grasping objects is similar to that of Zachmann
[17]. First, we determine if there has been a collision between the
virtual object and the hand, as detected by the physics engine. We
represent the hand with an invisible sphere, 5 cm in radius. If there
is a collision between sphere and object, we compare the user’s
exertion force against the object’s MEF value. If the force being
applied is greater than the MEF value, the object is considered to
be grasped, and its movement follows the user’s hand. If the user’s
exertion force falls below the MEF value, the object is dropped.

4 RESULTS

We created several different environments to test our system. The
first environment consisted of two circular tables in which users
were tasked with moving objects from one table to the other. The
objects consisted of books and dumbbells, mirroring the physical
objects the user can train with. We also utilized recreations of
kitchen and bathroom environments filled with everyday objects,
such as toothbrushes, deodorant, soap, teapots, pans and cups that
the user could manipulate.

Figure 4: A demonstration of the user’s exertion force while lifting a

physical object, shown in blue, and a virtual object, shown in red. Left

to right, the graph shows the exertion force from lifting 0.74 kg (1.63

lbs), 1.36 kg (3 lbs) and 2.27 kg (5 lbs) objects, respectively.

For the system to be effective, users needed to be able to virtually
match the exertion that they would normally need to produce for
lifting a physical object of equal mass. To test this, we had users

lift objects of 0.74 kg (1.625 lbs), 1.36 kg (3 lbs) and 2.27 kg (5 lbs),
first physically and then virtually. Figure 4 shows a graph of these
exertions for a user, with physical exertions shown in red and virtual
exertions shown in blue. In general, users were able to generate a
similar force for the virtual object, just as they would have used to
lift the physical object.

It was also important to test the responsiveness of our system to
see if it properly reflected the user’s intentions. To accomplish this,
we compared our novel interaction method to a more traditional
one. When the user intended to grasp a virtual object, they were
asked to push a trigger button on a wireless controller. When the
user wanted to drop the object, they were instructed to release the
button. A total of four participants completed 10 trials for each
weight. Table 1 shows the average time differences from all trials.

Six individuals familiar with the CAVE assisted in the devel-
opment of this system. Most users were able to pick up objects
without instruction after going through the calibration procedure.
Users’ statements about the system were generally positive, stat-
ing that they found the method of interaction easy and engaging.
Some users enjoyed the ability to manipulate objects either with or
without a physical hand gesture. The major complaint was the prep
work and movement limitations imposed by the wired EMG device.

Method 0.74 kg 1.36 kg 2.27 kg
Grasp 20 ms (SD=44) 309 ms (SD=70) 359 ms (SD=100)

Release 32 ms (SD=100) 90 ms (SD=40) 5 ms (SD=5)

Table 1: The Grasp row shows the difference in time between when

the user pressed the controller button and when our system classi-

fied the object’s state as grasped. The Release row shows the dif-

ference in time between when the user pressed the controller button

and when our system classified the object’s state as being dropped.

Our method was most effective for lightweight virtual objects
(< 1.13 kg (3 lbs)). Users were able to grasp these objects with lit-
tle latency compared to a simple button press. Dropping these ob-
jects generally worked effectively, but sometimes users flexed their
hands in the process, thus increasing their exertion for a short inter-
val. This in turn created the appearance that objects were stuck to
the hand for short periods of time. For objects of greater mass, the
grasping stage was much less precise, resulting in a higher standard
deviation. This was due to the time needed for the user to reach the
correct level of exertion. Dropping virtual objects with a greater
MEF value was generally easier for users, with very heavy objects
being very low latency compared to a simple button release.

5 DISCUSSION

While this system provides an initial proof of concept, further test-
ing is still required. As this method uses the human body, a study
of effectiveness over a broad population would be insightful. For
instance, an understanding of how fatigue is incurred through only
muscle tension, i.e. without an opposing force, would be necessary
to make this interface more general purpose. Furthermore, a better
understanding of the user’s sense of proprioception while working
in a virtual environment would enable new approaches that increase
the precision of object acquisition and placement.

Natural interactions are not necessarily the most efficient way
to accomplish a task. For instance, users experienced fatigue after
extended periods of time while using the system, as they would nat-
urally. Existing input systems such as game controllers and wands
are clearly more efficient in this regard, but they do not reflect com-
mon, naturally occurring sensorimotor contingencies. That is, a
button press is an efficient, though unnatural interaction without an
apparent causal relationship between the user and the object.

The current system only distinguishes interactions in a binary
way—if an item isn’t “grasped”, it is immediately “dropped”. Be-
cause the user is quick to react to the sight of an object beginning to



fall, they compensate by increasing their exertion level. Thanks to
this behavior, objects were rarely dropped in practice. Haptic inter-
faces would give the user additional feedback beyond vision alone,
providing perceptual cues about a virtual object’s MEF.

As shown in [3], objects can also be acquired via ray-casting,
allowing users to manipulate objects from a distance. We imple-
mented this interaction paradigm by creating a ray from the user’s
elbow joint pointed to the user’s hand. This allowed users to point
their arm towards an object and exert their muscles to grab the ob-
ject from a distance. This small enhancement offers a means to
increase the efficiency of this natural interaction.

Our prototype system is also somewhat cumbersome in its cur-
rent state. While the wires attached to the user’s body are long
enough to enable full traversal of the CAVE, users can still feel re-
stricted. Wireless armband EMG devices have been prototyped by
both Costanza et al. [6] and Saponas et al. [13]. These types of de-
vices not only remove the wired connection, but also require much
less preparatory work.

The user’s movement is also somewhat restricted by the single
Kinect camera’s field of view. We believe that by adding and reg-
istering multiple Kinect camera devices, these restrictions could be
greatly reduced. The system is also limited by the skeletal con-
struction provided by the current version of the Microsoft Kinect
SDK. While this SDK cannot capture hand poses, future research
may be able to accomplish this with more sophisticated hardware
or computer vision techniques.

Future work may benefit from a more complex classification sys-
tem that could enable classification of not only muscle exertion, but
also of the user’s gestures and actions. Enhancements may pro-
vide a means of disambiguating gestures that appear similar based
purely on movement. Also, as the force generated by the user is not
digital in nature, adding classification may give extra insight into
the user’s actions. For instance, it may be possible to differenti-
ate dropping from flicking and throwing. Classification could also
be used to differentiate the way in which the user has exerted their
muscles.

As we only use the forearm muscles for our biofeedback system,
it is most useful for capturing gripping actions. For lifting cradled
objects, the primary muscle group used for lifting may switch to
the bicep muscles. Thusly, in future work, it may be important
to focus on multiple muscle groups. This would, in its simplest
form, enable users to lift objects with multiple hands. One might
also use virtual exertions as a form of physical rehabilitation for
a patient recovering from surgery. Furthermore, an application of
this system could utilize the user’s leg muscle exertions and overall
body position to naturally traverse a virtual environment simply by
“walking”.

6 CONCLUSION

This paper presents a novel interface for virtual environments
by combining kinesthetic information and biofeedback from elec-
tromyograms (EMG). This method more closely matches the way
people naturally interact with physical objects through grasping,
moving and dropping without need for buttons, hand gestures or
speech commands. This gives virtual objects the illusion of mass
by requiring users to exert a calibrated amount of force to grasp
and hold virtual objects. Users were consistently able to repro-
duce these calibrated exertions when manipulating virtual objects
of varying mass. Future work will focus on making the system
more natural than the current setup and on further enhancing its
overall effectiveness.
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