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Real-Time Hand Gesture Detection and Recognition
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Vector Machine Techniques
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Abstract—This paper presents a novel and real-time system for
interaction with an application or videogame via hand gestures.
Our system includes detecting and tracking bare hand in cluttered
background using skin detection and hand posture contour com-
parison algorithm after face subtraction, recognizing hand ges-
tures via bag-of-features and multiclass support vector machine
(SVM) and building a grammar that generates gesture commands
to control an application. In the training stage, after extracting
the keypoints for every training image using the scale invariance
feature transform (SIFT), a vector quantization technique will
map keypoints from every training image into a unified dimen-
sional histogram vector (bag-of-words) after K-means clustering.
This histogram is treated as an input vector for a multiclass
SVM to build the training classifier. In the testing stage, for every
frame captured from a webcam, the hand is detected using our
algorithm, then, the keypoints are extracted for every small image
that contains the detected hand gesture only and fed into the
cluster model to map them into a bag-of-words vector, which is
finally fed into the multiclass SVM training classifier to recognize
the hand gesture.

Index Terms—Bag-of-features, grammar, hand gesture, hand
posture, human computer interaction, K-means, object detection,
object recognition, scale invariant feature transform (SIFT), sup-
port vector machine (SVM).

I. INTRODUCTION

HAND GESTURES provide a natural and intuitive com-
munication modality for human–computer interaction.

Efficient human computer interfaces (HCIs) have to be devel-
oped to allow computers to visually recognize in real time hand
gestures. However, vision-based hand tracking and gesture
recognition is a challenging problem due to the complexity of
hand gestures, which are rich in diversities due to high degrees
of freedom (DOF) involved by the human hand. In order
to successfully fulfill their role, the hand gesture HCIs have
to meet the requirements in terms of real-time performance,
recognition accuracy, and robustness against transformations
and cluttered background. To meet these requirements, many
gesture recognition systems used the help of colored markers
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or data gloves to make the task easier [1]. However, using of
markers and gloves sacrifices the user’s convenience. In this
paper, we focus on bare hand gesture recognition without help
of any markers and gloves.

Detecting and tracking hand gestures in a sequence of images
help in extracting hand region. Thus, processing time will
be reduced and accuracy will be increased as the features of
that region will represent the hand gesture only. Skin color
[39]–[41] is a significant image feature to detect and track
human hands. However, color-based methods face the challenge
of removing other objects with similar color such as face
and human arm. To solve this problem, we proposed a new
technique to detect hand gestures only using face subtraction,
skin detection, and hand posture contour comparison algorithm.
We used the Viola–Jones method [11] to detect face, and this
method is considered the fastest and most accurate learning-
based method. The detected face will be subtracted by replacing
face area with a black circle. After subtracting the face, we
detected the skin area using the hue, saturation, value (HSV)
color model since it has real-time performance, and it is robust
against rotations, scaling, and lighting conditions. Then, the
contours of skin area were compared with all the loaded hand
gesture contours to get rid of other skin-like objects existing
in the image. The hand gesture area only was saved in a small
image, which will be used in extracting the keypoints by scale
invariance feature transform (SIFT) algorithm.

SIFT features, proposed by Lowe [2], are features (key-
points) extracted from images to help in reliable matching
between different views of the same object, image classifi-
cation, and object recognition. The extracted keypoints are
invariant to scale, orientation and partially invariant to illu-
mination changes, and are highly distinctive of the image.
Therefore, the SIFT is adopted in this paper for the bare hand
gesture recognition. However, SIFT features are of too high
dimensionality to be used efficiently. We proposed to solve this
problem by the bag-of-features approach [17], [18] to reduce
the dimensionality of the feature space.

In the training stage, hand gestures training images can be
represented by sets of keypoint descriptors, but the numbers of
keypoints from the images are different and lack meaningful
ordering. This creates difficulties for machine learning methods
such as the multiclass support vector machine (SVM) classifier
that require feature vectors of fixed dimension as input. To
address this problem, we used the bag-of-features approach,
which has several steps. The first step is extracting the features
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Fig. 1. Generating a bag-of-words.

(keypoints) of hand gesture training images using the SIFT
algorithm. The next step is using the vector quantization (VQ)
technique [3], which clusters the keypoint descriptors in their
feature space into a large number of clusters using the K-means
clustering algorithm and encodes each keypoint by the index
of the cluster (codevector) to which it belongs. This VQ maps
keypoints of every training image into a unified dimensional
histogram vector after K-means clustering as shown in Fig. 1.
Finally, each cluster is considered as a visual word (codevector)
that stands for a particular local pattern shared by the keypoints
in that cluster. Therefore, the clustering algorithm constructs a
visual word vocabulary (codebook) representing several local
patterns in the training images. The size of the vocabulary is
determined by the number of clusters (codebook size), which
can vary from hundred to over tens of thousands. Each training
image can be described as a “bag-of-words” vector by mapping
the keypoints to a visual words vector. With the described
feature representation, we can train multiclass SVM classifier.

After the training stage, the testing stage can be run to
recognize hand gestures captured from a webcam or a video
file regardless of its resolution size. First, the hand gesture is de-
tected using our approach. Then, a small image (50 × 50 pixels)
that contains the detected hand gesture only will be used in
extracting the keypoints to reduce time processing and increase
the accuracy of recognition as the keypoints extracted will
represent the hand gesture only and will be used as the input for
the cluster and multiclass SVM classifier models, which were
built in the training stage, to recognize the hand gesture. In this
way, the background is subtracted, and the system will be robust
against cluttered background.

After detecting and recognizing hand postures, our system
will build a grammar that generates gesture commands, which
can be used to control or interact with an application or a
videogame.

The major contributions of this paper are as follows.

1) We proposed a new real-time approach for bare hand
posture detection and tracking using face subtraction,

skin detection, and hand posture contour comparison
algorithm.

2) We have achieved real-time performance and accurate
recognition for the detected hand postures using bag-of-
features model and multiclass SVM.

3) We built a grammar that generates a large number of
gesture commands used to control an application or
videogame by tracking and monitoring the size or scale
of the detected hand posture, its movement direction, and
the transitions among postures.

The paper is organized as follows: Section II introduces
related works; Section III describes our system in details,
including the training stage to build the cluster and the
SVM classifier models and the testing stage for recognition;
Section IV provides experimental results; Section V compares
performance of our approach with other approaches; Section VI
explains how our system generates gesture commands; the last
section gives the conclusion of our method.

II. RELATED WORK

There are mainly two categories for Vision-based hand ges-
ture recognition, which are the 3-D (D) hand model-based
methods and the appearance-based methods [4]. Many ap-
proaches that used the 3-D hand model-based technique [26],
[35]–[37] depend on the 3-D kinematic hand model with con-
siderable DOF and calculate the hand parameters by compari-
son between the input frames and the 2-D appearance projected
by the 3-D hand model. This will be suitable for realistic
interactions in virtual environments. The 3-D hand model-
based technique provides a rich description that permits a wide
class of hand gestures. However, since the 3-D hand models
are articulated deformable objects with many DOFs, a huge
image database is required to deal with the entire characteristic
shapes under several views. Another drawback is the difficulty
of feature extraction and inability to handle singularities that
occur from unclear views.

Appearance-based techniques extract image features to
model the visual appearance of the hand and compare these
features with the extracted features from the video frames as
our approach. They have real-time performance because of the
easier 2-D image features that are used. A simple method,
searching for skin colored regions in the image, was used in [5].
However, this method has some shortcomings; first, it is very
sensitive to lighting conditions. Secondly, it is required that no
other skin-like objects exist in the image.

In [6], scale-space color features are used to recognize hand
gestures, which are based on feature detection and user inde-
pendence. However, the system shows real-time performance
only when no other skin-colored objects exist in the image.

The authors of [7] obtained a clear-cut and integrated hand
contour to recognize hand gestures and then computed the cur-
vature of each point on the contour. Due to noise and unstable
illumination in the cluttered background, the segmentation of
integrated hand contour had some difficulty.

The eigenspace is another technique, which provides an
efficient representation of a large set of high-dimensional points
using a small set of basis vectors. However, eigenspace methods
are not invariant to translation, scaling, and rotation.
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TABLE I
PERFORMANCE OF ROBUST FEATURE DETECTION METHODS: SIFT,

PCA-SIFT, AND SURF

There have been a number of research efforts recently on
local invariant features [8]–[10]. In [8], Adaboost learning
algorithm and SIFT features were used to achieve in-plane
rotation invariant hand detection. In addition, a sharing feature
concept was used to speed up the testing process and increase
the recognition accuracy. Therefore, efficiency of 97.8% was
achieved. However, several features such as a contrast context
histogram had to be used to achieve hand gesture recognition
in real time. In [9], [10], Haar-like features were applied for
hand detection. Haar-like features concentrate more on the
information within a certain area of the image rather than each
single pixel. To enhance classification accuracy and attain real-
time performance, the AdaBoost learning algorithm, which can
adaptively choose the best features in each step and combine
them into a strong classifier, can be used.

With the learning-based object detection technique proposed
by Viola and Jones [11], the bare hand detection without any
restriction on the background evolves dramatically [12]. The
detection method attains robust detection, but needs a large
training time for obtaining the cascaded classifier. In addition,
hand detection with the Viola–Jones detector can be done with
about 15◦ in-plane rotations compared to 30◦ on face [13]. Even
though rotation invariant hand detection can be achieved using
the same Adaboost framework in a way of treating the problem
as a multiclass classification problem, the training process
requires much more training images and more computational
power for both training and testing.

It has been found that the keypoints provide an efficient
image representation for tasks varying from image classifica-
tion to object recognition. Keypoints are salient image patches
that include rich local information of an image. Keypoints are
detected by robust feature detection methods like SIFT [2],
its variant principal component analysis (PCA)-SIFT [14] and
speeded up robust features (SURF) [15]. In [2], SIFT was used
for extracting distinctive invariant features from images that can
be invariant to image scale and rotation. Then, it was widely
applied in image mosaic, recognition, and retrieval. Then, in
[14], PCA was used to normalize gradient patch instead of
histograms. It turned out that PCA-SIFT-based local descriptors
were also distinctive and robust to image deformations. In
[15], robust features (SURF) were speeded up, and integral
images were used for image convolutions and Fast-Hessian
detector. The experiments showed that it was very fast and
worked properly. In [19], many experiments were conducted to
evaluate performance of: SIFT, PCA-SIFT, and SURF. Table I
summarizes their results.

Table I shows that SIFT is fast for low resolution images
and invariant to scale and rotation and partially to illumination

changes. SURF is the fastest and has good performance as
the same as SIFT, but it is not stable to rotation changes.
PCA-SIFT has advantages in illumination changes, while not
in scale changes.

Since the keypoints (features), which represent the detected
hand gestures only, were extracted in real time using the SIFT
algorithm and were invariant to scale and orientation, and the
training images had been captured under different lighting
conditions, our system has real-time performance and is ro-
bust against scale, rotation, illumination changes, and cluttered
background.

Keypoint features can be used in their raw format for direct
image matching [16], or vector-quantized keypoints features
into a representation like the bag-of-words representation of
text documents. There were a lot of researches using this
vector-quantized, or bag-of-features representation, for image
classification [16]–[18].

Recently, bag-of-features representations have shown out-
standing performance for action and gesture recognition
[42]–[44]. They permit to recognize a rich set of actions ranging
from simple periodic motion (waving, running) to interactions
(kissing, shaking hands) [45]–[48]. However, “bag-of-features”
approaches exclusively rely on the dense local motion features.
They do not have the relations between the features in the spa-
tial and the temporal domains. These are significant correlation,
which are useful for recognition. There were a lot of researches
on expanding “bag-of-features” to include the spatial relation in
the context of object categorization [17], [49]–[52]. In [53], the
spatiotemporal pyramid was employed as a representation and
at the same time integrated the spatiotemporal relation among
visual features with their appearance information. In [54], a
spatiotemporal interest point detector was proposed based on
1-D Gabor filters. In [55], a detector was proposed based on
the determinant of the space-time Hessian matrix. In [56], local
features were calculated from temporal self-similarity matrices
of actions. In [57], a local space-time descriptor was proposed
based on space-time gradients.

In our approach, we used spatiotemporal (space-time) cor-
relation between every two consecutive frames in a video
sequence in terms of the transition among recognized postures
and their locations to develop our system into dynamic hand
gesture recognition. The timing relation for transition among
recognized postures is monitored for every two consecutive
frames of a video sequence by saving every two consecutive
recognized postures in two states in a queue, where the previous
recognized posture is saved in the old state of the queue, while
the current recognized posture is saved on the new state. The
movement direction or space relation between every two pos-
tures recognized from every two consecutive frames is tracked
by monitoring the difference between the two locations of the
previous and current recognized hand postures. This part of our
contributions will be discussed thoroughly in Section VI.

III. SYSTEM OVERVIEW

Our hand gesture recognition system consists of two stages:
the offline training and the online testing, which is extended
from our system in [25] by using face detection and subtraction
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Fig. 2. Training stage.

and hand gesture detection. The cluster and multiclass SVM
classifier models will be built in the training stage and will be
used in the testing stage to recognize hand gestures captured
from a webcam.

A. Training Stage

The training stage model is shown in Fig. 2. Before building
the bag-of-features model, we captured 100 training images
for each hand gesture, which are the fist, index, palm, and
little finger gestures, for different people, scales, and rotations
and under different illuminations conditions to increase the
robustness of the multiclass SVM classifier and the cluster
model. The system can also recognize any other gestures, such
as two, three, and five. All the training images illustrate the hand
gestures without any other objects, and the background has no
texture or objects (white wall). In this way, we guarantee that
all the keypoints extracted from training images using the SIFT
algorithm will represent the hand gesture only. Note that we
can reduce image processing time by reducing the number of
keypoints. This is achieved by reducing the image resolution
and converting training images to the portable gray map (PGM)
format. The image processing time is not too important in the
training stage as it is in the testing stage. For the case that we
did not use hand detection algorithm, the size of training images
have been reduced to 320 × 240 pixels and converted them into
PGM format to coincide with the size of images captured from
the video file in the testing stage. We repeated the training stage
with another 160 × 120 pixels training images size to build
another cluster and multi-class SVM classifier models to repeat
the testing stage with the 160 × 120 pixels frame size. While
for the case of using our hand detection algorithm, we built new
cluster and multi-class SVM classifier models after reducing the
size of training images to 50 × 50 pixels and converted them
into PGM format to coincide with the size of the small image
(50 × 50 pixels) that contains the detect hand gesture only for
every frame captured from the video file in the testing stage.

The bag-of-features model is built using features extraction,
learning a “visual vocabulary” by k-means clustering, quantiz-
ing features using visual vocabulary, and finally representing
images by frequencies of “visual words,” as will be discussed
in the following:

1) Features Extraction Using Scale Invariant Feature Trans-
form (SIFT): Features based on the SIFT algorithm are invari-

Fig. 3. 640 × 480 training images. (a) Fist with 35 features. (b) Index with
41 features. (c) Little finger with 38 features. (d) Palm with 75 features.

ant to scale and rotation and can be extracted in real time for
low resolution images. They are extracted in four stages. The
first step computes the locations of potential interest points
in the image by detecting the maxima and minima of a set
of difference of Gaussian filters applied at different scales all
over the image. Then, these locations are refined by getting
rid of points of low contrast. An orientation is then assigned
to each key point based on local image features. Finally, a local
feature descriptor is computed at each keypoint. This descriptor
is based on the local image gradient, transformed according to
the orientation of the keypoint to provide orientation invariance.
The size of the feature vector depends on the number of
histograms and the number of bins in each histogram. In Lowe’s
original implementation [2] a 4-by-4 patch of histograms with
8 bins each is used, generating a 128-dimensional feature
vector.

We used the SIFT algorithm to extract the keypoints (vectors)
for each training image. Fig. 3 shows some training images
with their keypoints. The number of keypoints decreases when
the hand gets away from the camera and increases when the
hand comes closer to the camera, because the area of the hand
increases. For the same distance from the camera, we notice
that the palm gesture has the maximum number of keypoints as
it has the largest area. We can increase the number of training
images to train the system as we wish for all the hand gestures
for different people with different scales, orientations, and
illumination conditions. The more training images used with
different illumination conditions, the more accurate in building
k-means cluster and SVM models since extracted features for
training images using SIFT are invariant to scale, orientation,
and partially to illumination changes. Therefore, the time will
increase for building the cluster model in the training stage.
However, this will not affect the testing stage speed.

2) K-Means Clustering: Clustering is the division of a set
into subsets, called clusters, so that elements in the same
cluster are similar in some sense. It is an approach of unsu-
pervised learning algorithm and an ordinary method for sta-
tistical data analysis applied in several fields, such as machine
learning, pattern recognition, image analysis, data mining, and
bioinformatics.

Among many different types of clustering, in this paper, we
used the k-means clustering algorithm [20]. The number of the
clusters (codebook size) will be determined depending on the
structure of the data. There will be a sort of compromise for
how to choose vocabulary size or number of clusters. If it is too
small, then each bag-of-words vector will not represent all the
keypoints extracted from its related image. If it is too large, then
there will be quantization artifacts and overfitting because of
insufficient samples of the keypoints extracted from the training
image.
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Fig. 4. K-means clustering with two clusters.

In the training stage, when the training images contain only
hand gestures on a white background, the keypoints that are
extracted will represent the hand gesture only, and this will
not exceed 75 keypoints for the palm gesture, which has the
largest number of keypoints. From this information, we know
that the number of clusters must be larger than 75. Therefore,
the training stage provides the minimum number of clusters
that we can use. In the testing stage, the webcam will capture
other objects besides the hand gesture such as the face and
background. The keypoints will be around 400 keypoints of
all the objects in the image. We chose the value 750 as the
number of clusters (visual vocabularies or codebook) to build
our cluster model.

The first step in k-means clustering is to divide the vector
space (128-dimensional feature vector) into k clusters. K-means
clustering starts with k randomly located centroids (points in
space that represent the center of the cluster) and assigns every
keypoint to the nearest one. After the assignment, the centroids
(codevectors) are shifted to the average location of all the
keypoints assigned to them, and the assignments are redone.
This procedure repeats until the assignments stop changing.
Fig. 4 shows this process in action for five keypoints: A, B,
C, D, and E and two clusters.

Once this is done, each feature vector (keypoint) is assigned
to one and only one cluster center that is in the nearest distance
with respect to the Euclidean metric in 128-dimensional feature
vectors. The keypoints that are assigned to the same cluster
center will be in the same subgroup so that after clustering,
we have k disjoint subgroups of keypoints. Therefore, k-means
clustering decreases dimensionality for every training image
with n keypoints (n × 128) to 1 × k, where k is number of
clusters.

The keypoint vectors for each training image will be used to
build the cluster model using k-means clustering. The number
of clusters (codebook) will represent the number of centroid
in the cluster model. Finally, the cluster model will build
codevectors equal to the number of clusters assigned (k) and
each codevector will have 128 components, which is equal to
the length of each keypoint. Then, the keypoints of each training
image will be fed into the k-means clustering model to reduce
its dimensionality into one bag-of-words vector with compo-
nents equal to the number of clusters (k). In this way, each
keypoint, extracted from a training image, will be represented
by one component in the generated bag-of-words vector with
value equal to the index of the centroid in the cluster model with
the nearest Euclidean distance. The generated bag-of-words
vector, which represents the training image, will be grouped
with all the generated vectors of other training images that have

the same hand gesture and labeled with the same number, and
this label will represent the class number. For example, label
or class 1 for the fist training images, class 2 for index training
images, class 3 for little training images, and class 4 for palm
training images.

3) Building the Training Classifier Using Multiclass SVM:
After mapping all the keypoints that represent every training
image with its generated bag-of-words vector using k-means
clustering, we fed every bag-of-words vector with its related
class or label number into a multiclass SVM classifier to build
the multiclass SVM training classifier model.

SVM is a group of related supervised learning methods used
for classification and regression. It carries out classification by
creating an N-dimensional hyperplane that optimally divides
the data into two groups. SVM classifiers are closely related
to neural networks. Actually, a SVM classifier model using a
sigmoid kernel function is the same as the two-layer, perceptron
neural network.

In the SVM literature, a predictor variable is known as an
attribute, and a transformed attribute that is used to define the
hyperplane is known as a feature. The operation of selecting the
most appropriate representation is called as feature selection. A
group of features that describes one case is known as a vector.
Therefore, the objective of SVM modeling is to find the optimal
hyperplane that divides clusters of vectors in such a way that
cases with one class of the target variable are on one side of
the plane and cases with the other classes are on the other side
of the plane. The vectors near the hyperplane are the support
vectors.

Even though SVMs were initially intended as binary classi-
fiers, other methods that deal with a multiclass problem as a
single “all-together” optimization problem exist [21], but are
computationally much more costly than solving several binary
problems.

A variety of approaches for decomposition of the multiclass
problem into several binary problems using SVMs as binary
classifiers have been proposed. In our implementation, multi-
class SVM training and testing are performed using the library
for SVM described in [22]. This library supports multiclass
classification and uses a one-against-one (OAO) approach for
multiclass classification in SVM [23]. For the M-class problems
(M being greater than 2), the OAO approach creates M(M-1)/2
two-class classifiers, using all the binary pair-wise combina-
tions of the M classes. Each classifier is trained using the sam-
ples of the first class as positive examples and the samples of the
second class as negative examples. To combine these classifiers,
the Max Wins method is used to find the resultant class by
selecting the class voted by the majority of the classifiers [24].



DARDAS AND GEORGANAS: REAL-TIME HAND GESTURE DETECTION AND RECOGNITION 3597

Fig. 5. Testing stage.

B. Testing Stage

Fig. 5 shows the testing stage, which is extended from our
previous work [25] by using face detection and subtraction and
hand gesture detection. After capturing frames from webcam or
video file, we detected the face and subtracted it before using a
skin detection and hand posture contour comparison algorithm
because the skin detection will detect the face and the face’s
contours very close to the fist hand gesture contours. To get
rid of other skin-like objects existing in the image, we make
sure that the contours of the detected skin area comply with the
contours of any hand gestures contours to detect and save the
hand gesture only in a small image (50 × 50 pixels). Then,
the keypoints were extracted from the small image that contains
the hand gesture only and will be fed into the cluster model to
map them into a “bag-of-words” vector and finally this vector
will be fed into multiclass SVM training classifier model to
recognize the hand gesture.

1) Face Subtraction: We used the skin detection and con-
tour comparison algorithm to detect the hand gesture, and this
algorithm can also detect the face because the face has a skin
color and its contours like the hand fist gesture contours. To
get rid of face area, we detected the face using Viola and Jones
method [11] and then subtracted the face before applying the
skin detection algorithm to detect the hand gesture only by
replacing face area with a black circle for every frame captured.
The Viola and Jones algorithm has a real-time performance,
achieving accuracy as the best published results [11].

First, we loaded a statistical model, which is the XML file
classifier for frontal faces provided by OpenCV to detect the
faces from the frames captured from a webcam during the test-
ing stage. The XML file classifier, which is a cascade of clas-
sifiers working with Haar-like features, was trained with a few
hundreds of sample views of human face, called positive exam-
ples that were scaled to the same size such as 30 × 30 pixels
and negative examples, which are random images of the same
size. The term “cascade” in the classifier indicates that the
resultant classifier includes several simpler classifiers that are
applied subsequently to a region of interest until at some stage,
the candidate is discarded for image regions least likely to be a
face or all stages are accepted for those that represent a face
as shown in Fig. 6. These classifiers use simple rectangular
features, called Haar-like features as in Fig. 7.

The Haar feature used in a particular classifier is determined
by its shape, position within the region of interest, and the scale.
The existence of a Haar feature is found by subtracting the
average dark-region pixel value from the average light-region

Fig. 6. Cascade of classifiers.

Fig. 7. Set of Haar-like features.

Fig. 8. Detecting a human face using Haar-like features.

pixel value. If the difference is above a threshold, which is
set during learning, that feature will be existed. The Haar-like
features make use of the following information as distinctive
features that can be used to detect the face as shown in Fig. 8:

• Eyes are dark (eyebrows and shadows).
• Cheeks and forehead are bright.
• Nose is bright.

After a classifier is trained, a set of features are extracted
and distinctive features that can be used to classify the face are
selected. The classifier can be applied to a region of interest
in an input image. The classifier outputs a “1” if the region
is probable to show the face and “0” otherwise. To search for
the face in the entire image, the search window can be moved
across the image and check every pixel using the classifier.
The classifier can be simply “resized” to be able to find the
objects of interest at various scales, which is more efficient
than resizing the image itself. Therefore, to locate an object of
an unknown size in the image, the search process should be
repeated several times at different sizes.

Once the face had been detected by the XML file classifier
for every frame captured, we replaced the detected face area
with a black circle to remove the face from the skin area. In
this way, we make sure that the skin detection will be for hand
gesture only as shown in Fig. 9.

2) Hand Gesture Detection: Detecting and tracking human
hand in a cluttered background will enhance the performance of
hand gesture recognition using bag-of-features model in terms
of accuracy and speed because the keypoints extracted will
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Fig. 9. Face detection and subtraction.

Fig. 10. Templates of hand gestures.

represent the hand gesture only. Moreover, we will not be con-
fined with the frame resolution size captured from a webcam or
video file, because we will always extract the keypoints of the
small image (50 × 50 pixels) that contains the detected hand
gesture area only, not the complete frame. In this way, the speed
and accuracy of recognition will be the same for any frame size
captured from a webcam such as 640 × 480, 320 × 240, or
160 × 120, and the system will be also robust against cluttered
background because we process the detected hand gesture area
only. The small image size (50 × 50 pixels) that contains the
detected hand gesture area only has to be complied with the
training images size of training stage.

For detecting hand gesture using skin detection, there are
different methods including skin color-based methods. In our
case, after detecting and subtracting the face, skin detection
and contour comparison algorithm was used to search for the
human hands and discard other skin-colored objects for every
frame captured from a webcam or video file. Before capturing
the frames from a webcam, we loaded four templates of hand
gestures as shown in Fig. 10, fist, index, little, and palm to
extract their contours, and saved them for comparison with the
contours of skin detected area of every frame captured. After
detecting skin area for every frame captured, we used contour
comparison of that area with the loaded hand gestures contours
to get rid of other skin-like objects that exist in the image. If
the contour comparison of skin detected area complies with
any one of the stored hand gesture contours, a small image
(50 × 50 pixels) will enclose the hand gesture area only, and
that small image will be used for extracting the keypoints using
SIFT algorithm.

Skin detection is an important issue in many Computer
Vision applications such as face detection, recognition, facial
expression extraction, face and hand tracking, hand gesture
recognition, virtual reality, and other many recognition systems.

There have been several studies and different approaches
proposed on skin color modeling and recognition. The objective
of skin color detection is to make a decision rule that will
differentiate between skin and nonskin pixels based on color
components. In order to get appropriate distinction between
skin and nonskin regions, color transformation to separate
luminance from chrominance is needed.

Although the input image is generally in RGB format, skin
detection methods usually use color components in the color
spaces, such as HSV, YCbCr, TSL, or YIQ. That is because
RGB components are dependent on the lighting conditions.

The overlap between skin and nonskin pixels can be decreased
using color space transformation. That will help in skin-pixel
classification and provide robust parameters against lighting
conditions changes. It has been noticed that skin colors vary
more in intensity than in chrominance [27]. Therefore, the
luminance component can be dropped for skin classification.
HSV is one of the color spaces most commonly used for skin
detection. According to Zarit et al. [28], HSV provides the best
performance for skin-pixel detection.

In our implementation we used the HSV color model since it
has shown to be one of the most adapted to skin-color detection
[28]. It is also compatible with the human color perception.
Furthermore, it has real-time performance and robust against
rotations, scaling, and lighting conditions and can tolerate
occlusion well.

The HSV color space is obtained by a nonlinear transforma-
tion of the fundamental RGB color space. The transformation
between RGB and HSV is described in detail in [29]. Hue (H)
is a component that represents pure color such as pure yellow,
orange, or red, whereas saturation (S) provides a measure of the
degree to which a pure color diluted by white light [30]. Value
(V) attempts to represent brightness along the grey axis such as
white to black, but as brightness is subjective, it is thus difficult
to measure [30].

Experiments have shown that skin colors of individuals
cluster closely in the color space for all people from different
ethnicities, i.e., color appearances in human faces and hands
vary more in intensity than in chrominance [31], [32]. Thus,
removing the intensity V of the original color space and
working in the chromatic color space (H,S) provide invariance
against illumination conditions. In [33], it had been noted that
discarding the Value (V) component and only using the Hue
and Saturation components, can still permit for the detection
96.83% of the skin pixels.

From a classification approach, skin-color detection can be
considered as a two class problem: skin-pixel versus nonskin-
pixel classification. There are many classification techniques
such as thresholding, Gaussian classifier, and multilayer per-
ceptron [34]. In our implementation, we used the thresholding
method, which has the least time on computation compared
with other techniques, and this is required for real-time applica-
tion. The basis of thresholding classification is to find the range
of two components H and S in HSV model as we discarded
the Value (V) component. Usually, a pixel can be viewed as
being a skin pixel when the following threshold ranges are
simultaneously satisfied: 0◦ < H < 20◦ and 75 < S < 190.

Once the skin area had been detected, we found contours of
the detected area and then compared them with the contours
of the hand gestures templates. If the contours of the skin area
comply with any of the contours of the hand gestures templates,
then, that area will be the region of interest by enclosing the
detected hand gesture with a rectangle, which will be used
in tracking the hand movements and saving hand gesture in
a small image (50 × 50 pixels) for every frame captured as
shown in Fig. 11. The small image will be used in extracting
the keypoints to recognize hand gesture.

3) Hand Gesture Recognition: We converted the small im-
age (50 × 50 pixels) that contains the detected hand gesture
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Fig. 11. Small images of detected hand gestures.

only for every frame captured into a PGM format to reduce
the time needed in extracting the keypoints. For every small
PGM image, we extracted the keypoints (vectors) using the
SIFT algorithm. The keypoints will be fed into the k-means
clustering model that was built in the training stage to map all
the keypoints with one generated vector (bag-of-words) with
components (k), which is equal to the number of clusters (k)
used in the training stage. Each feature vector in the keypoints
will be represented by one component in the generated vector
with value equals to the index of centroid in the cluster model
with nearest Euclidean distance. Finally, the generated bag-
of-words vector will be fed into the multiclass SVM training
classifier model that was built in the training stage to classify
and recognize the hand gesture.

IV. EXPERIMENTAL RESULTS

In this section, we will discuss results of our experiments
conducted on our image data set and on public image data set.

A. Results on Our Image Data Set

We tested four hand gestures: the fist gesture, the index
gesture, the little finger gesture, and the palm gesture. The
camera used for recording video files in our experiment was
a low-cost Logitech QuickCam webcamera that provides video
capture with different resolutions such as 640 × 480, 320 ×
240, and 160 × 120, at 15 frames-per second, which is adequate
for real-time speed image recognition.

We conducted the experiment to recognize hand gestures for
two cases. First case was without face subtraction and hand
gesture detection as done in our work [25], and the other case
was with hand gesture detection. There are two restrictions for
the first case [25]. First, since the SIFT algorithm is real time
for low resolution images, the resolution of video frames in the
testing stage must not exceed 320 × 240 pixels. While the other
restriction in the testing stage has to be done with a white wall
as a background because the keypoints extracted in the testing
stage will increase dramatically with cluttered background, and
this will make it difficult to recognize the keypoints of hand
gestures from the other keypoints of cluttered background.

While for the second case, there is no restriction in the
testing stage to run it against the resolution of video frames
and cluttered background because the region of interest will
be determined by face subtraction and hand gesture detection,
and that region, which contains the hand gesture only, will be
saved in a small image used for extracting the keypoints of hand
gestures only for every frame captured.

1) Hand Gesture Recognition Without Face Subtraction and
Hand Gesture Detection: Ten video files with the resolution of
320 × 240 had been recorded for each hand gesture: fist, index,

TABLE II
PERFORMANCE OF THE MULTICLASS SVM CLASSIFIER WITHOUT

OTHER OBJECTS (320 × 240 PIXELS)

Fig. 12. Hand gesture recognition without any object against. (a) Scale.
(b) Rotation.

little, and palm using the Logitech webcam. The length of each
video file was 100 images. The hand gestures were recorded
with different scales and rotations and without any object in the
background. The 40 video files were recorded under different
illuminations conditions. Fifty images of each video file were
recorded with natural fluorescent lighting condition, while for
the others, it had been installed an extra incandescent light bulb
to create a tungsten lighting condition. The test had been run for
the 40 video files to evaluate the performance of the multiclass
SVM classifier model for each gesture.

Table II shows the performance of the multiclass SVM clas-
sifier for each gesture with testing against scale, rotation, and
illumination. We repeated the experiment with other ten video
files for each hand gesture with the resolution of 160 × 120.
Only about 0.0492 s was required to recognize hand gesture
for every frame with the same accuracy as 320 × 240 pixels
videos results. During the real-time testing with live input from
each video file, there was no detectable pause and latency to
recognize the hand gestures. It appears that the system shows
excellent results in terms of accuracy and speed because the
features of hand gestures were extracted in real time for using
the SIFT algorithm and were invariant to scale and orientation.
In addition, since the training images had been captured under
different lighting conditions, the multiclass SVM classifier is
robust against illumination changes. The system wrote the
gesture name for each frame captured in the above left of the
image as shown in Fig. 12.

Another ten video files with the resolution of 320 × 240 had
been recorded for each hand gesture: fist, index, little finger,
and palm using the Logitech webcam. The length of each video
file was 100 images. The hand gestures were recorded with
different scales, rotations, and illuminations conditions and
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TABLE III
PERFORMANCE OF THE MULTICLASS SVM CLASSIFIER WITH

OTHER OBJECTS (320 × 240 PIXELS)

Fig. 13. Hand gesture recognition with other objects against. (a) Scale.
(b) Rotation.

with other objects in the background such as the face. The test
was run for the 40 video files to evaluate the performance of the
multiclass SVM classifier model for each gesture. The trained
multiclass SVM classifier shows a certain degree of robustness
against scale, rotation, and illumination. Table III shows the
performance of the multiclass SVM classifier for each gesture
with testing against scale, rotation, and illumination. The recog-
nition time increased because the extracted keypoints increased
from other objects. We repeated the experiment with other
ten video files for each hand gesture with the resolution of
160 × 120. Only about 0.0512 s was required to recognize
hand gesture for every frame with the same accuracy as
320 × 240 videos results. Fig. 13 shows some correct samples
for hand gesture recognition using multiclass SVM classifier
for little and index gestures with testing against scale, rotation,
and illumination.

2) Hand Gesture Recognition With Face Subtraction and
Hand Gesture Detection: Ten video files with the resolution
of 640 × 480 had been recorded for each hand gesture: fist,
index, little finger, and palm using a commercial grade webcam.
The length of each video file was 100 images. The hand
gestures were recorded with different scales, rotations, and
illuminations conditions and with a cluttered background. The
test was run for the 40 video files to evaluate the performance
of the multiclass SVM classifier model for each gesture. The
trained multiclass SVM classifier shows a certain degree of
robustness against scale, rotation, illumination, and cluttered
background. Table IV shows the performance of the multiclass
SVM classifier for each gesture with testing against scale, ro-
tation, illumination, and cluttered background. The recognition
time did not increase with cluttered background or increasing
the resolution of video file because the keypoints will be ex-

TABLE IV
PERFORMANCE OF THE MULTICLASS SVM CLASSIFIER WITH

CLUTTERED BACKGROUND (640 × 480 PIXELS)

Fig. 14. Hand gesture detection and recognition with cluttered background
against. (a) Scale. (b) Rotation.

tracted from the small image (50 × 50 pixels) that contains the
detected hand gesture only. We repeated the experiment with
other ten video files for each hand gesture with the resolution of
320 × 240 pixels; the same time was needed to recognize every
frame with the same accuracy as 640 × 480 videos results be-
cause the keypoints were extracted in both cases from the small
image that contains the hand gesture only. Fig. 14 shows some
correct samples for hand gesture recognition using multiclass
SVM classifier for the four hand postures with testing against
scale, rotation, illumination, and cluttered background.

From Table IV, we notice that the recognition time for every
frame had been reduced dramatically to 0.017 s for any video
resolution size used because the time spent for extracting the
keypoints was only for the small image (50 × 50 pixels) that
contains the detected hand gesture. Moreover, the recognition
accuracy increased because the keypoints extracted represent
the hand gesture only. While for the case without hand gesture
detection as in [25], it needs more time because the keypoints
were extracted for the whole objects in the image.

We repeated the same experiment for the case face subtrac-
tion and hand gesture detection with different resolution sizes
for the small image that captures the detected hand gesture only.
Table V shows the recognition time needed for every small
image size, which contains the hand gesture only.
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TABLE V
RECOGNITION TIME NEEDED WITH CLUTTERED BACKGROUND

FOR DIFFERENT SMALL IMAGES SIZES USED TO

CAPTURE HAND GESTURE ONLY

Fig. 15. Added hand postures to our system.

We notice from Table V that if we increase the size of the
small image that captures the detected hand gesture only from
50 × 50 pixels to 80 × 80 pixels, the recognition time is
the same.

To make sure of the robustness of our system, we added three
new hand postures defined in ASL (American Sign Language)
to our system, which are l (L), W (three), and Y as shown
in Fig. 15.

In the training stage, we captured 100 training images with
a size of 50 × 50 for every new hand posture and added
them to the four previous hand postures training images. The
700 training images for seven hand postures were used to
build a new cluster and multiclass SVM classifier models that
can classify seven hand postures, which are fist, index, little,
palm, l, W and Y. For every new hand posture, we recorded
ten video files of 100 frames length for every video file with
different scales, rotations, and illuminations conditions and
with a cluttered background to test them with the previous
40 video files of fist, index, little, and palm postures. The seven
hand postures contours were loaded to detect hand posture in
every frame of 70 video files after face subtraction and skin
detection. Then, the test was run for the 70 video files to
evaluate the performance of the new multiclass SVM classifier
model for each hand posture. The multiclass SVM classifier
gave excellent recognition results as shown in Table VI. Fig. 16
shows some correct samples for the three new hand postures: l
(L), W (three), and Y.

B. Results on Public Image Data Set

The public database images used for testing in this paper
is the Sebastien Marcel database [58], which is a benchmark

TABLE VI
PERFORMANCE OF THE MULTICLASS SVM CLASSIFIER WITH

CLUTTERED BACKGROUND FOR SEVEN POSTURES (640 × 480 PIXELS)

Fig. 16. Hand gesture detection and recognition for l (L), W (three), and
Y postures.

Fig. 17. Hand postures used in Marcel database images.

database in the field of hand gesture recognition. This database
contains (100 × 100 pixels) color images of six hand postures
in ASL, which are C, A (fist), Five, Point (index), B (palm),
and V (two) as shown in Fig. 17, performed by different people
against uniform and complex backgrounds. Therefore, we have
to add three new postures to our system, which are C, Five, and
V (two) postures.

In the training stage, we captured 100 training images with a
size of 50 × 50 for every new hand posture, which are C, Five,
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TABLE VII
PERFORMANCE OF THE MULTICLASS SVM CLASSIFIER WITH PUBLIC IMAGE DATA SET (100 × 100 PIXELS)

and V (two), and added them to the three previous hand postures
training images to build a new cluster and multi-class SVM
classifier models that can classify six postures. The 600 training
images for six postures contain only hand posture on a white
background, therefore the extracted keypoints will represent the
hand posture only.

In the testing stage, we used the new cluster and multiclass
SVM classifier models that were built in the training stage to
classify the six hand postures provided by Sebastien Marcel
database. The six hand posture contours were loaded to de-
tect hand postures in test images after face subtraction and
skin detection. The multiclass SVM classifier gave excellent
recognition results on this benchmark database as shown in
Table VII. The overall recognition accuracy is 96.23%. As we
mentioned before, the recognition time will be always 0.017 s
for each frame regardless of the frame size used because
the keypoints will be extracted from the small image (50 ×
50 pixels) that contains the detected hand gesture only.

Fig. 18 shows some correct samples for the six hand postures
provided by Sebastien Marcel database using our approach. In
the next section, a performance comparison of our approach
with Sebastien Marcel [58] approach and other approaches will
be discussed.

V. COMPARISON WITH OTHER APPROACHES

We selected some papers [10], [58]–[62] that had a real-
time performance and discussed their recognition time and
accuracy to compare their performance with our approach. In
[59], the hand gesture was detected using skin color approach.
Features for all the detected hand gestures used were extracted
based on Haar Wavelet Representation and stored in a database.
During the recognition process, a measurement metric was
utilized to measure the similarity between the features of a test
image and those in the database. In [60], hand detection with
Adaboost was used to trigger tracking and recognition. Then,
adaptive hand segmentation was executed during detection
and tracking with motion and color cues. Finally, scale-space
feature detection was applied to find palm-like and finger-like
structures. Hand gesture type was determined by palm–finger
configuration. In [61], first hand gesture was detected based on
Viola–Jones method. Then, the Hu invariant moment feature

Fig. 18. Hand posture detection and recognition for the six hand postures of
Marcel database images using our approach.

vectors of the detected hand gesture were extracted, and a
SVM classifier was trained for final recognition. In [10], the
posture was detected using Haar-like features and the AdaBoost
classifier. Based on the cascade classifiers, a parallel cascade
structure was implemented to classify different hand postures.
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TABLE VIII
PERFORMANCE COMPARISON WITH OTHER HAND POSTURE RECOGNITION APPROCHES

In [62], it acquired and preprocessed video image frame from
camera, then extracted the normalized moment of inertia fea-
tures and Hu invariant moments of gestures to constitute feature
vector, which is inputted into SVM to achieved classification
results. In [58], a neural network model was used to recognize
a hand posture in an image. A space discretization based on face
location and body anthropometry was used to segment hand
postures.

A. Performance Comparison With Other Approches
Based on Their Own Image Data Set

Table VIII shows the performance for all other approaches
mentioned above based on their own image data set besides our
approach in terms of recognition time and accuracy, resolution,
number of tested images, and background and if it is invariant
against scale, rotation, and different lighting conditions.

B. Performance Comparison With Other Approches
Based on the Same Public Image Data Set

In [10], [60], [61], Viola and Jones’s method [11] was used
to detect hand posture before recognition. Therefore, we created
six Haar classifiers to test detection for six postures in Sebastien
Marcel database images [58] before recognition. We used
OpenCV to train and create six classifiers for C, A (fist), Five,
Point (index), B (palm), and V (two) postures using Haar-like
features in Haar Training. Each classifier is trained with 1000
positive images for each hand posture and 3500 negative im-
ages. The result of training is six xml classifiers files. We loaded
the trained xml classifiers simultaneously to detect the hand
postures in the Sebastien Marcel database images. Around 40%
of those database images have complex or cluttered background
while the others have wall background with different colors.
The detection results were not so successful. The classifiers did
not detect six postures for all the test images that have cluttered

background. While the classifiers detected six postures success-
fully for around 50% of the images that have wall background
with some difficulty to detect the palm posture. The classifiers
failed for other 50% because the rotations for hand postures
are more than ±15◦. Therefore, we left with around 30% of
the total images for recognition after detection, which will be
the maximum recognition rate for algorithms used in [10], [60],
[61]. To validate the performance of the six Haar classifiers,
we tested them to detect our hand postures captured from a
webcam. The 6 Haar classifiers detected our six hand postures
successfully if the hand posture’s rotation is less than ±15◦ and
if the background is wall like the background used in Figs. 12
and 13. The palm classifier had some difficulty to detect the
palm posture. Also, the six Haar classifiers failed to detect all
the postures if the background is cluttered like the background
used in Figs. 14 and 16.

Haar-like features have been used successfully in face clas-
sification [11]; however, hand detection and tracking in [13],
[63], [64] have not been so successful. The major reason for
this is Haar-like features are not invariant against rotation
[65]. The Haar features that describe faces are insensitive to
small angle changes as much as 30◦ from the vertical [13].
The person’s head is normally aligned vertically with respect
to gravity. Thus, rotational sensitivity is no major problem
for faces. However, hands are not naturally aligned with the
horizontal or vertical axes. Therefore, it is difficult to model
them with traditional Haar-like features. As we discussed in
Section III-B1, the face has strong Haar-like features related
to shading, which facilitates the face detection in cluttered
background. However, Haar-like features are not sufficient to
describe the hand postures because the most significant features
of a hand posture are the shape of the hand rather than internal
hand shades and textures [66], which makes the hand posture
detection difficult in cluttered background. In [10], a white
wall background was used to detect hand postures using Haar
classifiers.
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Fig. 19. Skin detection for public images with cluttered background.

Fig. 20. Skin detection for postures alone for public images with wall and
cluttered background.

Fig. 21. Skin detection for public images with wall background.

In [59], [62], skin color detection method was used to detect
hand postures before recognition. There are many constrains
for their method to detect hand postures only using skin color
detection such as no face and skin-like objects exist in the
background and the front arm of the user has to be covered by
clothes [59]. The figures in [59], [62] captured only the hand
postures without any skin-like objects or the face. The back-
ground used in [59] is the wall only without any other objects.
In [62], the algorithm for skin detection was not discussed at all.
Therefore, we used algorithm used in [59] and our algorithm to
detect skin color only in the Sebastien Marcel database images
[58] before recognition without face subtraction and hand con-
tours comparison algorithm because our algorithm was not used
in [59], [62]. We found that the performance of our algorithm
to detect skin color only is the same as the performance of
algorithm used in [59]. The skin detection algorithm detected
six postures with other skin-like objects for around 70% of the
public test images in [58] that have cluttered background as
shown in Fig. 19 for some samples. While the skin detection
algorithm detected six postures alone without other objects for
around 50% of the images that have wall background. Fig. 20
shows some samples for hand posture detection alone that have
wall and cluttered background. Fig. 21 shows some samples
where the skin detection did not detect hand posture alone for
the public test images that have wall background. Therefore,
we left with around 42% of the total images for recognition
after detection, which will be the maximum recognition rate for
algorithms used in [59], [62].

VI. BUILDING GESTURE COMMANDS (GRAMMAR)

A hand gesture is an action, which consist of a sequence of
hand postures. The rules for the composition of hand postures
into various hand gestures can be determined by a grammar
[38]. Since we extended the testing stage that was used in our
previous work [25] by using face detection and subtraction and
hand gesture detection, we built a grammar for our system
that generates 160 gesture commands, which can be used to

control or interact with an application or a videogame instead
of keyboard or mouse, by sending events to be executed such
as double click, close, open, go left, right, up, or down, and
so on. Those gesture commands can be generated by three
ways. First, by observing the gesture transitions from posture
to posture, such as from fist to index, fist to palm, fist to little,
fist to l (L), fist to W (three), fist to Y, fist to C, fist to five,
fist to two or stay fist, and so on for the other postures. For
each posture, we have ten transitions to other states; thus, we
have 100 events, or gesture commands can be sent from all of
the transitions among of the ten postures. Second, by observing
the direction of movement for each posture: up, down, left, or
right. We have four directions or gesture commands for each
posture or 40 gesture commands for ten postures. We did not
take the case of no movement for each posture as it is counted
already in the first way when the transition occurred from fist
to fist or palm to palm and so on. Finally, by observing the
hand posture size or scale: when it comes close (zoom in) or far
away (zoom out) from camera. As we have two cases for each
posture, we have 20 gesture commands for the ten postures.
Therefore, from the three ways, we have totally 160 gesture
commands that can be sent to interact with an application or
video game. In the following sections, we will explain how our
system can generate gesture commands using three ways.

A. Transitions Among Postures

This way depends on saving every two postures recognized
from every two consecutive frames of a video sequence in a
two states of a queue: the new state of the queue, which holds
the current or new posture recognized from a video or webcam,
and the old state of the queue, which holds the previous or old
recognized posture. The first posture recognized from the first
frame will be saved in the two states of the queue because they
are empty. The next recognized posture will be saved in the new
state after transferring its posture state to the old state. Thus,
for every frame captured, the posture state of the old state is
emptied. Then, the posture state of the new state is transferred
to the old state. Finally, the current posture recognized from the
frame will be saved in the new state. By observing the two states
for every two consecutive frames captured, the system will
keep monitoring the transitions among every two consecutive
recognized postures and generates a specific gesture command
for a specific transition among recognized postures. Fig. 22
shows all the transition states of fist posture with all other
postures.

B. Movement Direction for Each Posture

This way depends on tracking the movement direction of
the detected posture using the rectangle, which captures the
detected hand posture only, and the transition of recognized
posture still the same such as palm to palm. Once the hand
posture is detected from each frame by the rectangle and the
transition of recognized posture still the same, the coordinates
X and Y point, which are located in the middle of the rectangle,
are recorded. The system will always monitor the absolute
difference of distance between the two points of rectangle in
the X and Y coordinates for every two successive frames that
have the same posture. If the absolute difference of distance in
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Fig. 22. Transitions among postures.

the X direction is larger than absolute difference of distance in
the Y direction, then the hand posture is moved left or right.
If the difference of distance in the X direction is positive, then
the hand posture is moved right and if it is negative, then the
hand posture is moved left. If the absolute difference of distance
in the Y direction is larger than the absolute difference of
distance in the X direction, then the hand posture is moved up or
down. If the difference of distance in the Y direction is positive,
then the hand posture is moved down, and if it is negative, then
the hand posture is moved up. Fig. 23 shows all the movement
direction cases of palm posture.

C. Distance From Camera for Each Posture

This way depends on tracking the size of height for the
rectangle, which captures the detected hand posture only, and
the transition of recognized posture still the same. Once the
hand posture is detected from each frame by the rectangle and
the transition of recognized posture still the same such as little
to little, the height of the rectangle is recorded. The system

Fig. 23. Movement direction cases of palm posture.

Fig. 24. Zoom cases of little posture.

will always monitor the difference between the heights of two
rectangles for every two successive frames that have the same
posture. If the difference of rectangle height between the new
frame and the previous frame is positive, then the posture gets
closer to camera (zoom in), and if the difference is negative,
then the posture gets away from camera (zoom out). Fig. 24
shows all the zoom cases of little posture.

VII. CONCLUSION

In this paper, we have described a real-time system that con-
sists of three modules: hand detection and tracking using face
subtraction, skin detection and contour comparison algorithm,
posture recognition using bag-of-features and multiclass SVM,
and a grammar that generates a large number of gesture com-
mands by monitoring the scale of the detected hand posture, its
movement direction, and the transitions among postures. In the
training stage, after extracting the keypoints for all the training
images using SIFT algorithm, we perform VQ on the keypoints
for every training image using a k-means clustering to map
them into a unified dimensional bag-of-words vector, which is
used as input vector for building the multiclass SVM classifier
model. Then, the multiclass SVM classifier will be used in the
testing stage to classify the detected hand posture captured from
a webcam after constructing visual words vector for keypoints
of the small image (50 × 50 pixels) that contains the detected
hand gesture only. The testing stage proves the effectiveness
of the proposed scheme in terms of accuracy and speed as the
keypoints extracted represent the detected hand gesture only.
Experiments show that the system can achieve satisfactory real-
time performance regardless of the frame resolution size as
well as high classification accuracy of 96.23% under variable
scale, orientation and illumination conditions, and cluttered
background. Three important factors affect the accuracy of the
system, which are the quality of the webcam in the training and
testing stages, the number of the training images, and choosing
number of clusters to build the cluster model.
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