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Figure 1: Head-mounted virtual reality system built on a smartphone platform. Left: equipment for a fully mobile configuration.
Middle Left: User wearing a tethered version of the display. Middle Right: An example screenshot from our system. Right:
Virtual panel showing controls for interacting with objects.

ABSTRACT

With the increasing power of mobile CPUs and GPUs, it is be-
coming tractable to integrate all the components of an interactive,
immersive virtual reality system onto a small mobile device. We
present a demonstration of a head-mounted display system inte-
grated onto an iPhone-based platform. In building this demonstra-
tion we tackled two main problems. First, how to integrate the user-
interface, utilizing the phone itself as an unseen touch interface.
Second, how to integrate multiple inertial measuring units to facili-
tate user interaction. The resulting system indicates the practicality
of mobile virtual reality systems based on smartphones.

Keywords: Mobile virtual reality, head-mounted display, 3D user
interaction, selection tasks.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information System—Artificial, augmented and virtual
realities

1 INTRODUCTION

The very rapid increase in the power of mobile CPUs and GPUs
has meant that while until recently, immersive virtual reality (VR)
systems were powered by dedicated rendering computers, it is now
feasible to ask whether we can integrate such systems on mobile
devices. Mobility of a VR system has some attractive advantages,
such as no tethering to base stations and easy deployment in novel
situations. If the VR systems can be built with consumer compo-
nents, then it reduces the need for specialist hardware.

In this paper, we present an interactive VR system integrated on
to a modern smartphone, an iPhone 4S. Such devices come with
many of the components that are required for an immersive VR: a
mobile GPU capable of rendering high definition imagery, external
video and audio output and an inertial measuring unit (IMU) for
estimating pose. We needed to add another tracker and a head-
mounted display system; both were readily available components.
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Our prototype makes two main technical contributions. First, be-
cause we are driving an external head-mounted display (HMD), the
smartphone itself can also act as an interaction device. We can thus
use it as a hand-held (but unseen) controller that can be used to ef-
fect interaction within the virtual environment. Second, because the
smartphone is hand-held, the HMD is tracked by an external sensor,
which is also an IMU. A pair of IMUs will not be registered into
the same coordinate frame without some external reference. We
take advantage of the fact that both devices can be independently
registered against the local gravity vector. Through two simple in-
teraction techniques, raising the hand to the face and a clutch, we
can allow the user to realign the two IMUs.

2 BACKGROUND

The ability to use a computer that is untethered to power and ser-
vices has many potential applications. While wearable computers
have existed for several decades (for example, Mann’s WearComp
devices [9]), it is in the mid-1990s that the ability to drive HMDs
from mobile computers received broader attention. A seminal sys-
tem is the Touring Machine [5]. This augmented reality system
combined a backpack-mounted computer and HMD with a hand-
held display and stylus. The HMD was a see-through type. The
display could show labels over buildings based on interaction of
the user with the untracked handheld display.

The desire to run a full VR system on a completely mobile plat-
form is partly driven by the desire to avoid the restriction of tether-
ing the user to fixed equipment. The Virtsim system supports a team
of users each with a backpack and HMD [10]. However, it uses a
motion capture system for tracking and so users are constrained to
operate within specially instrumented environments. An alternative
is to develop a system which does not use any fixed infrastructure.
Hodgson presented a fully integrated mobile VR system using a
backpack computer [8]. It supported wide area tracking based on
GPS positioning. To our knowledge the system did not provide user
interaction through a tracked hand-held device.

The continued development of mobile phone platforms now
means that devices such as the iPhone 4S have graphics capabilities
that surpass desktop systems from only a few years ago. Projects
such as the FOV2GO project from the MxR lab at University of
Southern California [1][11], demonstrate their potential for use in
VR systems. Recently Basu et al. [3], have demonstrated a mobile



VR system using a phone as a component. Compared to their work,
the hardware of our system is simpler and we exploit the phone
itself as an interaction device and control panel.

In related work, a number of demonstrations have been made
of using a mobile device as an interaction device. For example,
interacting with a remote display [4].

3 PLATFORM OVERVIEW

3.1 Hardware
Our mobile VR system is based on an Apple iPhone 4S. The choice
of this rather than an Android-based platform was governed by the
availability of specific peripherals for the iPhone at the time of con-
struction. In particular, we required VGA and HMDI video dongles
and support for continuous full-screen output. We have demon-
strated support for two HMDs. The first is a Sony Glasstron LDI-
D100BE (stereo), with 800× 600 full pixel resolution in each eye
and a horizontal field of view of approximately 28°. This HMD is
designed to be power by battery or mains. We use a standard iPhone
VGA adapter. This configuration is fully portable. The complete
equipment for this setup is shown in Fig. 1, Left. The block at the
top middle of this picture is the HMD control box. The second
HMD is a Sony HMZ–T1. This is a stereo display with 1280×720
full pixels in each eye and a horizontal field of view of 45°. It is
designed to be mains powered, though a portable version could be
constructed. We use a standard iPhone HDMI adapter. We were not
able to drive either display in stereo, though it should be possible
with the Sony HMZ–T1. To track the HMDs, we used the commer-
ically available Hillcrest Labs, Freespace Reference Kit, FSRK–
BT–1.

3.2 Software
The software was written in a mixture of Objective-C and C++ for
iOS 5.0.1 using XCode 4.3.1 and iOS SDK 5.1. We used the ofx-
AssimpModelLoader module from OpenFrameworks version 0071

for 3D model loading. Other rendering software was written in
OpenGL ES2.0.

The Freespace FSRK–BT–1 communicates using BlueTooth.
We investigated several other options for integrating an external
tracker on to the iPhone, including making our own break-out ca-
bles, modem-based communication through the microphone, wire-
less networks, etc. However all presented problems with the closed
nature of the hardware and software of the iPhone platform. Blue-
Tooth was chosen because various BlueTooth connections had been
demonstrated on jailbroken phones for devices such as wireless
keyboards and mice. In particular, an open source, portable user-
space Bluetooth Stack, btstack, was available 2. With the aid of the
Hillcrest Lab documentation on the device’s BlueTooth packets we
were able to write a BlueTooth driver that would read the Freespace
device [7]. Thus to make this prototype the iPhone, running iOS
5.0.1, needed to be jailbroken. This may not be necessary in future
versions of iOS that may allow users more freedom in selecting
external peripherals or if a 3D tracker peripheral manufacturer is
certified by Apple for use with iOS.

4 SMARTPHONE AS UNSEEN TOUCH PANEL

4.1 Input
The overall patten of data flow within the software is shown in Fig.
2, Left. Recall that the iPhone acts as the hand tracker, and the
Freespace device as the head tracker. Thus the following raw infor-
mation is available:

• Accelerometer data from iPhone: 3 degrees of freedom (each
returned as a 32bit float, meters / second2)

1http://www.openframeworks.cc/
2http://code. google.com/p/btstack/

• Gyroscope data from the iPhone: 3 degrees of freedom (each
returned as a 32bit float, radians / second)

• Estimated orientation data from the iPhone: 3 degrees of free-
dom (each returned as a 32bit float)

• Accelerometer data from the Freespace: 3 degrees of freedom
(each returned as 16 bit integer, millimeters / second2)

• Gyroscope data from the Freespace: 3 degrees of freedom
(each returned as 16 bit integer, milliradians / second)

• Touch input from the iPhone screen: multiple times 2 degrees
of freedom (each returned as 32bit float value, in range 0–320
by 0–480)

From these raw data we can exploit various types of interaction.
First, we can use the head tracking data to create a coordinate frame
for the head, and then we can track the head gaze direction of the
user. Second, we can use the hand tracking data to create a coor-
dinate frame for the hand, and track the hand pointing direction.
We can orient both of these coordinate frame in to the same sense
(Y is up, X to the right, -Z in to the screen or away from the user
and roll is rotation around Z, pitch around X, yaw around Y, see
Fig. 2, Right). The hand tracker already estimates an absolute rota-
tion through the iOS CoreMotion API.

4.2 Processing
4.2.1 Orientation Fusion
The problem of estimating 3D attitude from a self-contained iner-
tial measurement system is a well-known and widely-studied prob-
lem [6, 2, 12]. In most systems, attitude is computed by integrat-
ing rate information from gyroscopes over time. However, because
these measurements are corrupted by noise and the fact that the
sampling rate is finite, this estimate will drift over time. To counter-
act this drift, supplementary information from other sensors can be
used. The InterSense [6] and XSens [12] devices, for example, ex-
ploit accelerometer information to measure the gravity vector when
the platform is stationary We use the same integration technique as
the Intersense and XSens devices. This module has as input the
accelerometer and gyroscope data from the Freespace devices, and
outputs an orientation for the head tracker.

Given that we have two IMUs they will diverge over time be-
cause they have slightly different sampling errors and noise in their
measurements. Fortunately the two IMUs we use can both be cor-
rected against the up (gravity) vector. This means that they diverge
in yaw (rotation about up) only. To assess the drift which can be
caused by movement, we conducted an experiment in which the
Freespace was attached to the iPhone, and the two underwent a se-
ries of rapid motions. The results are illustrated in Fig. 3, which
shows a 45 second log of the yaw values of the head tracker rigidly
attached to the hand tracker. Both are moved together, and returned
to the starting orientation twice (periods 23–25 seconds and 38–
42 seconds). In the second stationary period the difference in yaw
value is 18°s, and the two devices have drifted in opposite directions
(head +7°, hand -11°). The devices show some drift while station-
ary. In the period 38–42 seconds, the devices drift slowly: 7.3–7.9°
for the head tracker (which is consistent with the predicted steady
state covariance of the bias of the gyros), -10.1° – -11.5° for the
hand tracker. This may not be a problem for small values of drift,
but over time, the offsets could make the system unusable. We thus
need a method to reset the relative heading between the head and
hand trackers. Note that in this situation, we do not know if the
iPhone would calibrate against the magnetometer, but in any case
the iPhone yaw estimate has drifted from the known start angle.
Thus on this timescale we should expect noticeable yaw drift.

This divergence cannot be controlled as there is no external ref-
erence to make a measurement to, and no known relationship be-
tween the two head and hand device. Thus the user interface must
take into account the divergence between the two yaw values.
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Figure 2: Left: Overall pattern of data flow within the system. On the left we show sources of information for each processing frame. In the
middle are the operations on this data. These are explained in the text. On the right are the potential outcomes and scene changes that occur.
Solid lines represent transfer of 2D, 3D or flag data. Dotted lines represent interaction with 3D scene objects, including getting geometry or
getting or setting transformations. Right: The coordinate frames used to define the user interfaces.
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Figure 3: Drift in yaw values for head and hand trackers over a 45
second period.

4.2.2 Virtual Screen

An early design decision was to incorporate some form of virtual
phone-like screen in the environment to explore the use of 2D wid-
gets. Such a virtual device could be extended to a full 3D editing
system or a complex simulation control (e.g. see [13]). For this
demonstration we implemented a few simple editing controls (cut,
paste, delete), a selection button and a joystick, see Fig. 1, Right.

In order to make this UI legible, and to accommodate future
functionality, it was decided to render it relatively large on the
screen, as shown in Fig. 1, Right. Because we do not have an abso-
lute position for the hand, nor a relative distance between the head
and hand, the user cannot bring the UI to this position themselves.
Thus we utilised a gesture to bring the user interface to this posi-
tion, see the following section for a discussion of implementation.
When the user made this Hand Raised Gesture (see Fig. 2, Left), the
user interface would be activated (Full Widgets UI in Fig. 2. Left)
and the hand position and thus the visual position from which the

controller is drawn was set to Hand Up Position, see Fig. 2, Right.
In practice, when trying to point at an object, the need to use

buttons was found to be a little bit difficult. This was because some
users would need to shift the iPhone in their hand, or bring their
other hand over. Thus the current prototype has a second mode
Limited Widgets UI where only the select button and joystick but-
tons are activated and 2D gestures are used. In this case the UI is
drawn much smaller, though the buttons activating are still visible
if the hand is in view. This smaller UI is shown in Fig. 1, Middle
Right. The extra space on the UI is used as the gesture recognition
region as discussed below. To facilitate pointing at objects, the hand
position is moved to Hand Out Position, see Fig. 2, Right.

4.2.3 2D and 3D Gesture

We investigated making 3D gestures by waving the device in 3D
paths, but found that this was cumbersome and relatively inaccu-
rate. We also investigated simple 3D gestures combined with 2D
gestures. For example picking an object by pulling with the device
and pulling with the finger simultaneously. Such gestures were easy
to learn and perform but the 3D gesture was considered unnecessary
as both the gestures mimicked the same action. The 2D gesture
was preferred by users because it was much more reliably recog-
nised somce it had a defined start and end (on press and release of
the touch screen). We do have one 3D gesture, the Hand Raised
Gesture that is explained below.

The 2D gesture recognition (2D Gesture Recognizer in Fig. 2
Left), is based on the shape of the path. We use the “$1 recognizer”
[14]. We defined a gesture input region on the top half of the touch
screen, above the select button and joystick. We used four gestures
for the actions to cut, past and delete objects, and to return to a
home position. Users found this region easy to reach.

One 3D gesture was retained: the Hand Raised Gesture (Hand
Raised Gesture Recognizer in Fig. 2, Left). This is recognised by
the pitch of the hand rising above 60° along with a 0.5s vertical mo-
tion. The gesture remains active until the hand tips below 50° ver-
tically, in which case the gesture is terminated. The Hand Raised
Gesture is used to toggle between Full Widgets UI and Limited



Widgets UI. It is also used to reorient the hand, see below.

4.2.4 Yaw Fix and Yaw Clutch
As noted in Section 4.2.1 the yaw of the head and hand will diverge
over time. We provide two mechanisms to re-align the head and
hand. The first is provided by the Yaw Fix module. Whilst the
Hand Raised Gesture is active, the yaw of the head is used to over-
write the yaw of the hand. This has the effect of aligning the Full
Widgets UI in front of the head. As the hand is lowered, an offset
is calculated between the current hand and head yaw values, and
this offset is then applied to the received yaw values from the hand
tracker. This has the effect of realigning the hand yaw to the head
yaw as the hand is lowered. We have found this to be intuitive for
users.

The second mechanism is provided by the Yaw Clutch. This is
triggered by the select action as described above. When the select
action is activated, the yaw of the hand is frozen, by calculating
an offset that keeps the hand yaw constant as the hand tracker value
continues to vary. This offset is then held constant as select action is
deactivated. This acts as a clutch: hold the button to freeze the hand
controller and reorient your hand. Users also found this intuitive to
do.

4.2.5 Object Selection
In the Limited Widgets UI version, a blue ray is drawn along the
pointing direction of the handheld control (-Z), see Fig. 1, Middle
Right. When the select button is pressed a ray is cast along this ray
to select an object. This uses a single ray cast and thus allows the
precise selection of small targets. Because the tracking is stable,
we have not seen a need for the user to press select and then “hunt”
for the target on release. We have found that the Yaw Clutch and
select action can be activated by the same button: a select is a click,
whereas a hold is the clutch. Users pick up the dual use quickly and
have not reported this to be a problem.

4.3 Output
One module performs edits (cut, paste, delete) on the scene. Loco-
motion about the environment is effected using the virtual joystick
that appears on both the Full Widgets UI and Limited Widgets UI.
Because we are using the head direction as the principle direction,
and correcting the hand orientation to that as described above, we
use the locomotion direction based on travelling forwards and back-
wards in the direction of gaze. The vertical distance from the initial
press event on the virtual joystick is used as velocity of travel. There
is a dead zone, and a maximum distance: the range (10,50) pixels
distance is mapped to (0, 2) m/s. The horizontal distance is simi-
larly mapped: (10,50) to (0, 90) degree/s rotation in yaw around the
head position.

5 CONCLUSION

In this technote, we have described the development of a HMD-
based VR system that is integrated onto an iPhone-based platform.
The design of the system is novel in that it exploits the iPhone itself
as an unseen touch controller. The main difficulty in implementa-
tion was the lack of registration between the two IMUs: one in the
iPhone and a separate one on the head. Given that there we no exter-
nal reference signals to utilize, the user interface had to be adapted
as discrepancies in yaw between the two sensor could rapidly grow
to the point where pointing behaviour is unacceptably degraded. To
overcome these limitations, we introduced two mechanisms: a ges-
ture to automatically realign the coordinate systems crudely, and a
clutch to manually realign them precisely. The system can oper-
ate at 60Hz for worlds with a few thousand polygons. Latency is
acceptable at approximately 100ms.

We have evaluated this system informally with various demon-
strations and also in a pilot trial that demonstrated that the clutch

technique was easy to learn and useful to the users. Overall users
found the system easy to use. None had problems navigating about
the environment and interacting with objects.

There are many potential future avenues of work. Aside from
integrating the constantly improving hardware, we believe that one
of the most fruitful areas of further consideration will be to explore
other characteristics of behaviours that can be used to effect regis-
tration between different sensors.

Finally, we hope that the availability of an immersive VR system
that is based on a widely available consumer platform and other
readily available components, may enable new applications of VR
in domains where installation and maintenance costs might other-
wise be an issue.
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