Universal 3D Interaction Tasks

- **Navigation**
 - Travel – motor component
 - Wayfinding – cognitive component
- Selection
- Manipulation
- System control
- Symbolic input
Wayfinding

- Cognitive process of defining a path through an environment
 - use and acquire spatial knowledge
 - aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (not when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information
Transferring Spatial Knowledge

- Want to transfer knowledge to the real world
 - training
 - planning
- Navigation through complex environments to support other tasks

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - unconstrained movement
 - absence of physical constraints
 - lack of realistic motion cues
- 3DUIs can provide a wealth of information
Wayfinding as Decision Making Process

Wayfinding and Travel

- Exploration
 - browsing environment
 - useful in building cognitive map

- Search
 - spatial knowledge acquired and used
 - naïve search – not enough info in cognitive map
 - primed search – use of cognitive map defines success

- Maneuvering
 - uses very little of cognitive map
Wayfinding and Spatial Knowledge

- **Landmark knowledge**
 - visual characteristics of environment
 - shape, size, and texture
- **Procedural knowledge**
 - sequence of actions required to follow a path
 - requires sparse visual information
- **Survey knowledge**
 - topographical knowledge
 - object location/distance/orientation

Egocentric and Exocentric Reference Frames

- **Egomotion** – feeling we are the center of space
- **Egocentric** – first person
 - relative to human body
- **Exocentric** – third person
 - relative to world
- **Build up exocentric representation of world**
 - survey knowledge
- **Use egocentric when exploring for first time**
 - landmark/procedural knowledge
User-Centered Wayfinding Support (1)

- **Field of view**
 - small FOV can inhibit wayfinding
 - user requires repetitive head movements
 - lack of optical flow in periphery

- **Motion cues**
 - enable judgment of depth and direction
 - supports dead reckoning (backtracking of user’s own movement)
 - cue conflicts can hinder cognitive map development

- **Multisensory Output**
 - audio
 - Tactile maps

User-Centered Wayfinding Support (2)

- **Presence (feeling of “being there”)**
 - assumed to have impact on spatial knowledge
 - closer to real world

- **Search strategies**

![Search strategies image]
Environment-Centered Wayfinding Support

- Environmental design
- Artificial aids

Environmental Design (1)

- World’s structure and format can aid in wayfinding
- Legibility techniques
 - divide large scale environment into parts with distinct character
 - create simple spatial organization
 - include directional cues to support egocentric/exocentric reference frames
 - often repetitive
Environmental Design (2)

Environmental Design (3)

- Natural environment
 - horizon, atmospheric color, fog, etc...
- Architectural design
 - lighting
 - closed and open spaces
- Color and texture
Artificial Cues

- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Trails

Maps (1)
Maps (2)

Maps (3)
Maps (4)

Compasses
Signs

Reference Objects

- Objects that have well known size
 - chair, human figure, etc...
- Useful to estimate distances
Artificial Landmarks

- Local – help users in decision making processes
- Global – seen from any location

Trails

- Help user retrace steps
- Show what parts have been visited
Next Class

- System Control
- Readings
 - 3DUI Book – Chapter 7