Games and 3D User Interfaces: Past, Present, and Future

Lecture #2: Games and 3DUI*
Spring 2015
Joseph J. LaViola Jr.

*Special thanks to Ivan Poupyrev

3DUI and Video Games – Why?

- Video games
 - multi-billion dollar industry: $10.5 billion in 2005 in US
 - major driving force in home entertainment: average gamer today is 33 years old
 - advanced 3D graphics in HOME rather than universities or movie studios
- Driving force in technological innovation
 - graphics algorithms and hardware, sound, AI, etc.
 - technological transfer to healthcare, biomedical research, defense, education (example: Folding@Home)
- Recent innovations in 3D user interfaces
 - graphics is not enough anymore
 - complex spatial, 3D user interfaces are coming to home (example: Nintendo Wii)
- Why 3D user interfaces for games?
 - natural motion and gestures
 - reduce complexity
 - more immersive and engaging
- Research in 3D UI for games is exciting
 - will transfer 3D UI to other practical applications, e.g., education and medicine
3DUI and Video Games – What?

- Goal of 3DUI in games
 - designing input devices and interaction techniques to effectively control highly dynamic 3D computer generated content
 - three basic approaches

- Mapping 2D input to interact with 3D world
 - keyboard and mouse, joysticks, game controllers
 - traditional form of gaming user interfaces: e.g. Flight Simulator, Second life, Halo 3

- Simulating real world tools or using physical props
 - simulation: steering wheels, light guns, musical instruments
 - physical props: dance pads

- True spatial tracking of user gestures
 - camera, e.g. Microsoft Kinect
 - acceleration/infrared tracking: Wii controllers, Sony Move

Lecture Outline

- Historical Perspectives
 - early consoles
 - arcades
 - early 3D/VR game interfaces

- 3DUI in the home today
 - new generation of game UI

- The Future of UI in games
 - AR/VR/mobile games
 - working towards the future

- Conclusions
Historical Notes on Game UIs

Early Video Games

- 1947: Cathode-ray tube amusement device
 - probably the earliest proposal for electronic gaming device
 - not known if it was implemented
- Proposed interface
 - knobs and buttons
Early Video Games

Tennis for two: Second ever video game:
- 1958 by William Higinbotham @ Brookhaven National Laboratory
- display: oscilloscope, Input: dial and a button
- first ever computer game was invented by Douglas, A. at Cambridge in 1952

Spacewar! first (?) computer game:
- 1961 by Russell, S., Graetz, M. and Wiitanen, W. at MIT used DEC PDP-1
- interface: mostly buttons, but also joysticks and light pen
Early video games

1971: “Computer Space” is a first ever arcade game
- Spacewar! clone created by Nolan Bushnell
- Interface is mostly buttons
- Has not become very popular since its rules were too complex

1972: Magnavox “Odyssey” is a first ever home game console
- Invented by Ralph Baer
- Could play Ping-Pong game
- Collaborative: two people
- First game controllers: button and dials: 1D
- Battery operated

1975: Atari creates Pong for home and arcades
- Game industry is born
Early Video Games

- 1977: Atari 2600 console
 - cartridge based system, i.e. allows to change software
 - 2D controllers: Joystick as well as peripherals devices, i.e. trackball
 - introduce quality sound hardware: still popular today

- 1978: Magnavox Odyssey²
 - includes full-sized keyboard
 - used for educational software and programming
 - first home electronics device with speech synthesis
Modern Consoles

- **1983: Nintendo Famicon**
 - modern controller layout: controls for both hands, directional buttons
 - increasingly complex controllers and interfaces: games are still 2D, but interaction is becoming more complex and rich.

- **1994: Nintendo 64**
 - first “true” 3D console
 - adds joystick to controller, game pad gets more controls

- **1996: Sony dual-shock controller**
 - adds second joystick and shoulder buttons
 - standard controller for PS, PS2, PS3

- **Some observations**
 - gradually increasing complexity of game interfaces to allow more expression in games;
 - difficult to master
 - focuses more and more on “hard-core” gamers;
 - casual gamers often find games difficult
 - similar situation was in early arcades games
Arcade Games

- Arcade games:
- “Easy to learn, but difficult to master”
 - has to be learned immediately
 - can not have complex interfaces
 - specialized interfaces for particular games
 - many innovative and original interfaces
 - often based on simulation activities (shooting, driving, snowboarding, fishing, sliding etc.)
- many innovative and original interfaces has been developed: 3D, haptic response, realistic.
Arcade Games – UI Innovation

BeachHead
Football Power
Aliens Extermination

Arcade Games – UI Innovation

Manx TT
Dance Dance Revolution
Virtual Reality Arcade Games

- Arcades were first to introduce Virtual Reality and 3DUI in games
 - head/body tracking
 - stereoscopic vision
 - immersive displays
 - 3D spatial interaction

Virtual Reality Arcade Games

- Dactyl Nightmare: one of the first VR games
 - part of several other VR games: Legend Quest, Hero, Grid Busters
 - 1-4 players
 - basic shoot-em-up game
- Developed by W Industries/Virtuality in early 1990s
 - system sold as the 1000CS
 - used Amiga 3000 computer
 - HMD with tracked 3D joystick
Virtual Reality Arcade Games

- VR entertainment centers
 - multi-user combat simulation in BattleTech universe
 - fighting robots
 - first opened in 1990
 - provided an immersive experience
 - very little in the way of 3D user interface
- Can still play in Houston, Texas
 - MechCorps (www.mechcorps.com)

Virtual Reality Arcade Games

- DisneyQuest: Indoor interactive theme park (opened in 1998)
- Several VR games
 - Pirates of the Caribbean: Battle for Buccaneer’s Gold
 - uses motion platform, shoot cannons, navigate with steering wheel
 - surround screen display, users wear stereo glasses
 - Virtual Jungle Cruise
 - users sit in raft, steer and paddle
 - Aladdin’s Magic Carpet Ride
 - users wear HMD, sit on motorcycle-like device to steer
3D and VR on Game Consoles

- Several attempts to introduce 3D/VR for game consoles
 - Nintendo U Force
 - Mattel Power glove
 - Sega 3D glasses
 - Nintendo Virtual Boy
 - Not successful
 - low quality, did not work well
 - not really necessary since games were simple enough
 - considered to be a gimmick

1986: Sega Master System
- 3D glasses
- used active LCD shutters
- few games were supported
3D and VR on Game Consoles

- 1995: Nintendo Virtual Boy
 - Virtual reality goggles, monochrome, stereo

Some Conclusions From History

- Games complexity increases
 - 1970: Pong
 - 1980: Donkey Kong
 - 2000: Halo
 - Interaction complexity increases
Some Conclusions From History

- The complexity of controllers increased
 - use same interface components as in 60s
 - Buttons
 - Joysticks
 - Keyboard / mouse
 - combined together / increased number
 - more difficult to learn and master
 - less accessible to casual user
- 3D spatial controllers / 3DUI
 - very successful in arcades
 - failed in home devices
 - inaccurate/low quality

3DUI in the Home Today
3DUI in the Home Today

- Revival and rapid growth of 3D spatial interfaces for games today
 - cheaper and higher quality of sensors
 - fast game hardware can perform complex tracking/recognition
 - need for simpler and more intuitive interaction with games
 - games has become mainstream culture, more casual not only hard-core gamers
- The first 3D UIs in people hands
 - often based on previous research results and ideas
 - simplified for price

2003: Sony PS2 Eye Toy
- video camera interface for PS2
- casual/party games
- significant success in Europe/US
- based on several decades of research on visual tracking in robotics and computer vision
- developed by Richard Marks
3DUI in the Home Today

- Nintendo Wii
- Key innovation – Wiimote controller
 - provides 3D UI in the home
 - Makes games accessible to casual users

Wiimote features
- uses Bluetooth for communication
- senses acceleration along 3 axes
- optical sensor for pointing (uses sensor bar)
- provides audio and rumble feedback
- standard buttons and trigger
- uses 2 AA batteries
- Supports two handed interaction
 - can use 2 Wiimotes simultaneously
- Easily expandable
3DUI in the Home Today

- Nunchuk
- Steering Wheel
- Zapper
- Wii Helm
- Boxing Gloves
- Sports Pack
- Fishing Reel

Playstation Move features
- 3 axis accelerometer
- 3 axis gyroscope
- Magnetometer
- Coupled with Eye
 - Color changing sphere
- Standard buttons
- Rumble
- Bluetooth

Two-handed interaction
3DUI in the Home Today

- Microsoft Kinect features
 - RGB camera
 - depth sensing camera
 - uses infrared structured light
 - multi-array microphone
- No buttons
- Full body interaction

- PS3 AR Game / Eye of Judgement
 - first 3D AR games on the market
 - 3D interaction and manipulation of 3D graphics images possible
 - based on Cybercode: technology for tracking 2D square markers
 - invented in 1990s at Sony CSL
3DUI in the Home Today

- **3D HDTV**
 - high resolution 1920x1080
 - high definition 1080p
 - no special graphics card needed
 - runs at 240Hz (120Hz each eye)
 - as high as 480Hz
 - requires shutter glasses
 - 3D stereoscopic content sent to TV via DVI or HDMI port

- Play games in 3D
 - DVDs as well, TV channels

- **DLP, LCD, LED, Plasma**

- Latest – 4K resolution

Some observations/conclusions

- renaissance of 3D / spatial user interfaces in gaming
- for the first time very successful with public
- attracts casual gamers
- allows for easier introduction of new 3D user interfaces in the future
- still very simplistic when compared with 3DUI developed in research labs
- great possibilities for the future growth!
Future of Game UI

What are the technologies that will influence future game 3DUIs?
1. Transfer the body of VR research into games
2. Development of complex Augmented Reality games
3. Outdoor games with complex 3DUI
4. Mobile 3D games

Some examples follow
Future of Gaming: VR

- Port of Quake II to the CAVE
 - developed by Paul Rajlich (NCSA)
 - fully immersive experience
 - uses 6DOF wand as gun proxy
 - head tracking allows for peering around walls
 - players can physically jump and duck
- Quake III Area ported to CAVE as well

Future of Gaming: VR

- SwordPlay: explore what 3D UIs are appropriate in gaming
 - developed as part of course in “Innovating Game development” (Brown U. 2006)
 - user has sword and shield/bow and arrow
 - uses Mine’s Over-the-Shoulder deletion technique to invoke bow and arrow
 - user can draw spells in 3D with sword

http://www.cs.brown.edu/courses/cs196-2/groups/swordplay/
Future of Gaming: VR

- **IllumiRoom**
 - combines projector and Kinect
 - augments TV’s surrounding area
 - number of different styles
 - Strong potential for gaming

Spring 2015
Jones et al. 2013

Future of Gaming: VR

- **RoomAlive**
 - combines projectors and Kinects
 - augments entire room
 - dynamic mapping to room content

Spring 2015
Jones et al. 2014
Future of Gaming: VR

- **Omni**
 - virtual navigation system
 - uses special shoes
 - combine with HMD and trackers

http://www.virtuix.com/

Future of Gaming: AR

- **AquaGuantlet**
 - developed at Mixed Reality Systems Laboratory, Japan (Tamura et al. 2001)
 - collaborative AR environment
 - players wear see-through HMDs
 - shoot creatures superimposed into real scene
 - guns have vibration feedback

www.jello.net
Future of Gaming: AR

- Markerless AR technology
 - tracking natural features (SLAM techniques)
 - no visual markers: works in any unprepared environment
 - future of AR gaming

Future of Gaming: AR

- Head worn display
- Contains environment acquisition camera
- Scans entire room
- Make use of real world in AR

http://sulontechnologies.com/
Future of Gaming: AR

- Retro reflective surfaces
- Projection-head worn displays
- Technical Illusions
 - Cast AR

http://technicalillusions.com/

Future of Gaming: Outdoor Games

- AR Quake where monsters are superimposed into real world (i.e., Quake in the physical world)
 - developed by Thomas, Piekarski et al. in 2000 (South Australia)
 - can walk around in both indoor and outdoor environments
 - equipment is somewhat cumbersome
 - getting smaller and cheaper
Future of Gaming: Mobile Games

- Today mobile gaming platforms
 - PSP and Nintendo 3DS
 - interaction is still mostly 2D
- Future mobile platform
 - true 3D spatial interaction
 - does make use of inertial sensors
 - location-based interaction
 - AR tracking and interaction

Moving Towards the Future of 3DUI and Games

- Body of knowledge on 3D user interfaces
 - interaction technique
 - interaction metaphors and styles
 - input devices
 - usability studies
- Want to transfer to the video game domain
 - reduce interaction complexity
 - provide more realistic experiences
 - exercise!!!
Conclusions

- 3D UI for games is important and interesting research area
- It's real and possible to create new user interface culture
- Transfer to other areas of everyday human activity
- You can start developing 3D game user interfaces yourself

Next Class

- Unity 3D Bootcamp begins
- The Video Game Motion controllers and you
- Readings
 - LaViola and Marks’ SIGGRAPH 2010 course notes
 - Unity 3D Game Development by Example (Creighton)