

Example Evaluations

- Non-isomorphic rotation (3DUI 07)
- Visual interface study (SIGGRAPH Video Game Symposium 2009)

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

IEEE Symposium on 3D User Interfaces 2007

An Exploration of Non-Isomorphic 3D Rotation in Surround Screen Virtual Environments

> Joseph J. LaViola Jr.* Michael Katzourin

> > **Brown University** March 10, 2007

* Now at the University of Central Florida

Talk Outline

- Motivation and Goals
- Non-Isomorphic Rotation
- Related Work
- Experiment
- Results
- Discussion
- Conclusion

Spring 2015

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Motivation and Goals

- Rotating objects in 3D space is a fundamental task
- Want to understand how 3D rotation techniques perform
- Isomorphic and non-isomorphic approaches
- Explore these approaches in SSVE
 - extend and augment existing knowledge
 - does existing knowledge transfer?

Spring 2015

CAP6121 - 3D User Interfaces for Games and Virtual Realit

Non-Isomorphic 3D Rotation

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Non-isomorphic scaled linear/non-linear mapping
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Isomorphic one-to-one mapping
 - more natural

Sprina 2015

CAP6121 - 3D User Interfaces for Games and Virtual Realit

©Joseph J. LaViola Ji

Non-Isomorphic Rotation Technique

- Quaternion four-dimensional vector (v, w) where
 v is a 3D vector and w is a real number
- Let q_c be the orientation of the input device q_d be the displayed orientation, and q_o be the reference orientation then

$$q_q = q_c^k$$
, $q_d = (q_c q_o^{-1})^k q_o$, $k = \text{CD gain coefficien t}$

Using relative mapping

$$q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}$$

Spring 2015

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Related Work

- User performance with different 3D rotation techniques (Chen 1988, Hinckley 1997)
- Rotating real and virtual objects (Ware 1999)
- Framework, design guidelines, non-isomorphic effectiveness (Poupyrev 2000)
- Non-isomorphic head rotations (LaViola 2001, Jay 2003)
- GlobeFish and Globe Mouse (Froehlich 2006)
- Hybrid haptic rotations (Dominjon 2006)

Spring 2015

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Experimental Study

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE
 - head tracking
 - stereoscopic vision

Spring 2015

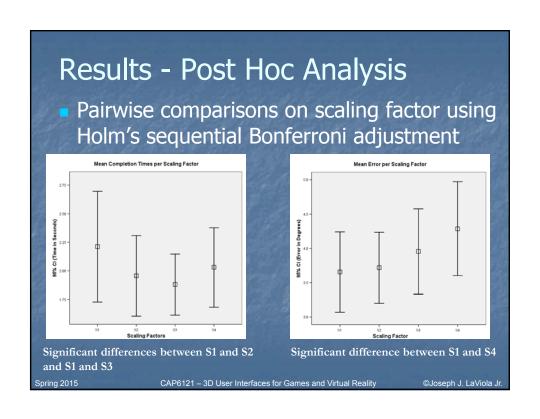
CAP6121 – 3D User Interfaces for Games and Virtual Reality

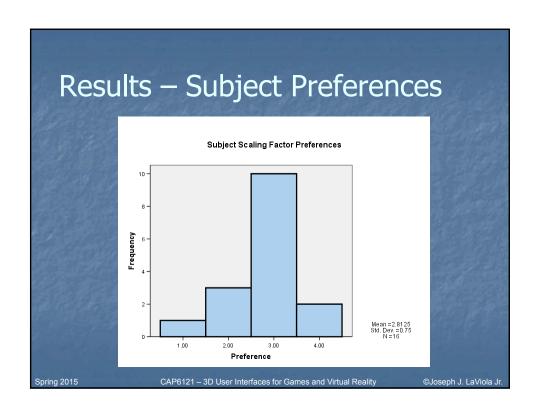
Experimental Design

- 16 subjects (13 male, 3 female)
- Conducted in Brown "Cave"
- Based on Poupyrev 2000 → Hinckley 1997 → Chen 1988
- 4 x 2 x 2 balanced, within-subjects design (16 conditions)
- Independent variables
 - amplification (1,2,3,4)
 - rotation amplitude (20-60, 70-180 degrees)
 - Error threshold (6, 18 degrees)
- Dependent variables
 - completion time
 - orientation error

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J


Experimental Procedure


- Task rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized
- Post-questionnaire

CAP6121 - 3D User Interfaces for Games and Virtual Reality

repeated	measures, three wa	iy anova	
Effect	Time	Error	
S	F _{3,13} =3.26, p=0.056	F _{3,13} =4.8, p<0.05	
T	F _{1,15} =13.66, p<0.05	F _{1,15} =22.96, p<0.05	
Α	F _{1,15} =55.46, p<0.05	F _{1,15} =0.001, p=0.98	
SxT	F _{3,13} =0.29, p=0.83	F _{3,13} =1.575, p=0.243	
SxA	F _{3,13} =0.87, p=0.523	F _{3,13} =0.562, p=0.649	
ТхА	F _{1,15} =5.03,p<0.05	F _{1,15} =0.573, p=0.46	
SxTxA	F _{3,13} =0.73, p=0.55	F _{3,13} =0.97, p=0.436	

Results - Summary

- Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy
- Appears to be correlation between subject preferences and mean completion time
 - scaling factor of 3 is preferable amplification coefficent

Spring 2015

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Discussion - Error

- Interesting differences with previous studies
- Poupyrev 6.8 degrees
- Hinckley 6.7 degrees
- Ware (physical objects) -- 4.4 degrees
- Our study 3.9 degrees
 - threshold of 6 3.41, threshold of 18 4.4

Spring 2015

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Discussion - Completion Time

- Poupyrev
 - 5.15 seconds for isomorphic
 - ≈4.75 seconds for non-isomorphic
- Hinckley
 - 17.8 seconds for isomorphic (no training, accuracy focus)
- Our study
 - 2.2 seconds for isomorphic
 - 1.96 seconds for non-isomorphic

Spring 2015

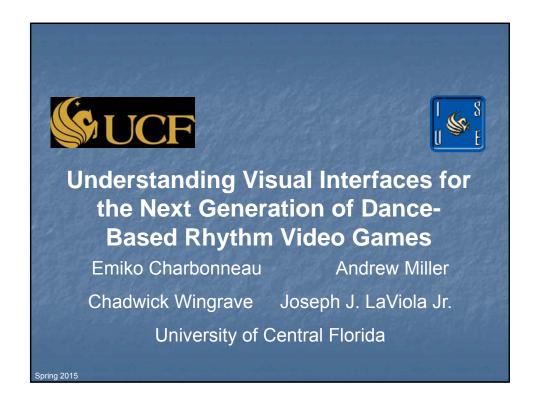
CAP6121 – 3D User Interfaces for Games and Virtual Reality

Discussion – Implications

- Differences attributed to
 - different hardware configurations
 - previous studies on desktop
 - our study in SSVE
- Poupyrev's amplification factor (1.8)
- Hinckley "... accuracy of rotation less affected by interface then by difficulties in perception of error..."
 - head tracking
 - stereoscopic vision
- Others display size, refresh rate, video game proficiency, tracking lag

Spring 2015

CAP6121 – 3D User Interfaces for Games and Virtual Reality

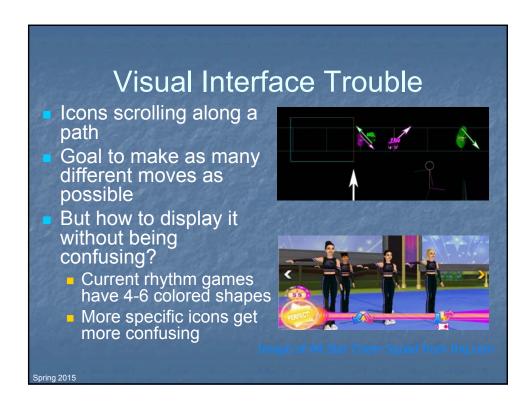

©Joseph J. LaViola Jr

Conclusion

- Presented experiment exploring non-isomorphic rotation in SSVE
- Rotation task completed 15% faster with amplification factor of 3 than with isomorphic rotation
 - no statistically significant loss in accuracy
 - subjects preferred this amplification factor
- Faster and more accurate performance in SSVE in general
 - perception of objects closely matched with physical reality
 - many other factors could contribute
- Further work needed

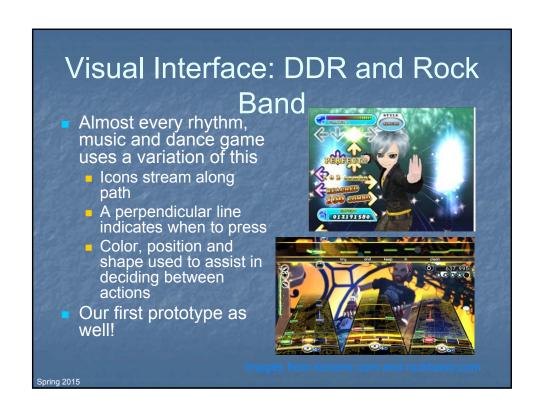
Spring 2015

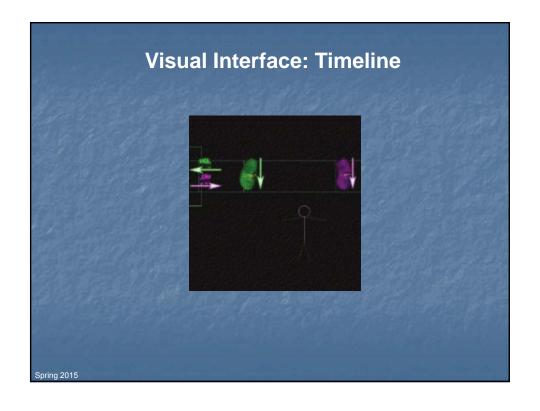
CAP6121 – 3D User Interfaces for Games and Virtual Reality

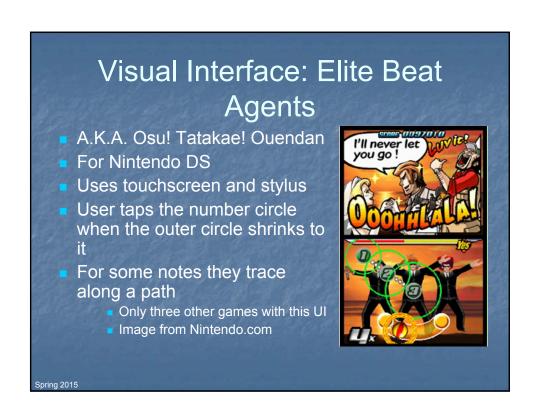

Overview

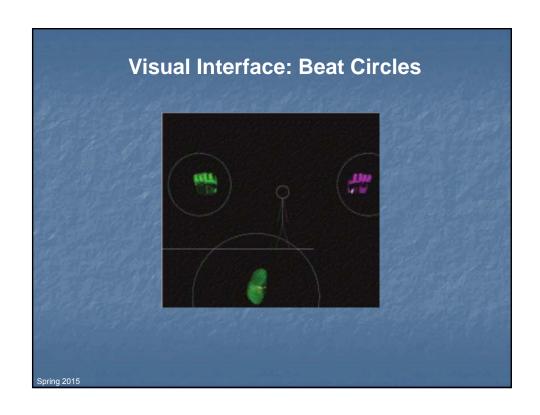
- Problems with Current Dance Games
- RealDance Description
- Visual Interface problems with Dance Games
- Visual Interface Descriptions
- Experimental Design
- Results
- Conclusions

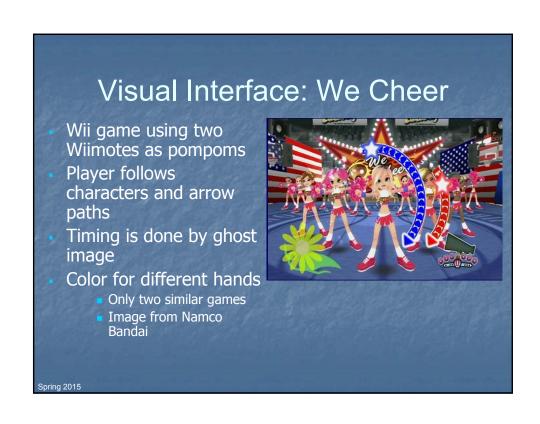
Interface Problems with Dance Games

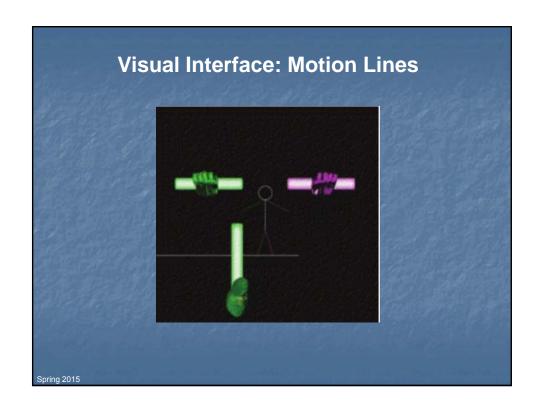

- Among rhythm games, dance still doesn't feel like dancing
- Full body interface games are now mainstream
- Initial Research Goal:
 - Create a video game that feels like dancing
 - Detect more specific movements
 - To teach better
 - To prevent cheating
 - Make fitness gaming more fun






Visual Interfaces in Video Games


- Surveyed 76 rhythm related games from about 10 years
- Current and previous rhythm game needs:
 - When to press button
 - What button to press
- 3DUI requires three things
 - When to move
 - Which body part to move
 - Where to move it to



Experimental Hypothesis

- Run a user study comparing three visual interfaces
- Users play RealDance with all of them
- Study their preferences and performance
- Our hypothesis: players will prefer Motion Lines or Beat circles over the Timeline interface, because the streaming icons must present too much information

Spring 2018

Subjects and Apparatus

- Participants
 - 24 participants: 13 male, 11 female
 - Ages 18-29
 - 19 had no formal dance experience
 - 17 play video games > once a month
 - 14 familiar with Dance Dance Revolution
- Apparatus
 - Implemented in C# using XNA on a PC running Windows Vista
 - 50 inch Samsung HDTV, 1920 x 1080 resolution

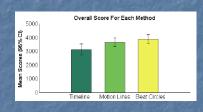
Experimental Design

- Experiment takes place in an enclosed space
- Consent form, Pre-questionnaire, Icon sheet
- Suited up into Wiimote sleeves
 - One each wrist, one each ankle
- Experimental Task
- Post Technique Questionnaire
 - 16 questions, 4 open answer
- Post Questionnaire
 - 10 questions, 8 open answer

Spring 2015

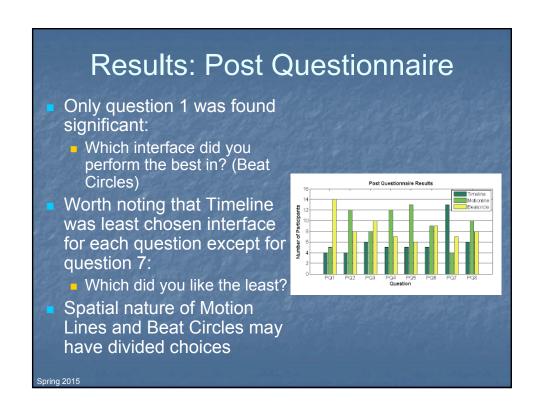
Experimental Task

- For each interface
 - Two practice sessions to Ghostbusters theme
 - Gameplay session to Thriller
 - RIP Michael Jackson 🕾
- Scored based on timing if correct movement
 - Each move either 100, 75, 50, or 0
 - Compound moves scored per limb
 - Max score 6700


Results: Learning Effects

- Each participant received one of six arrangements
- Even though order was randomized, choreography was identical
- Repeated measures one way ANOVA
 - $F_{2,22} = 0.306$, p = 0.738
- No significant improvement from game play session order

Spring 2015


Results: Score Analysis

- Participants performed better at spatial interfaces
- Holm's sequential
 Bonferroni adjustment with
 three comparisons at α =
 0.05
 - ML > TL
 - $(t_{23} = -4.38, p < 0.0167)$
 - BC > TL
 - $(t_{23} = -3.26, p < 0.025)$
 - No significance between ML, BC
 - $t_{23} = -1.20, p < 0.243)$

	Hand	Foot	Compound
Timeline	48.39 (17.48)	52.32 (16.46)	40.69 (15.95)
Motion Lines	59.29 (16.27)	64.58 (14.65)	44.40 (14.13)
Beat Circles	64.18 (18.87)	60.93 (14.93)	52.44 (16.12)

Results: Post Technique Easy to Follow? BC > TL (Z = -2.69, p < 0.0167) ML > TL (Z = -2.39, p < 0.025) Position of the icons confusing? TL > BC (Z = -3.08, p < 0.0167) ML > TL (Z = -2.38, p < 0.025) Score matched how you felt you did? BC > ML (Z = -2.50, p < 0.0167)

Discussion

- Timeline
 - Liked to see the approaching moves ahead of time
 - Still found it hard to know when to start moving
- Motion Lines
 - Much better sense of where to go, which body part to use
 - Repeated movements were harder to see
- Beat Circles
 - Icon position defined ending position, timing was easier
 - Overlapping circles made repeated movements confusing

Spring 2015

Conclusion

- So far, the Timeline interface has worked well for rhythm dance games
- But as video game consoles explore 3D user interfaces, they can now create new gameplay experiences
 - Nintendo, Sony, and Microsoft all made interface announcements at E3 2009
- In our study spatially designed interfaces were easier and preferred overall
- Identified pros and cons for each design

Next Class Mixed and Augmented Reality 3DUI Book — Chapter 12 Spring 2015 CAP6121 – 3D User Interfaces for Games and Virtual Reality @Joseph J. LaViola Jr.