

Mixed Reality Interfaces

Azuma (1997)

- combine real and virtual objects
- interactive in real time
- virtual objects are registered in 3D physical world

KARMA, Feiner, et al. 1993

Spring 2014

Spring 2014

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

Challenges in AR Interfaces

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Conflict between real world and virtual

- not neatly separated anymore
- Limitations of displays
 - precise, fast registration & tracking
- spatially seamless display Limitations of controllers
 - precise, fast registration & tracking
 - spatially seamless interactivity

Image Copyright Sony CSL

AR Interfaces as 3D Information Browsers (I)

- 3D virtual objects are registered in 3D
 - see-through HMDs, 6DOF optical, magnetic trackers
 - "VR in Real World"
- Interaction
 - 3D virtual viewpoint control
- Applications

Spring 2014

 visualization, guidance, training

State, et al. 1996

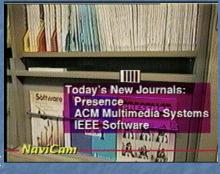
CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola

AR Interfaces as Context-Based Information Browsers (II)

<section-header>
Information is registered to realbound context
Hand held AR displays
Video-see-through (Rekimoto, boy) or non-see through (ritzmaurice, et al. 1993)
magnetic trackers or computer bision based
Interaction
manipulation of a window into information space
Applications
context-aware information displays

Spring 2014


AR Info Browsers (III): Pros and Cons

Important class of AR interfaces

- wearable computers
- AR simulation, training

Limited interactivity

modification and authoring virtual content is difficult

Rekimoto, et al. 1997

3D AR Interfaces (I)

CAP6121 - 3D User Interfaces for Games and Virtual Reality

- Virtual objects are displayed in 3D space and can be also manipulated in 3D
 - see-through HMDs and 6DOF head-tracking for AR display
 - **6DOF** magnetic, ultrasonic, or other hand trackers for input
- Interaction
 - viewpoint control
 - **3D** user interface interaction: manipulation, selection, etc.

Kiyokawa, et al. 2000

©Joseph J. LaViola Jr

Spring 2014

Spring 2014

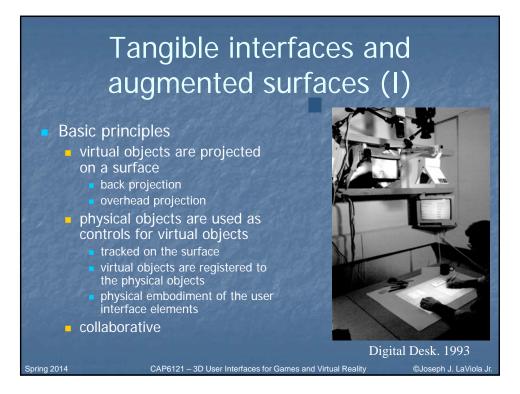
3D AR Interfaces (II): Information Displays

- How to move information in AR context dependent information browsers?
- InfoPoint (1999)

oring 2014

- hand-held device
- computer-vision 3D tracking
- moves augmented data between marked locations
- HMD is not generally needed, but desired since there are little display capabilities

Khotake, et al. 1999


©Joseph J.

©Joseph J. LaViola Jr

3D AR Interfaces (III): Pros and Cons

CAP6121 - 3D User Interfaces for Games and Virtual Reality

- Important class of AR interfaces
 - entertainment, design, training
- Advantages
 - seamless spatial interaction: User can interact with 3D virtual object everywhere in physical space
 - natural, familiar interfaces
- Disadvantages
 - usually no tactile feedback and HMDs are often required
 - interaction gap: user has to use different devices for virtual and physical objects

Tangible Interfaces and Augmented Surfaces (II) Graspable interfaces, Bricks system (Fitzmaurice, et al. 1995) and Tangible interfaces, e.g. MetaDesk (Ullmer'97): back-projection, infrared-illumination computer vision tracking physical semantics, tangible handles for virtual interface elements TUI: Tangible UI phandle instrument phicon tray lens GUI: Graphical UI metaDesk. 1997 window icon control menu handle Spring 2014 CAP6121 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr

Tangible Interfaces and Augmented Surfaces (III)

Rekimoto, et al. 1998

Spring 2014

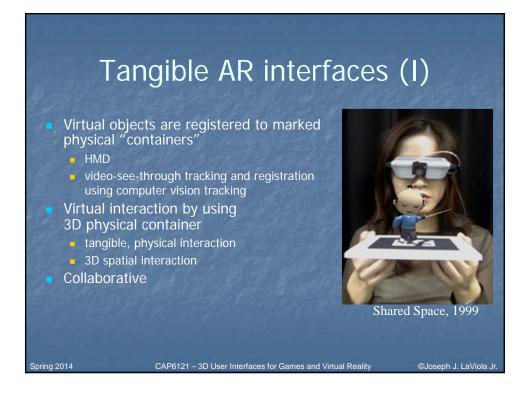
- front projection
- marker-based tracking
- multiple projection surfaces
- tangible, physical interfaces + AR interaction with computing devices

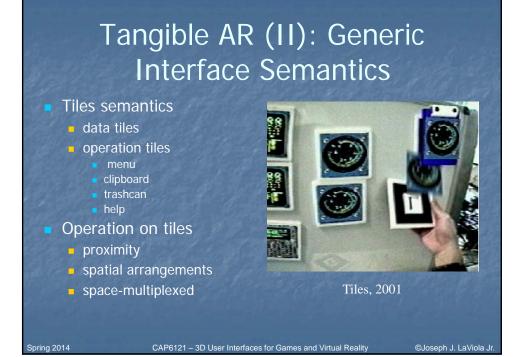
Augmented surfaces, 1998

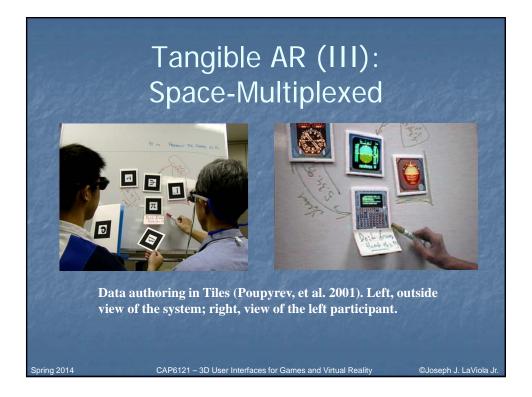
CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

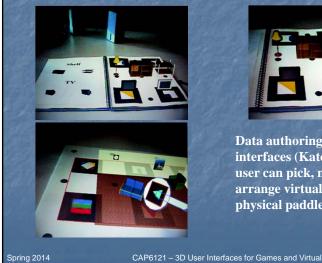
Tangible Interfaces and Augmented Surfaces (IV)


Advantages

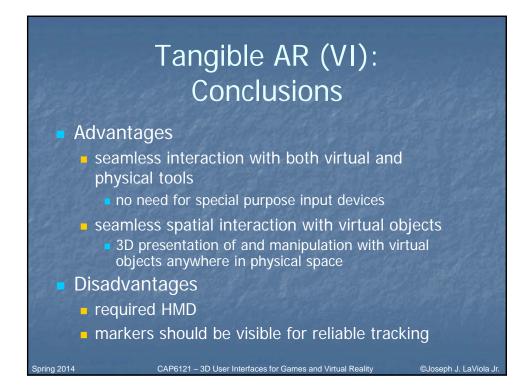

- seamless interaction flow user hands are used for interacting with both virtual and physical objects.
- no need for special purpose input devices


Disadvantages

- interaction is limited only to 2D surface
- spatial gap in interaction full 3D interaction and manipulation is difficult


Orthogonal Nature of AR Interfaces (Poupyrev, 2001)		
518 1.50	3D AR	Augmented surfaces
Spatial gap	No interaction is everywhere	Yes interaction is only on 2D surfaces
Interaction gap	Yes separate devices for physical and virtual objects	No same devices for physical and virtual objects

Tangible AR (IV): Time-**Multiplexed Interaction**



Data authoring in WOMAR interfaces (Kato et al. 2000). The user can pick, manipulate and arrange virtual furniture using a physical paddle.

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Tangible AR (V): AR - VR **Transitory Interfaces** Magic Book (Billinghurst, Augmented Reality et al. 2001) 3D pop-up book: a transitory interfaces augmented Reality interface portal to Virtual Reality immersive virtual reality experience Virtual Reality collaborative Spring 2014 CAP6121 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr

Challenges in AR/MR

- Occlusion and depth perception
- Text display and legibility
- Visual differences between real and virtual objects
- Registration and tracking
- Bulky HMDs and other equipment

AR/MR Resources

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

©Joseph J. LaViola J

Meta List of AR SDKs

Spring 2014

- http://www.icg.tugraz.at/Members/gerhard/augmentedreality-sdks
- ARToolKit Software Download
 - http://artoolkit.sourceforge.net/
- ARToolKit Documentation
 - http://www.hitl.washington.edu/artoolkit/

ARToolKit Forum

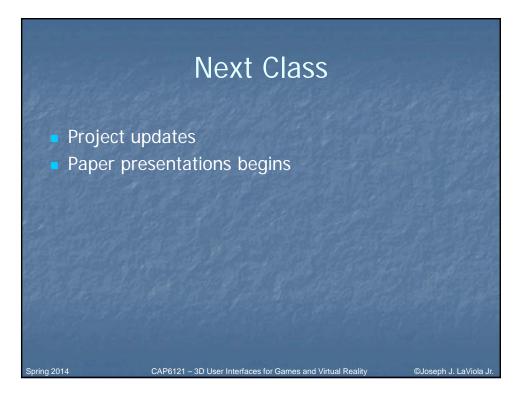
https://www.artoolworks.com/community/forum/

- ARToolworks Inc
 - http://www.artoolworks.com/

ARToolKit Plus

http://studierstube.icg.tugraz.ac.at/handheld_ar/artoolkitplus.php

osgART


http://www.osgart.org/

FLARToolKit

http://www.libspark.org/wiki/saqoosha/FLARTool Kit/

FLARManager

http://words.transmote.com/wp/flarmanager/ CAP6121 – 3D User Interfaces for Games and Virtual Reality ©Joseph.

