

Example Evaluations

Non-isomorphic rotation (3DUI 07)
 Visual interface study (SIGGRAPH Video Game Symposium 2009)

IEEE Symposium on 3D User Interfaces 2007

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

An Exploration of Non-Isomorphic 3D Rotation in Surround Screen Virtual Environments

> Joseph J. LaViola Jr.* Michael Katzourin

> > Brown University March 10, 2007

* Now at the University of Central Florida Spring 2014

- Motivation and Goals
- Non-Isomorphic Rotation
- Related Work
- Experiment
- Results

Spring 2014

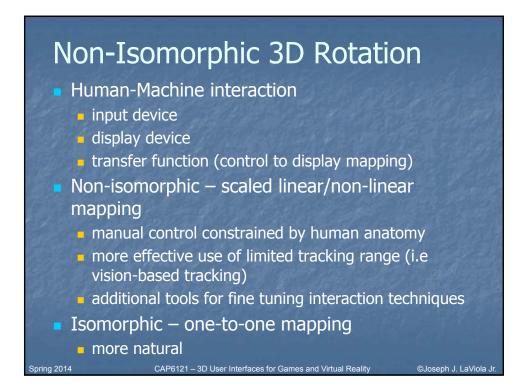
Spring 2014

- Discussion
- Conclusion

Motivation and Goals

- Rotating objects in 3D space is a fundamental task
- Want to understand how 3D rotation techniques perform

CAP6121 - 3D User Interfaces for Games and Virtual Reality


©Joseph J. LaViola J

©Joseph J. LaViola J

- Isomorphic and non-isomorphic approaches
- Explore these approaches in SSVE
 - extend and augment existing knowledge

CAP6121 – 3D User Interfaces for Games and Virtual Reality

does existing knowledge transfer?

Non-Isomorphic Rotation Technique Quaternion – four-dimensional vector (*v*, *w*) where *v* is a 3D vector and *w* is a real number Let *q_c* be the orientation of the input device *q_d* be the displayed orientation, and *q_o* be the reference orientation then

$$q_q = q_c^k$$
, $q_d = (q_c q_o^{-1})^k q_o$, $k = \text{CD gain coefficien t}$

Using relative mapping

$$q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}$$

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J

Related Work

- User performance with different 3D rotation techniques (Chen 1988, Hinckley 1997)
- Rotating real and virtual objects (Ware 1999)
- Framework, design guidelines, non-isomorphic effectiveness (Poupyrev 2000)
- Non-isomorphic head rotations (LaViola 2001, Jay 2003)
- GlobeFish and Globe Mouse (Froehlich 2006)

CAP6121 - 3D User Interfaces for Games and Virtual Reality

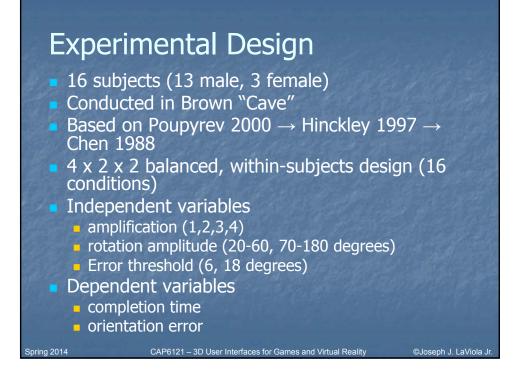
©Joseph J. LaViola J

©Joseph J. LaViola J

Hybrid haptic rotations (Dominjon 2006)

Experimental Study

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE


CAP6121 - 3D User Interfaces for Games and Virtual Reality

head tracking

Spring 2014

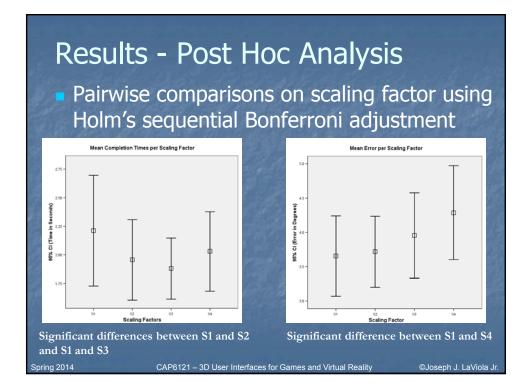
Spring 2014

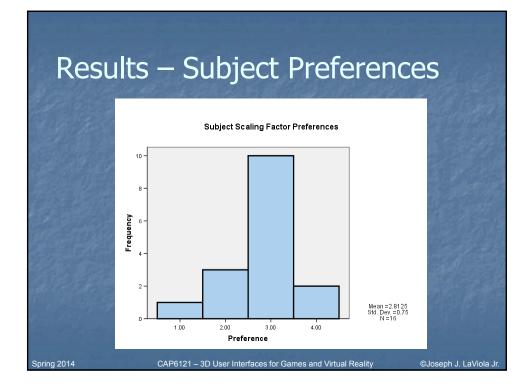
stereoscopic vision

Experimental Procedure

- Task rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized

CAP6121 - 3D User Interfaces for Games and Virtual Reality


Post-questionnaire


Spring 2014

©Joseph J. LaViola

Results - ANOVA Repeated measures, three way ANOVA		
Effect	Time	Error
S	F _{3,13} =3.26, p=0.056	F _{3,13} =4.8, p<0.05
Т	F _{1,15} =13.66, p<0.05	F _{1,15} =22.96, p<0.05
A	F _{1,15} =55.46, p<0.05	F _{1,15} =0.001, p=0.98
S x T	F _{3,13} =0.29, p=0.83	F _{3,13} =1.575, p=0.243
S x A	F _{3,13} =0.87, p=0.523	F _{3,13} =0.562, p=0.649
T x A	F _{1,15} =5.03,p<0.05	F _{1,15} =0.573, p=0.46
S x T x A	F _{3,13} =0.73, p=0.55	F _{3,13} =0.97, p=0.436
$S = scaling \ factor \ T = error \ threshold \ A = angle$ oring 2014 CAP6121 – 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola .		

Results - Summary

Spring 2014

Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy
Appears to be correlation between subject preferences and mean completion time
scaling factor of 3 is preferable amplification coefficent

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Discussion - Error

- Interesting differences with previous studies
- Poupyrev 6.8 degrees
- Hinckley 6.7 degrees
- Ware (physical objects) -- 4.4 degrees
- Our study 3.9 degrees
 - threshold of 6 3.41, threshold of 18 4.4

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J

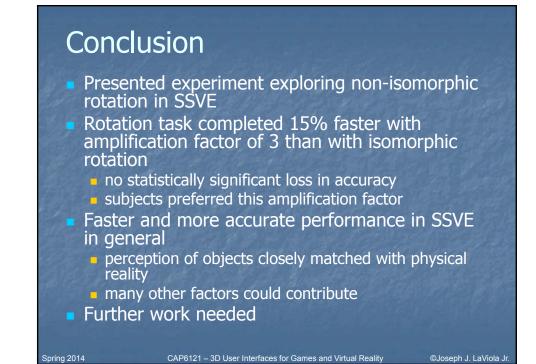
©Joseph J. LaViola J

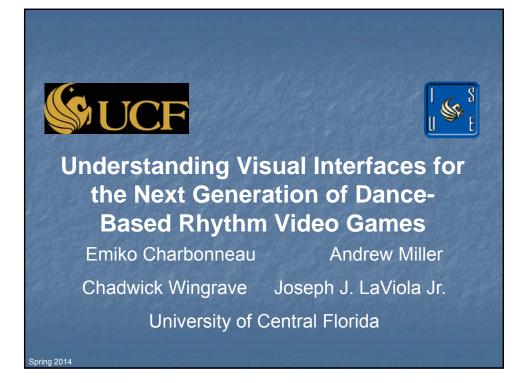
Poupyrev

Spring 2014

- **5.15** seconds for isomorphic
- ≈4.75 seconds for non-isomorphic

Hinckley


 17.8 seconds for isomorphic (no training, accuracy focus)


CAP6121 - 3D User Interfaces for Games and Virtual Reality

Our study

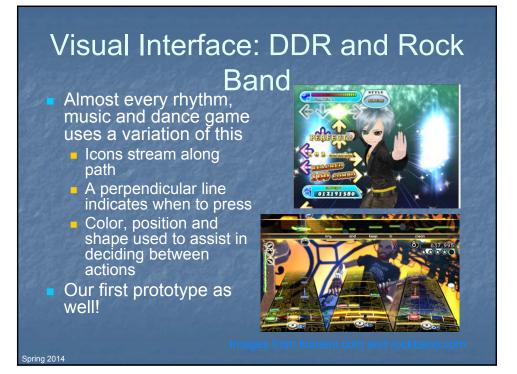
- 2.2 seconds for isomorphic
- 1.96 seconds for non-isomorphic

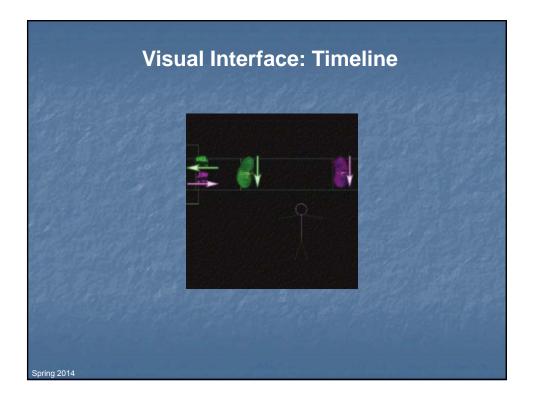
Overview

- Problems with Current Dance Games
- RealDance Description
- Visual Interface problems with Dance Games
- Visual Interface Descriptions
- Experimental Design
- Results
- Conclusions

Visual Interface Trouble

- Icons scrolling along a path
- Goal to make as many different moves as possible
 - But how to display it without being confusing?
 - Current rhythm games have 4-6 colored shapes
 - More specific icons get more confusing




mage of All Star Cheer Squad from thq.cc

Visual Interfaces in Video Games

- Surveyed 76 rhythm related games from about 10 years
- Current and previous rhythm game needs:
 - When to press button
 - What button to press
- 3DUI requires three things
 - When to move
 - Which body part to move
 - Where to move it to

Spring 2014

Visual Interface: Elite Beat Agents

A.K.A. Osu! Tatakae! OuendanFor Nintendo DS

Uses touchscreen and stylus
User taps the number circle when the outer circle shrinks to

 For some notes they trace along a path

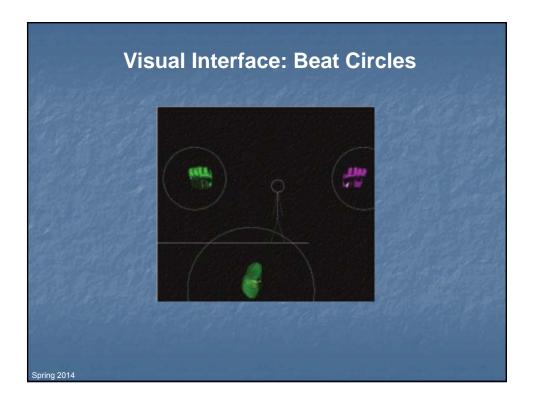
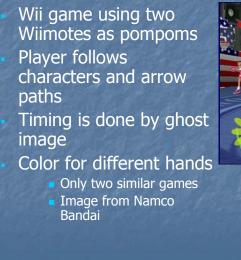
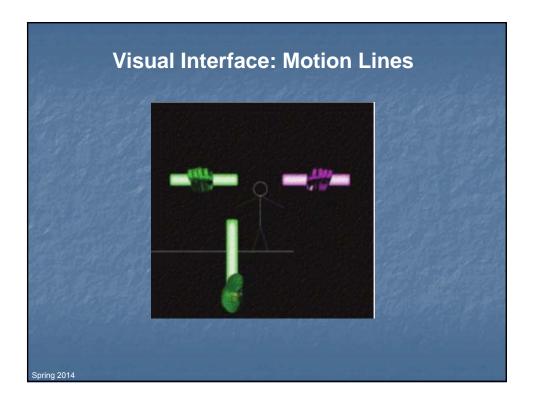

Only three other games with this UI

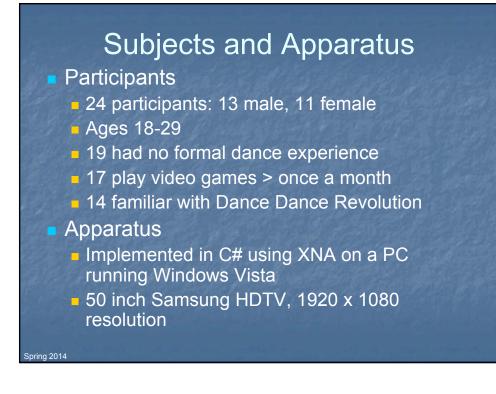
Image from Nintendo.com



Spring 2014


it

Visual Interface: We Cheer



Experimental Hypothesis

- Run a user study comparing three visual interfaces
- Users play RealDance with all of them

- Study their preferences and performance
- Our hypothesis: players will prefer Motion Lines or Beat circles over the Timeline interface, because the streaming icons must present too much information

Experimental Design

Experiment takes place in an enclosed space
Consent form, Pre-questionnaire, Icon sheet
Suited up into Wiimote sleeves

One each wrist, one each ankle

Experimental Task
Post Technique Questionnaire

16 questions, 4 open answer

Post Questionnaire

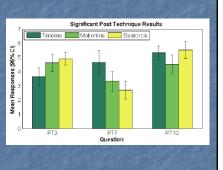
10 questions, 8 open answer

Spring 2014

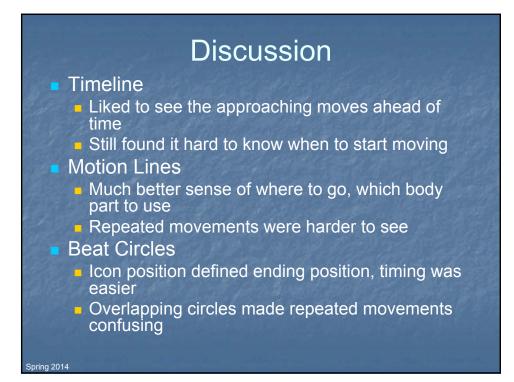
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

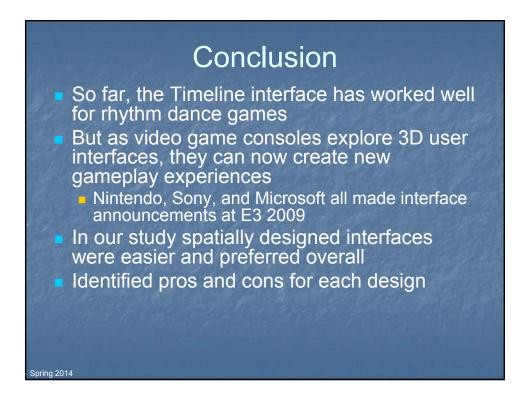
Results: Learning Effects

- Each participant received one of six arrangements
- Even though order was randomized, choreography was identical
- Repeated measures one way ANOVA
 F_{2.22} = 0.306, p = 0.738
- No significant improvement from game play session order



Results: Post Technique


Easy to Follow?


Spring 2014

BC > TL (Z = -2.69, p < 0.0167)
ML > TL (Z = -2.39, p < 0.025)
Position of the icons confusing?
TL > BC (Z = -3.08, p < 0.0167)
ML > TL (Z = -2.38, p < 0.025)
Score matched how you felt you did?
BC > ML (Z = -2.50, p < 0.0167)

Results: Post Questionnaire Only question 1 was found significant: Which interface did you perform the best in? (Beat Circles) Post Questionnaire Results Worth noting that Timeline was least chosen interface for each question except for question 7: Which did you like the least? Spatial nature of Motion Lines and Beat Circles may have divided choices Spring 2014

Next Class

Mixed and Augmented Reality
3DUI Book – Chapter 12

Spring 2014

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr