
Scanning 3D Full Human Bodies Using Kinects

Jing Tong, Jin Zhou, Ligang Liu, Zhigeng Pan, and Hao Yan

Abstract—Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be
acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality.
In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid
the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without
overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a
practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template
is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the
deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be
handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our
system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating
personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further
facilitate a range of home-oriented virtual reality (VR) applications.

Index Terms—3D Body Scanning, global non-rigid registration, Microsoft Kinect.

1 INTRODUCTION

Many computer graphics applications, such as animation, computer
games, human computer interaction and virtual reality, require realis-
tic 3D models of human bodies. Using 3D scanning technologies, such
as structured light or laser scan, detailed human models could be cre-
ated [1]. However, these devices are very expensive and often require
expert knowledge for the operation. Moreover, it is difficult for peo-
ple to stay rigid during the capturing process. Image-based method is
another solution for human modeling. The state-of-the-art multi-view
method can get very impressive results [2]. But this kind of methods
is computationally expensive, and they have problems when there are
sparse textures or complex occlusions among different views [3].

As a new kind of devices, depth cameras such as Microsoft Kinect
[4] have attracted much attention in the community recently. Com-
pared with conventional 3D scanners, they are able to capture depth
and image data at video rate and have little consideration of the light
and texture condition. Kinect is compact, low-price, and as easy to use
as a video camera, which can be acquired by general users.

Some researchers have tried to use Kinects as 3D scanners. For
example, [5] used RGB images along with per-pixel depth informa-
tion to build dense 3D maps of indoor environments. However, the
main problem is that Kinect has a comparably low X/Y resolution and
depth accuracy for 3D scanning. To address this issue, [6] described a
method to improve the data’s quality by depth super resolution. Using
a Kinect and commodity graphics hardware, [7] presented a system for
accurate real-time mapping of complex and arbitrary indoor scenes.
However, most of these work only used Kinect to scan rigid objects.
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There are a couple of works that used Kinect to capture human
faces. [8] presented an algorithm for computing a personalized avatar
from a single color image and its corresponding depth map. [9] fur-
ther captured and tracked the facial expression dynamics of the users
in real-time and map them to a digital character.

To scan a full human shape, Kinect should be put around 3 meters
away from the body, and the resolution is very low, as shown in Fig-
ure 1(a). Little geometry information is captured in the depth map.
Though using the information of multiple frames to enhance the final
resolution [6], the result is still not acceptable.

Recently, [10] estimated the body shape using SCAPE model [11]
by image silhouettes and depth data from one single Kinect. However,
due to the limited subspace of parametric model, personalized detailed
shapes, such as faces, hairstyles, and dresses cannot be reconstructed
by using this method. Furthermore, it takes approximately 65 minutes
to optimize, which seems too slow for some practical applications in
VR.

In this paper, we present a system to scan 3D full human body
shapes using multiple Kinects. Each Kinect scan different part of the
human body so that they can be put close to the body to obtain higher
quality of data. However, there are two challenges in designing this
kind of scanning system.

First, the data quality of the overlapping region between two
Kinects is reduced due to the interference between them. Shutters
can be used to allow different Kinects to capture data at different time.
However, it reduces the frame rates and exposure time, which also re-
duces data quality. To avoid the interference issue, we use two Kinects
to capture the upper part and the lower part of a human body from
one direction, respectively. There is no overlapping region between
these two parts. We use a third Kinect to capture the middle part of
the human body from the opposite direction. A person is standing
in-between the Kinects and turns around with the help of a turntable.

The other challenge is that the body can hardly be kept still during
the capturing process. Thus non-rigid registration of the captured data
is required. However, it is a difficult job due to the low quality of the
data and the complex occlusion. We propose a two-phase method to
deal with this challenge. In the first phase, pairwise non-rigid defor-
mation is performed on the geometry field based on a rough template.
In the second phase, a global alignment with loop closure constraint is
used on the deformation field.

Our scanning system is easy to be built, as shown in Figure 2 as well
as the accompanying video. The experimental results have shown that
our system captures impressive 3D human shapes with personalized
detailed shapes such as hairstyles and dress wrinkles. With the total
cost of about $600, our system is much cheaper than the conventional
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3D scanners, and can be used for lots of home-oriented VR applica-
tions.

The contributions of this paper are summarized as follows:

• A full body scanning system using multiple Microsoft Kinects is
built;

• A non-rigid registration method with a rough template is pro-
posed;

• A global non-rigid alignment method which deals with occlu-
sions and meets the loop closure constraint is proposed.

Fig. 1. (a) The raw data of capturing a full human body with one single
Kinect has much low quality as the Kinect has to be put far from the
body. (b) The raw data captured using our system has higher quality
as multiple Kinects are used to capture different parts of the body at a
closer distance. (c) The reconstructed human model created using our
method.

2 RELATED WORK
2.1 Scanning Systems
Acquiring 3D geometric content from real world is an essential task
for many applications in computer graphics. Unfortunately, even for
static scenes, there is no low-priced off-the-shelf system, which can
provide good quality, high resolution distance information in real time
[12]. Scanning devices based on structured light or laser scan can
capture human body with much high quality. However, these devices
are expensive and often require special knowledge to operate. For
example, the price of Cyberware Whole Body Color 3D Scanner is
about $240,000 [13].

Being a newly developed distance measuring hardware, the depth
camera technology opens a new epoch for 3D content acquisition.
There are two main approaches employed in depth camera technolo-
gies currently. The first one is based on the time-of-flight (ToF) princi-
ple [12], measuring time delay between transmissions of a light pulse.
Because of the specific chip needed for active lighting pulse, the price
of Swiss Ranger 4000 is about $8,000. The second approach is based
on light coding, projecting a known infrared pattern onto the scene
and determining depth based on the pattern’s deformation. Such de-
vice only needs standard infrared CMOS imager, so the cost is much
lower than the ToF device. A most popular one is the Microsoft Kinect

sensor [4], which is at a price of only $150. In this paper, we have de-
signed a scanning system for automatically capturing 3D full human
bodies by using 3 Kinects, which can be purchased by everyday users
for home-oriented VR applications.

2.2 Non-rigid Registration
As human bodies’ non-rigid deformation in the scanning process, we
need to register the scanned data. There have been three main types of
methods for non-rigid registration in the literature.
Registration without a template. This kind of methods often re-
quires high quality scan data, and often needs small changes in tempo-
ral coherence. For example, [14] puts all scans into a 4D space-time
surface and uses kinematic properties to track points and register mul-
tiple frames. [15] registers two point clouds that undergo approximate
isometric deformations.
Registration with a template. Such kind of methods often needs to
acquire a relative accurate template, and then uses the template to fit
each scan. Some works use markers to fit the template [1], and the
others utilize global optimization [16]. In [16], a smooth template
using static scanner is generated and is then registered to each of the
input scan using a non-linear, adaptive deformation model [17].
Registration with a semi-template. Accurate template can hardly be
obtained in many cases. However, rough template, such as the skeleton
model of articulated object, can be generally utilized. [18] manually
segments the first frame, then identifies and tracks the rigid compo-
nents of each frame, while accumulating the geometric information.
[19] presents an articulated global registration algorithm as the op-
timization of both the alignment of range scans and the articulated
structure of the model.

The first type of methods often requires high quality input data,
and is computationally expensive; the second one needs an accurate
template, which is hard to fulfil for many applications, especially for
deforming objects. Our method uses a rough template which is con-
structed by the first data frame. Based on the feature correspondences
returned in the corresponding color maps, the template is deformed
[17] and thus it can drive the points accordingly. Thanks to the defor-
mation model [17], the points in different frames can then be approxi-
mately aligned.

2.3 Global Alignment
Global alignment, especially the loop closure problem, is well-known
in rigid scanning [20, 21]. A brute-force solution is to bring all scan-
s into the Iterated Closest Point (ICP) [22] iteration loop. However,
this often requires solving awfully large systems of equations. An-
other greedy solution is to align each new scan to all previous scans
[23]. However, it cannot spread out errors of previous scans, and is not
guaranteed to achieve consistent cycle.

We agree with the idea of creating a graph of pairwise alignments
between scans [24, 25]. First, pairwise rigid alignment is computed in
the geometry level. Global error distribution then operates on an upper
level, where errors are measured in terms of the relative rotations and
translations of pairwise alignments. The graph methods can simulta-
neously minimize the errors of all views rapidly, and do not need all
scan in memory. This makes it especially practical for models with
lots of scans.

Global alignment has been less studied in non-rigid registration.
[26] warps two consecutive frames by feature point correspondences
and Laplacian coordinates constraints [27]. To align all frames simul-
taneously, a global matrix system lists all constraints as Diagonal sub-
matrices is solved, which is similar to the brute-force solution. [18]
maintains the accumulated 3D point clouds of previous frames, and
registers the points of a new input frame to the accumulated points,
which suffers the same problem of the greedy solution.

Another problem of non-rigid registration is occlusion. In most pre-
vious papers, occluded parts are often predicted by their temporal or
spatial neighbors [19, 26]. The interpolation based methods are hard
to get correct registration due to complex occlusions. In our method,
misalignment caused by complex occlusion can also be handled rea-
sonably in the global alignment procedure.
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Fig. 3. Overview of our reconstruction algorithm.

Fig. 2. The setup of our system. Three Kinects are used to capture
different parts of a human body at a close distance without interference.
The captured data of a single frame from three sensors is also illustrat-
ed.

3 SYSTEM SETUP
The setup of our scanning system is illustrated in Figure 2. To avoid
the interference problem, two Kinects are used to capture the upper
part and the lower part of a human body respectively, without over-
lapping region, from one direction. A third Kinect is used to capture
the middle part of the human body from the opposite direction. The
distance between two sets of Kinects are about 2 meters. A turntable
is put in between them.

While scanning, the person stands on the turntable and rotates 360
degrees in about 30 seconds. Please see the accompanying video. Each
Kinect acquires 1280×1024 color images and 640×480 depth images
at 15 frames per second individually. 3D coordinates can be automat-
ically generated using OpenNI [28]. Using [28], the depth and color
image are also well calibrated. The captured data from three sensors
are synchronized and calibrated automatically [29].

A depth and color threshold method is used to roughly segment
the foreground human data from the background. Then, sliver faces
followed by vertices not referenced by any face are deleted. As the
body is only 1 meter away from the Kinects, the quality of depth val-
ues, compared with that in Figure 1(a), has been improved greatly,
as shown in Figure 2. Laplacian smooth [27] is performed to reduce
the noise. To reduce the computation cost, simplified mesh with 1/10
vertices is used in our experiment, as shown in Figure 3.

With three Kinects ($450), two pillars which fix the Kinects ($30)
and one turntable ($120), the total cost of our scanning system is about
$600, which is much cheaper than the conventional 3D scanning de-
vices. Thus the system can be utilized for many home-oriented appli-
cations.

4 RECONSTRUCTION APPROACH

Denote Di = {Mi, Ii}, i = 1, . . . ,n as the captured data, where n is the
number of the captured frames, Mi is the merged mesh and Ii is the
corresponding image of the i-th frame respectively.

4.1 Overview

Generally the body can hardly be kept rigid when the person stands on
the turntable during the scanning process. For example, the arms and
head may be moving and the chest is deformed due to breathing.

We propose a practical approach for registering multiple frames of
noisy partial data of human body under non-rigid deformation. Figure
3 shows an overview of our system. A rough template is construct-
ed by the depth data of the first frame. Then the template is used to
deform the geometry of successive frames pairwisely. Global regis-
tration is then performed to distribute errors in the deformation space,
where problems of cycle consistency and occlusion are handled. The
pairwise registration and global registration iterates until convergence.
Then, every frame is deformed to the first frame driven by the tem-
plates. Finally, reconstructed model is generated using Poisson recon-
struction method [30].

4.2 Template Generation

Unlike the work of [16], an accurate template is unavailable in our
system. We use the method proposed in [31] to construct an esti-
mated body shape as the template mesh T1 from the first frame. Due
to the data noise and influence of dresses, the resulting template can
only approximate the geometry of the body shape, as shown in Fig-
ure 4. It is impossible to use this template to register each frame
by geometry fitting. We will show that it is enough to use this tem-
plate to track the pairwise deformation of successive frames. Denote
T1 = {vk

1},k = 1, ...,K where K is the number of the nodes of T1. To
reduce the computation cost, we simplify T1 so that about 50-60 nodes
are used in our system.

4.3 Pairwise Geometry Registration

Suppose Mi, i = 1, ...,n forming a cycle. fi, j denotes the registration
that can deform mesh Mi to register with mesh M j. In this section, we
introduce how to find the pairwise registration f1,2, f2,3, ..., fn−1,n, fn,1.

645TONG ET AL: SCANNING 3D FULL HUMAN BODIES USING KINECTS



Fig. 4. An estimated body shape is constructed from the first frame as
the template mesh (a). To reduce the computation cost, the template
mesh is simplified to 50-60 nodes (b).

Deformation model. Our deformation model is based on [17]. Sup-
pose we have two meshes Mi and M j, and the template mesh at frame
i is Ti. Denote fi, j = { (Rk

i , t
k
i )
∣∣vk

i ∈ Ti}, where vk
i is a node of Ti, 3×3

matrix Rk
i and 3× 1 vector tk

i specify the local deformation induced
by vk

i . Specifically, for a point p of Mi near vk
i , its destiny p̃ can be

calculated as p̃ = Rk
i (p− vk

i )+ vk
i + tk

i .
Pairwise registration. For two successive frames Mi and Mi+1, cor-
responding feature points can be obtained by optical flow [32] in the
corresponding images (see Figure 5). Particularly, we use [33] to find
the feature correspondences between Mn and M1. Following [17], we
compute (Rk

i , t
k
i ) by solving

min
(Rk

i ,t
k
i )
(Ereg +wrotErot +wconEcon)

Suppose v j
i ,v

k
i are two neighboring nodes of Mi, Ereg =

∑
k

∑
j∈N(k)

∥∥∥Rk
i (v

j
i − vk

i )+ vk
i + tk

i − (v j
i + t j

i )
∥∥∥ ensures the smoothness

of the neighboring deformation. Let c1,c2,c3 be the 3 × 1 column
vectors of 3×3 matrix R, Rot(R) = (c1 ·c2)

2 +(c1 ·c3)
2 +(c2 ·c3)

2 +

(c1 · c1 −1)2 +(c2 · c2 −1)2 +(c3 · c3 −1)2. Erot = ∑
k

Rot(Rk
i ) is used

to specify the affine transformation to be rotation. Suppose vl
k and

vindex(l)
k+1 are corresponding feature points of two successive frames, ṽl

k

is the deformed point of vl
k. Econ = ∑

l

∥∥∥ṽl
k − vindex(l)

k+1

∥∥∥ is used to match

the feature points constraints. The energy is minimized using standard
Gauss-Newton algorithm as described in [17].
Projection to the first frame. After the pairwise registration, we
can find that it is over determined. Since only n− 1 pairwise defor-
mation is needed to recover all the relative position of all frames.
Here, to deform M j back to the first frame, we simply let M̃ j =
f2,1(...( f j−1, j−2( f j, j−1(M j)))), where f j, j−1 is the inverse transfor-
mation of f j−1, j. The result is shown in Figure 6(a). In the head
area, the first and last frames do not match due to error accumulation
of pairwise registration. The arm area has more serious problem of
misalignment which is caused by complex occlusions. So we need a
global deformation registration to solve these issues.

4.4 Global Deformation Registration

Similar to the problem arisen in rigid registration [25], the desired
pairwise deformation f̂1,2, f̂2,3, ..., f̂n−1,n, f̂n,1 should meet the follow-
ing two conditions:

Fig. 5. Corresponding feature points of two successive frames and the
deformed templates.

Fig. 6. (a) After pairwise registration, the first and last frame does
not well match due to error accumulation, as shown in the nose part.
More serious problem occurs by misalignment of complex occlusions,
as shown in the hand part. (b) Global deformation registration is used
to deal with these problems.

1. It is cycle consistent, that is, the composition of any deformation
around a cycle should be identity:

∀i, f̂i,i+1 f̂i+1,i+2... f̂n−1,n f̂n,1 f̂1,2... f̂i−1,i = I (1)

2. The original pairwise deformation is relatively correct, so we
should minimize the weighted squared error of the new and old defor-
mation:

min∑w2
i, j
∥∥ f̂i, j − fi, j

∥∥2 (2)

where the weight wi, j is the confidence of each pairwise de-
formation fi, j. Here, we set wi, j = 1/Dist( fi, j(Mi),M j), where
Dist( fi, j(Mi),M j) is the average distance of corresponding point pairs
of fi, j(Mi) and M j.

To satisfy these conditions, let’s check a node vi of template Ti. In
the neighbor of vi, the local deformation can be approximated as a ro-
tation ri,i+1 and translation ti,i+1. Finding optimal f̂i,i+1 is equivalent
to finding r̂i,i+1, t̂i,i+1 for each node.

To reduce the complexity of the problem, following [25], we first
consider translation to be independent of rotation, and focus on calcu-
lating rotation r̂i,i+1 . Let the matrix Ei,i+1 be the rotation such that

r1,2r2,3...ri,i+1Ei,i+1ri+1,i+2...rn−1,n,rn,1 = I.

Let α j, j+1 = 1
w2

j, j+1

/
∑
j

1
w2

j, j+1
, E<α>

i,i+1 = exp{α lnEi,i+1} . It has
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Fig. 7. A cycle of locally rigid pairwise registration. v1 is registered to v2,
v2 is registered to v3, ... , vn is registered to v1.

been proven that r̂i,i+1 = ri,i+1E<αi,i+1>
i,i+1 satisfies the cycle consistent

constraint (1), and minimizes the energy (2) in the meaning of squared
angular error [25].

After r̂i,i+1 is set, we distribute the accumulated translation error.
t̂i,i+1 should also satisfy the cycle consistent constraint:

r̂i,i+1...r̂i−2,i−1t̂i−1,i + ...+ r̂i,i+1t̂i+1,i+2 + t̂i,i+1 = 0,

and minimize the energy:

∑w2
i, j
∥∥t̂i, j − ti, j

∥∥2
.

This is a quadratic minimization problem with linear constraints,
and it can be solved using Lagrange multipliers.

The weighted error distribution strategy takes advantage of both the
pairwise registration and cycle consistency. To illustrate it, let’s take a
look at two extreme cases. Suppose ri,i+1, ti,i+1 deform the neighbor
of vi to the neighbor of vi+1 exactly, then we have

r̂i,i+1 = ri,i+1E<αi,i+1>
i,i+1 ≈ ri,i+1E<0>

i,i+1 = ri,i+1.

In this case, the correct pairwise deformation is reserved in the result-
ing deformation.

Another extreme case often happens when there is complex occlu-
sion, as shown in Figure 8. Due to large number of frames of occlu-
sion, the left arm in frame i, j may have little intersection area, so the
resulting ri, j, ti, j can totally misalign the corresponding areas. Howev-
er, since we have

r̂i, j = ri, jE
<αi, j>
i, j ≈ ri, jE<1>

i, j = ri,i−1...r2,1r1,nrn,n−1...r j+1, j,

reasonable registration can still be obtained using the cycle consistent
constraint.

Fig. 8. Complex occlusion happens during the scanning process. In this
example, left arm is occluded from frame i+1 to frame j−1.

5 RESULTS
Figure 9(a) shows the result of global rigid alignment. It can be seen
the result is not so good, especially in the arm and head areas. Our

Fig. 9. The result of global rigid alignment (a) and our global non-rigid
alignment algorithm (b); (c) the reconstructed model using our method.
Note that the dress wrinkles are well captured in the model.

global non-rigid registration can get much better result (Figure 9(b)),
and can further get very impressive model (Figure 9(c)).

To align two successive frames, Harris corners are found in the first
image, and the corresponding pixels of the second image are found
as the ICP closest point on meshes. Using these initial estimations,
Lucas-Kanade optical flow [32] is used to find more accurate corre-
sponding feature points. For areas with little texture information, clos-
est point pairs are used directly. For each pairwise registration, about
2000 pairs of corresponding feature points are used.

Occlusions are inevitable in our experiment, especially in the arm
area. In our experiment, one arm will be occluded for about 1/6 of
all captured frames. The interpolation based methods are hard to get
correct registration, while reasonable results can still be obtained using
the loop closure constraint at the global registration procedure.

After one step of global alignment, all meshes are deformed, and
pairwise deformation can be further calculated. The pairwise and
global registration iterates when the average distance of all neighbor-
ing meshes is above 50% of the average edge length. In our experi-
ment, the algorithm converges for about 1 to 2 iterations. Finally, 1/6
uniformly sampled frames are used to generate reconstructed model
by Possion surface reconstruction [30]. Since the color image and
depth image can be simultaneously captured and calibrated [28], the
color information of deformed mesh is generated automatically. Us-
ing the method of [34], textured information can be generated for the
reconstructed model.

Figure 10 shows more results of our algorithm. The average com-
puting time of each step with an Intel Core i3 processor at 3.1 GHz
is shown in Table 1. Six biometric measurements are calculated on
the constructed human models and are compared with those measured
on the corresponding real persons. The average error in centimeter is
shown in Table 1. It is seen that our reconstructed models approximate
the real persons well. Larger errors in the girth measures are caused
by the dresses.

The accuracy of our biometric measurements is similar to the result
shown in [10]. Unlike [10] which uses the subspace of SCAPE presen-
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Fig. 10. Different 3D full human models generated using our system. Note that the geometric details such as faces, dresses and hairstyles are well
captured in the 3D models.

Table 1. Average distance and computing time

Error of biometric
measures (cm)

Neck to Hip
Distance

Shoulder
Width

Arm Length

2.5 1.5 3.0
Leg Length Waist Girth Hip Girth
2.1 6.2 3.8

Computing time
(min)

Data prepro-
cessing

Registration Reconstruction

1.6 3.8 0.5

tation for human shapes and thus can only capture nearly-naked human
bodies, our system can capture more personalized detailed shapes,
such as asymmetric stomach, faces, clothes and even hairstyles. More-
over, it takes only about 6 minutes to reconstruct a human model in our
method, while it takes approximately 65 minutes to reconstruct a hu-
man model by the method of [10].

5.1 Applications
As human models can be acquired quickly in our system, many appli-
cations in virtual reality can be developed as well. We have developed
two applications in our system as follows. Please also see the accom-
panying video.
Virtual try on. Online shopping has grown exponentially during the
past decade. More and more customers now turn to purchase their
dresses online. A major problem related to the online shopping is that
the customer can not try out a garment before purchasing. Though vir-
tual try on applications are emerging on the web or in the department
store, most of the existing methods are quite simplistic [35], where
the body shape is expressed as 2D images or a few biometric mea-
sures. With the help of our low-price system, users can have their 3D
body shapes constructed easily at home. The 3D garment model can
be first roughly aliened using Laplacian surface editing [27] and fur-
ther mapped to the body shape using physically-based cloth simulation
[36], as shown in Figure 11.
Personalized avatar. The skeleton and skin weights of the recon-
structed body mesh can be automatically extracted [37]. The model
can be animated using motion capture data or online captured skele-
ton (Figure 12). The user’s own personalized avatar will benefit many
applications in video games, online shopping, human-computer inter-
action, etc., and provides favorable experience on VR applications.
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Fig. 11. Realistic virtual try on experience based on the reconstructed
model. (Left) the try on results; (right) the corresponding meshes.

6 CONCLUSION
In this paper, a new system using three Microsoft Kinects is present-
ed to scan 3D full human bodies easily. The proposed method can
deal with non-rigid alignment with loop closure constraint and com-
plex occlusions. A two-stage registration algorithm performs pairwise
deformation on the geometry field firstly, then global alignment on the
deformation field is adopted. Our algorithm is efficient and of memory
efficiency. Our system can generate convincing 3D human bodies at a
much low price and has good potential for home-oriented applications
for everyday users.

The quality of the reconstructed models in our system is still poor
for some specific applications due to low quality of depth data cap-
tured by Kinects. In the future, we plan to investigate more sophisti-
cate de-noising and super-resolution approaches to improve the depth
quality [6, 38] , as well as synthesizing fine-scale details in the result-
ing model [16]. We also plan to compare with results obtained with
high precision scanning systems for a better evaluation. Though the
problem of complex occlusions can be reasonably handled using glob-
al registration method, misalignments still occurred in our experiment.
This will cause some unnatural bending in the arm areas, as shown in
Figure 10. We will try to improve our registration algorithm to deal
with this problem. It is also worthwhile to facilitating our system for
more virtual reality applications.
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