3D User Interfaces for Games and Virtual Reality

Lecture #1: Introduction
Spring 2013
Joseph J. LaViola Jr.

Instructor

Professor - **Joseph J. LaViola Jr.**
Email - jjl@eecs.ucf.edu
Office Hours - Tues. 4:00pm - 5:30pm
Wed. 6:00pm - 7:00pm
Office is Harris 321

Website will have all required info
www.eecs.ucf.edu/courses/cap6121/spr13
Class Goals

- Provide in-depth introduction to spatial 3D user interfaces
- Focus on 3D games
- Speaking and presentation skills
- Start of master's projects and PhD dissertations
- Possible publications
 - Virtual Reality 2014
 - 3D User Interfaces 2014
 - Foundations of Digital Games 2014
 - SIGGRAPH Asia 2013

Required Books

- 3D User Interfaces: Theory and Practice
- Unity 3D Game Development by Example: A seat-of-your-pants manual for building ten, groovy little games today

Grading

Assignment 1 (group) 15%
Assignment 2 (group) 15%
Survey Paper (individual) 15%
Paper presentation (individual) 5%
Final Project (group) 50%

Final Projects

- 2-3 person teams
- Must have research component
 - related to games
 - innovative 3D UI
- Everyone must write and get approved a project proposal
- DEMO DAY!!!! – April 25, 2013
Class Structure (see syllabus for details)

- Lectures
 - Fundamentals of 3D user interfaces
 - hardware
 - common interaction tasks
 - user evaluation
- Student paper presentation
 - 20 minute presentation
- Final project update sessions
- Work done in ISUE Lab – Harris 208 (laptops also)
 - code access required

Spring 2013

Course Topics

- Unity 3D
- 3D Hardware
 - perception
 - input and output devices
- Common 3D Interaction Tasks
 - travel (e.g., navigation and wayfinding)
 - selection and manipulation
 - system control
- 3D UI Design
- 3D UI Evaluation
- 3D UI and Augmented/Mixed Reality
Collaboration and Late Policy

- Collaboration encouraged
 - do your own work on assignments
 - cheating = BAD!!
- All assignments must be handed in on time
 - Assignments - by 11:59pm on due date

Tools – Hardware

- Wii Sensor Bar
- Samsung 50" 3D DLP HDTV
- TriDef Stereo Emitter
- PC with Intel Quad Core processor
- 8GB RAM
- NVIDIA Quadro 5600 (others)
- 5.1 Speaker System
- TriDef Shutter Glasses
- Wii controllers
Tools – More Hardware

- NVIDIA 3D Vision Kit
- Wii Balance Board
- Novint Falcon
- 3rd Space Gaming Vest
- IZ3D Monitor

Tools – Even More Hardware

- PlayStation Move
- Wii U
- Wii Balance Board
- HTC Vive
- Microsoft Kinect

Spring 2013
Tools - Software

- Visual Studio 2010, C#
- Unity 3D
 - game engine
 - audio support, graphics support
 - physics engine
 - development UI
 - Scripting in C#, Javascript
 - Supports 3D stereo
- Microsoft Research Kinect SDK
- Sony Move.Me
- Razer Hydra API
- Leap Motion API
- Custom Client/Server code
- Google SketchUp Pro
 - nice model database

What are 3D UIs?

- 3D interaction: Human-computer interaction in which the user’s tasks are carried out in a 3D spatial context
 - 3D input devices
 - 2D input devices with direct mappings to 3D
- 3D user interface (3D UI): A UI that involves 3D interaction
- 3D interaction technique: A method (hardware and software) allowing a user to accomplish a task in a 3D UI
Why 3D Interfaces?

- 3D applications should be useful
 - immersion
 - natural skills
 - immediacy of visualization
- But, applications in common use have low complexity of interaction
- More complex applications have serious usability problems
- Technology alone is not the solution!

What makes 3D interaction difficult?

- Spatial input
- Lack of constraints
- Lack of standards
- Lack of tools
- Lack of precision
- Fatigue
- Layout more complex
- Perception
Interaction Goals

- Performance
 - efficiency
 - accuracy
 - productivity
- Usability
 - ease of use
 - ease of learning
 - user comfort
- Usefulness
 - interaction helps meet system goals
 - interface relatively transparent so users can focus on tasks

Universal 3D Interaction Tasks

- Navigation
 - travel: motor component
 - wayfinding: cognitive component
- Selection/Picking
- Manipulation
 - specification of object position & orientation
 - specification of scale, shape, other attributes
- System Control
 - changing the system state or interaction mode
 - may be composed of other tasks
- Symbolic Input
3D UI Design Philosophies

- Artistic approach: Base design decisions on
 - intuition about users, tasks, and environments
 - heuristics, metaphors, common Sense
 - aesthetics
 - adaptation/inversion of existing interfaces

- Scientific approach: Base design decisions on
 - formal characterization of users, tasks, and environments
 - quantitative evaluation results
 - performance requirements
 - examples: taxonomies, formal experimentation

Applications

- Architecture / CAD
- Education
- Manufacturing
- Medicine
- Simulation / Training
- Entertainment – *Games!!!*
- Design / Prototyping
- Information / Scientific Visualization
- Collaboration / Communication
Next Class

- **Games and 3DUIs**
- **Readings**
 - Bowman - Chapters 1 and 2