3D User Interface Hardware

Lecture #7: Input Devices
Spring 2013
Joseph J. LaViola Jr.

Interaction Workflow
Lecture Outline

- Input device characteristics
- Desktop devices
- Tracking devices
 - position
 - eye
 - gloves
- 3D mice
- Direct human input
- Building special input devices

Input Devices

- Hardware that allows the user to communicate with the system
- Input device vs. interaction technique
- Single device can implement many ITs
Input Device Characteristics

- Degrees of Freedom (DOFs) & DOF composition (integral vs. separable)
- Type of electronics: Digital vs. analog
- Range of reported values: discrete/continuous/hybrid
- Data type of reported values: Boolean vs. integer vs. floating point

More Input Device Characteristics

- User action required: active/passive/hybrid
- Method of providing information: “push” vs. “pull”
- Intended use: locator, valuator, choice, ...
- Frame of reference: relative vs. absolute
- Properties sensed: position, motion, force, ...
Desktop Devices: Keyboards

- Chord keyboards
- Arm-mounted keyboards
- “Soft” keyboards (logical devices)

Desktop Devices: Mice and TrackBalls

- Many varieties
- 2D input to 3DUI
- Relative devices
Desktop Devices: Pen-based Tablets

- Absolute 2D device
- Either direct or indirect

Desktop Devices: Joysticks

- Isotonic vs. Isometric
Desktop Devices: 6-DOF Devices

- 6 DOFs without tracking
- Often isometric
- SpaceBall, SpaceMouse, SpaceOrb

Tracking Devices: Position Trackers

- Measure position and/or orientation of a sensor
- Degrees of freedom (DOFs)
- Most VEs track the head
 - motion parallax
 - natural viewing
- Types of trackers
 - magnetic
 - mechanical
 - acoustic
 - inertial
 - vision/camera
 - hybrids
Other Uses For Trackers

- Track hands, feet, etc.
 - “whole body” interaction
 - motion capture application
- Correspondence between physical/virtual objects
 - props
 - spatial input devices

Tracking Physical Objects (Props)
Magnetic Trackers

- **Example:** Ascension Bird
- **Advantages**
 - good range
 - no line of sight issues
 - moderately priced
- **Disadvantages**
 - metal or conductive material will distort the magnetic field
 - magnetic field can interfere with nearby monitors

Mechanical Trackers

- **Example:** Fakespace BOOM tracker
- **Advantages**
 - low latency
 - very accurate
- **Disadvantages**
 - big and bulky
 - usually only one sensor
 - reduced mobility
 - expensive
Acoustic Trackers

- Example: Logitech Fly Mouse
- Also known as ultrasonic tracking

Advantages
- no interference with metal
- relatively inexpensive

Disadvantages
- line of sight issues
- sensitive to certain noises

Inertial Tracking

- Example: InterSense IS300, Wiimote

Advantages
- no interference with metal
- long range
- no need for transmitter

Disadvantages
- subject to error accumulation
- only track orientation
Optical/Vision-based trackers

- Exs: Vicon, HiBall, ARToolkit, markerless tracking (SLAM, PTAM)
- Advantages
 - accurate
 - can capture a large volume
 - allow for untethered tracking
- Disadvantages
 - image processing techniques
 - occlusion problem

Hybrid Tracking

- Example InterSense IS900
- Advantages
 - puts two or more technologies together to improve accuracy, reduce latency, etc...
- Disadvantages
 - adds complexity
Tracking Devices: Eye Tracking

- CyberGlove, 5DT
- Reports hand posture
- Gesture:
 - single posture
 - series of postures
 - posture(s) + location or motion

Tracking Devices: Bend-Sensing Gloves
Tracking Devices: Pinch Gloves

- Conductive cloth at fingertips
- Any gesture of 2 to 10 fingers, plus combinations of gestures
- > 115,000 gestures

3D Mice

- Ring Mouse
- Fly Mouse
- Wand
- Cubic Mouse
- Dragonfly
- …
ShapeTape

Human Input: Speech

- Frees hands
- Allows multimodal input
- No special hardware
- Specialized software
- Issues: recognition, ambient noise, training, false positives, ...
Human Input: Bioelectric Control

Human Input: Body Sensing
More Human Input

- Breathing device - OSMOSE
- Brain-body actuated control
 - muscle movements
 - thoughts!

Why Build 3D UI Devices?

- Assist in designing new interaction techniques
- Improve upon existing techniques
- Provide interfaces for specific 3D interactions and applications
- Give users more expressive power
- Develop new interaction styles
- Develop new and improved 3D interface hardware
- Fun!!!!
Tools of the Trade

- Sensors, buttons, switches, controllers, etc...

3D Input Device Building Strategies

- Device function
 - What will the device sense?
 - force
 - motion
 - button presses
 - What physical device types are required?
 - Need to choose appropriate sensors
 - digital/analog
 - pressure, bend, potentiometers, thermistors
 - conductive cloth (great sensing material)

- Sensor housing
 - How will sensors be placed in the physical device?
 - Physical constraints
 - Physical comfort
 - How to build the housing?
 - Milling machine
 - Vacoform device
 - 3D printer
 - Lego bricks
 - Modeling clay
Device Ergonomics

- Good ergonomic design is crucial
 - device housing
 - control types
- Issues to consider
 - device should be lightweight
 - avoid fatigue
 - simple to use
 - easy to reach buttons and controls
 - avoid undue strain
 - don’t want to cause user pain

http://www.it.bton.ac.uk/staff/lp22/CS133/haptics.html

CyberGrasp by Immersion

Connecting Devices to the Computer

- Need to connect device to the computer
 - USB
 - serial port
 - Bluetooth
- Often need a microcontroller (not always)
 - small computer that can interface with other electronic components
 - Arduino
 - PIC (www.microchip.com)
 - BasicX-24 -- easy to use
 - programming in Basic
 - has nice development kit
- A typical approach
 - build electronics with prototyping board
 - write code in IDE and download to board
 - test and debug
 - put electronics on circuit board
 - write device driver

www.basicx.com
Software for the Device

- Need to have software to use device in applications
- Several strategies
 - write driver from scratch
 - need to know something about OS - low level support functions
 - understanding of serial/USB communication protocols
 - typical functions - open, close, read, write
 - plug into API
 - utilize existing software - provide drivers for many devices and machinery to create new ones
 - VRPN - developed at U. North Carolina
 - VRJuggler - developed at Iowa State
 - interface device toolkits
 - Phidgets
 - I-CubeX

Case Study 1 - Interaction Slippers

- Providing more powerful methods of expression
- Offload functionality to the user's feet
- Input Device
 - pair of commercial house slippers
 - embedded Logitech Trackman Live™ - wireless trackball
 - conductive cloth
- Allows for toe and heel tapping
- Interact with the Step WIM
 - miniature version of the world place on the floor
 - toe tap to invoke the WIM
Case Study 2 – Reinventing the Pinch™ Glove

- Pinch Gloves
 - determines of two or more fingertips are touching
 - uses conductive cloth
 - designed for pinching and grabbing gestures
 - at the time $2000
 - had problems with reliability
- Wanted to build custom device
 - less expensive ($200)
 - more flexibility
 - not just pinching gestures
 - plug-n-play
 - allow for a variety of switches

www.fakespacelabs.com

Flex and Pinch Input

- Dealing with input device limitations
 - bend sensing gloves vs. pinch gloves
 - improve existing interaction techniques
- Input Device
 - 16 conductive cloth contacts
 - used with bend sensing glove
 - Can be placed anywhere
 - Improve image plane interaction techniques
 - allow user to activate selection with primary hand
 - multiple flex button configurations
CavePainting Table

- Improve a specific application
 - explore prop-based interaction
 - used for painting 3D scenes
- Input Device
 - tracked paint brush
 - paint cup props
 - uses conductive cloth
 - bucket Tool
 - misc. knobs and switches
- Hold down brush button to paint
- Dip paint brush into paint cups to change strokes
- Use bucket to throw paint

FingerSleeve

- Inspiration for creating novel interaction techniques
- Pop through buttons
 - use light and firm pressure
- Input Device
 - worn on index finger
 - made from elastic fabric and flexible plastic
 - 6 DOF tracker attached to the back of the sleeve
 - interesting design issues with button style and placement
- Principle
 - light pressure used for temporary action
 - actions confirmed by firm pressure
- ZoomBack Technique
 - temporary and permanent travel
- Snapshot Technique
Case Study 3 – 3motion

- 3D gesture interaction system
 - developed by Keir et al. 2005, Digital Design Studio, Glasgow School of Art
 - designed as inexpensive tracking solution
 - used for gesture tracking
- Components
 - single chip 3-axis linear accelerometer
 - several buttons
 - wireless bluetooth communication
 - software SDK
- Tested in gaming environment and character manipulator
- Used on cell phone to play virtual golf
- Can you say, “Wii”?

http://research.navisto.ch/publications.html

From Lab to Production (1)

Chord Gloves
Mapes and Moshell (1995)

Pinch™ Gloves
By Fakespace

Cubic Mouse
Fröhlich and Plate (2000)

Cubic Mouse
By Fakespace
From Lab to Production (2)

The CAT (Computer Action Table)

Hachet et al. (2003)
HiBall 6D Tracker

Welch (1996)

HiBall
By 3rd Tech

HiBall
By 3rd Tech

Prototyping Toolkits – Phidgets

- Phidgets (Greenberg and Fitchett 2001) - building blocks for low cost sensing/control
 - uses USB
 - clean separation of hardware and software
 - simple API
 - Don’t need to worry about microprocessors
 - communication protocols
 - soldering
- Variety of sensors
 - touch
 - light
 - force
 - vibration
 - rotation
- Other tools
 - accelerometers
 - switches
 - RFID tags
 - etc...
- Digital Inputs
 - Analog Inputs
 - Digital Outputs

www.phidgets.com
Prototyping Toolkits – I-CubeX

- I-Cube (Mulder 1995) - uses the Musical Instrument Device Interface (MIDI)
 - MIDI – protocol for communicating control information
 - also uses Bluetooth (wireless)
 - similar advantages to Phidgets
 - no microcontroller programming
 - no circuit design
 - software API
- Variety of Sensors
 - air
 - touch
 - bend
 - temperature
 - magnetic
 - light
 - tilt

Next Class

- Selection and Manipulation
- Readings
 - 3DUI Book - Chapter 4