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ABSTRACT 
We present a novel technique implementing barehanded 
interaction with virtual 3D content by employing a time-of-flight 
camera. The system improves on existing 3D multi-touch systems 
by working regardless of lighting conditions and supplying a 
working volume large enough for multiple users. Previous 
systems were limited either by environmental requirements, 
working volume, or computational resources necessary for real-
time operation. By employing a time-of-flight camera, the system 
is capable of reliably recognizing gestures at the finger level in 
real-time at more than 50 fps with commodity computer hardware 
using our newly developed precision hand and finger-tracking 
algorithm. Building on this algorithm, the system performs 
gesture recognition with simple constraint modeling over 
statistical aggregations of the hand appearances in a working 
volume of more than 8 cubic meters. Two iterations of user tests 
were performed on a prototype system, demonstrating the 
feasibility and usability of the approach as well as providing first 
insights regarding the acceptance of true barehanded touch-based 
3D interaction.  
 
KEYWORDS: 3D user interfaces, hand tracking, computer vision, 
multi-touch, gesture recognition. 
 
INDEX TERMS: H5.2 [Information interfaces and presentation]: 
User Interfaces. - Input devices and strategies; Graphical user 
interfaces, I3.6 [Computer Graphics]: Methodologies and 
Techniques. – Interaction Techniques, I4.6 [Image Processing and 
Computer Vision]: Segmentation. – Edge and Feature Detection. 

1 INTRODUCTION 
Multi-touch interaction techniques have become widely 

available recently, being used for instance in table top systems 
such as Microsoft’s Surface [30] projection-based systems such as 
CityWall [24], desktop systems such as HP’s TouchSmart series 
as well as in several mobile devices, in particular smartphones 
such as the Google Nexus and, of course, the iPhone. The 
introduction of multi-touch interaction techniques has probably 
been the most important change to user input since the 
introduction of the mouse. 

To date, multi-touch interaction typically is surface based. 
Selection of objects is required before actually manipulating them 
by touching the corresponding surface with the hands. 

 
 
 

Freehand multi-touch has been explored within various 
approaches, e.g. Oblong’s g-speak1, after initially having been 
introduced in the popular Hollywood movie “Minority Report”. 
They usually depended heavily on hand-worn gloves, markers, 
wrists, or other input devices, and typically did not achieve the 
intuitiveness, simplicity and efficiency of surface (2D) based 
multi-touch techniques2. In contrast to those approaches, the goal 
of our approach was to use barehanded interaction as a 
replacement for surface based interaction. 

Only a vision-based approach will allow for freehand and 
barehanded 3D multi-touch interaction. The system must also 
provide sufficient solutions for the following four steps: detection 
of hand position without prior knowledge of existence; for each 
appearance determine pose from image cues; track appearances 
over time; recognize gestures based on their trajectory and pose 
information. Various approaches exist to solve all four problems, 
each featuring different advantages and disadvantages. 

Barehanded 3D interaction has recently been presented by 
Mygestyk3 and provides the basis for Microsoft’s Kinect interface 
for Xbox 3604. However, these approaches are limited either to a 
single pair of hands, or to a rather coarse detection of the hand (in 
contrast to individual fingers and finger tips). 

Our approach allows for barehanded multi-touch interaction in 
immersive 3D settings using hand and finger based interaction. As 
such, our approach extends intuitive multi-touch interaction to 
Virtual Reality (VR) and Augmented Reality (AR) applications, 
allowing for full 3D interaction rather than restricting the user to a 
certain interaction plane. The approach is not limited regarding 
the number of segments it can track (making it fully multi-user 
capable), while providing a fine granularity for the development 
of specific interaction techniques. 

The paper begins with a review of related work, then goes on to 
describe the system design before providing results from an early 
user study followed by a discussion and conclusion. 

2 RELATED WORK 

2.1 Hand Detection 
Several image cues such as color, texture, and shape have been 

used to approach the problem of hand detection. Donoser and 
Bischof [5] used statistical models for skin color to give clues 
about possible hand segments. Matas et al. [21] extended this 
work, and extracted hand segments using the Maximally Stable 
Extremal Region operator. 

To overcome the problem of susceptibility towards changing 
lighting conditions in predefined color models, Rosales et al. [25] 
used a neural-network based face detector to build and maintain 
active color models. Using another approach, Barhate et al. [3] 
integrated a second motion cue into the detection framework, 
where color and motion are used to initialize an EigenTracker. 

                                                                 
1 See http://www.oblong.com/, last visited March 2010. 
2 See http://www.billbuxton.com/multitouchOverview.html, last visited 

March 2010 for an overview and history. 
3 See http://www.mgestyk.com/, last visited March 2010. 
4 See http://www.xbox.com/de-de/kinect/, last visited Sept. 2010. 
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Another approach developed by Delamarre et al. [4] uses dense 
stereo reconstructions to achieve robustness against background 
clutter and other environmental noise, utilizing depth information 
for hand region segmentation. To overcome the disadvantage of 
expensive to compute dense disparity maps, Liu and Jia [18] 
employ specialized hardware such as the FingerMouse. 

Other methods have been developed, i.e. Kolsch and Turk [13] 
used a learning-based method. They adapted the Viola-Jones face 
detector in the context of hand detection. The final detector is 
build from a cascade of weak classifiers, which are trained for a 
specific initialization posture using the AdaBoost algorithm. A 
similar idea is exploited by Ghobadi et al. [7], but a combination 
of range data taken by a time-of-flight camera and regular color 
information is used instead to increase robustness and efficiency. 

2.2 Pose Estimation 
The complexity of the pose estimation tasks depends on the 

hand model employed and its degrees of freedom. Limited 
reconstruction techniques have been used in a number of real-time 
systems. A basic approach is to estimate the palm position as the 
centroid of the hand blob [27] Abe et al. [1] used a more stable 
estimate given by the point with the maximum distance to all 
boundary edges. In contrast, fingertips can be found using circular 
mask convolution [16] curvature analysis [28] or palm-edge 
distance transform analysis [22] which is considered to be more 
robust with respect to segmentation noise. 

Full pose reconstruction is a more complex task due to the 
number of parameters that have to be estimated simultaneously. 
An elegant approach is to train a set of Specialized Mappings [25] 
with functions based on arbitrary image features, such as the Hu 
moments. A major problem of this approach is the huge 
variability in articulation and appearance, requiring an extensive 
database of training samples. 

2.3 Hand Tracking 
Techniques for hand tracking can roughly be divided into 

appearance- and model-based approaches. One approach to 
appearance-based object tracking is correlation-based feature 
matching, i.e. evaluated by Kolsch and Turk [14] using KLT 
features selected from the bounding box of the hand.  

Barhate et al. [3] apply the ideas of the EigenTracking 
framework instead. The main disadvantage of this method is its 
limited robustness towards background clutter, which is essential 
in multiuser scenarios. Other systems, i.e. those by Argyros and 
Lourakis [2] use prediction models and assume constant linear 
motion in the image plane between two consecutive video frames, 
while i.e. Kim et al. [12] use second order auto-regression of the 
limb motion instead.  

Lu et al. [19] describe a prototype of model-based hand 
tracking techniques. They are using an iterative fitting procedure 
to gradually reduce the matching error between model and 
observation, but real-time operation could not be achieved. Thus, 
among others, Delamarre and Faugeras [4] proposed to simplify 
fitting systems by using dense stereo map 3D data directly to 
reduce ambiguity. They derive 3D forces using the Iterative 
Closest Point algorithm to update the model. In contrast, Ueda et 
al. [29] reconstructed the entire hand volume using an octree 
representation. Still, real-time operation is difficult to achieve due 
to the expensive 3D reconstruction step. 

A problem with the above methods is that temporal occlusions 
of entire objects cannot be handled well. Gumpp et al. [9] address 
this limitation by means of hypothesis generation using Particle 
Filters. To improve performance, several optimizations exist [17], 
however a whole computing cluster is required to achieve near 

real-time performance. Finally, Guðmundsson et al. [10] increase 
the efficiency by employing real-time range data from a time-of-
flight camera while reducing the dimensionality of the joint angle 
space for their particle filter using Principle Component Analysis. 
However, their system is limited to a few hand poses only. 

2.4 Gesture Recognition 
In the simplest case, gestures are derived from static hand 

appearances only. e.g. Wang et al. [31] use Fourier Descriptors for 
deriving a rotation, translation and scale-invariant shape 
descriptor, while Liu and Jia [18] use the Maximum Posterior 
estimate (MAP) to derive the most probable hand gesture from 
samples of a particle filter set.  

To account for spatio-temporal variety in hand gestures, hidden 
Markov Models (HMM) haven been proposed. For example, 
Keskin et al. [11] use position-relative velocity vectors, restricting 
the variability to palm motion only. In contrast, El-Sawah et al. 
[6] fed a sequence of posture symbols into the HMM, with posture 
symbols derived from the hand appearances using Support Vector 
Machines. 

As our work does not focus primarily on gesture recognition 
discussion of further techniques has been omitted.  

3 IMPLEMENTATION 
As the related work shows, the choice of the algorithms chiefly 

depends on the environment in which the system is required to 
operate. A larger setup of the system in an open environment, 
such as a shopping mall or outdoors [24] requires robust hardware 
that can cope with many users and difficult lighting conditions 
such as sunset. The choice of hardware to capture the users is a 
defining element of the reliability of the final system. 

(a) Conceptual lab setup (b) Actual lab setup 
Figure 1: Setup of the lab as used for usability testing 

 

As a consequence, a time-of-flight (ToF) camera was selected, 
capturing depth maps directly by using an active infrared signal 
emission and sensing scheme [15]. We selected the SwissRanger 
SR4000 as it provides a resolution of 176 by 144 pixels at a frame 
rate of 55 Hz, which is sufficient for the algorithms to support at 
least two users in the detection range of the camera, creating a 
working volume of roughly 8 cubic meters. Alternatively, GPU-
based stereo matching algorithms could be employed, which 
would provide similar results, but at computationally much higher 
costs for real-time performance.  

Using the ToF camera, a commodity desktop workstation with 
an Intel Core 2 Duo 2.6 GHz and 3 GB RAM is more than 
sufficient to support our tracking system and application for full 
real-time operation. The final deployment of the system 
components is illustrated in Figure 1a. The geometric setting 
supports immersive environments with 3D stereo rendering where 
the user is interacting with content on a large screen. The ToF 
camera is mounted between the screen and the user, and captures 
the hands from the front. A projector with full high-definition 
resolution is mounted behind the user under the ceiling. Both 
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camera and projector are connected to a workstation that carries 
out the processing. 

While our system is capable of operating in diverse indoor and 
outdoor environments with arbitrary lighting conditions, to 
accommodate an initial user study, a restricted laboratory setting 
was selected (Figure 1b). 

3.1 Vision Algorithm 
Our Fast Light-Independent Gesture and Hand Tracking 

(FLIGHT) vision algorithm, which has been developed for the 3D 
multi-touch prototype is divided into three stages of low- to high-
level vision tasks: Data preparation, feature extraction, and hand 
tracking.  

3.1.1 Data Preparation 
The data preparation step aims at pre-processing the raw image 

data to enable robust feature extraction in the next step. 
 

 
(a) Object segm. with boxes 
showing multiple detected 
objects with depth in gray 

 
(b) Distance transf. showing 
different shades of blue with 
multiple distances detected 

Figure 2: Object segmentation and distance transformation 
 

In the first step, the depth map (a 16 bit unsigned integer array) 
is filtered to suppress noise effects originating from the sensing 
process of the ToF camera. A non-linear median filter with mask 
size � � � was chosen due to its ability to preserve object 
boundaries. On depth maps, object boundaries correspond to 
depth discontinuities providing, valuable information for later 
steps in the vision algorithm.  

 
 

 
(a) Tip feature map with dots 
showing detected features 

 

 
(b) Pipe feature map with areas 

showing detected features 
Figure 3: Result of FAST feature mapping 

 

In the next step, the image is segmented into a set of coherent 
objects. The objects define the regions of interest for subsequent 
processing steps. Segmentation is realized by determining 
connected components on the depth map using the 4-connected 
flood fill algorithm with constant deviation threshold � � ����, 
corresponding to a depth resolution of approximately 15cm. The 
effect of the segmentation process is illustrated in Figure 2a. Red 
boxes demark the bounding areas of the regions, while shades of 
grey visualize the masks of the individual components. 

In the next step, a feature detector inspired by the FAST 
detector [26] is used to classify each remaining pixel � � 	
� � 
according to its tip- or pipe-likeness. The algorithm uses a 
Bresenham circle of radius 4 to segment the pixel’s periphery into 

arcs � � 	��� of consistently lower, equal or higher depth 
compared to the center pixel. For comparison again the maximum 
deviation threshold � is used. Finally, the arcs are assigned to the 
respective sets ���� ����� ���� to build the tip and pipe feature maps �� and �� with 

��	�� � � ��� ! �"� #$ �%	&�'� � � �() *+,*  (1) 

and 

�-	�� � � . / �� ! �"�01%	2�34 #$ �%	&�'� � � (
() *+,*  (2) 

The result of the feature mapping procedure is illustrated in 
Figure 3. Pixels belonging to both tips and pipes consistently 
exhibit low intensity values in the respective representations, and 
hence can be found as local minima.  

In the final step, during preparation a depth-discontinuity 
enhanced distance transform map �5 is calculated on top of the 
segmented objects. Connectivity between pixels for distance 
propagation is defined analogous to the flood fill algorithm for 
region segmentation. As a consequence, depth discontinuities are 
considered obstacles with the goal to incorporate intra-object 
boundaries for hands and arms. As a result, palms are shown as 
local maxima even if they considerably overlap the body region, 
provided that they are held far enough apart. Sample output of the 
method is given in Figure 2b. The blue channel demarks the 
connected components, a.k.a. objects, which for example cause 
the user’s left arm in Figure 2b to appear in a darker shade of blue 
than the head or the body. In contrast, the red and green channels 
provide the distance transform results, which cause a transition to 
white from yellow, depending on the strength of the blue 
component. 

3.1.2 Feature Extraction 
The feature extraction step aims at reducing the pixel-based 

image data to a small set of features, from low-level tips and pipes 
to high-level compound constellations. 

 

 
(a) Tip features 

 
(b) Distance features 

Figure 4: Feature extraction showing detected features as circles 
 

In the first step, the sets 6��65 of local turning points in the tip 
feature map �� and the distance transform map �5 are 
extracted. To improve their localization, both images are 
convolved with a Gaussian filter mask first. For the distance 
transform map a mask of size �� � �� was chosen to suppress 
multiple maxima in a small region, for the tip feature map the size � � � proved to be sufficient due to the overall smaller feature 
appearance. Finally, local turning points are selected using a non-
maximum suppression in a � � � window. The result of the 
procedure is illustrated in Figure 4. Tip features are annotated 
using red circles with constant radius 4, while distance features 
are annotated using cyan circles with radius equal to the depth 
discontinuity distance value instead. 

In the next feature extraction step, an undirected graph �7 �	8� 9 is built by connecting those distance features whose radius 
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is larger than a minimum threshold of 5 pixels. The threshold was 
selected empirically based on the average distance of the user to 
the camera, with the goal to exclude features that are too small to 
represent a palm (e.g. the circles on the fingertips in Figure 4b). 
To derive the edges of the graph, a distance transform is 
calculated, which finds for each region pixel the closest distance 
feature from the set 8. Thereby, connectivity between pixels is 
defined equivalent to the previous distance transform. 

 

 
Figure 5: Examples of graph building showing graph nodes as 

circles and connections as lines 
 

However, additionally a minimum distance of 2 for depth 
discontinuities is required to prevent the algorithm from crossing 
depth boundaries with pixels of depth value in between 
foreground and background. Finally, unique edges are introduced 
whenever two neighbouring pixels point to different closest 
distance features. The result of the procedure is illustrated in 
Figure 5. The graph nodes are annotated using circles, while edges 
are annotated using lines. Furthermore, the red channel contains 
the distance transform, the green channel the median-filtered 
depth map and the blue channel the connected object components. 

 

 
Figure 6: Examples of pipe segmentation with connected 

segments in random colors 
 

In the next step, connected components are segmented from the 
pipe feature map �-. Therefore, the connectivity between pixels 
is defined along the four cardinal directions if the feature map 
values of both neighbouring locations are below the threshold : � �;< = (), i.e. only pixels with exactly two arcs of equal depth 
are considered, which cover a maximum of 70% of the 
Bresenham circle. The result of the segmentation process is 
illustrated in Figure 6. Connected components are visualized with 
random colors. Fingers are represented clearly using this method. 

In the next step, the tip and pipe features are combined to finger 
structures 6>. The process relies on the assumption that each tip 
coincides with an image location, which only has a single arc with 
equal depth compared to the center pixel (due to noise other 
constellations are possible). To find the connected pipe feature the 
arc’s pixels are traversed and tested for the existence of an 
underlying pipe segment. If multiple matches are found along the 
arc, the largest segment is selected. Finally, if matching was 
successful, a finger object is built using the location of the tip and 
the point on the pipe segment, which has the largest distance to 
the tip – also called base. The result of the procedure is shown in 
Figure 7. Both tip and base of the fingers are annotated using 
circles, which are connected by a line.  

 
Figure 7: Examples of finger extraction showing pipe ends as 

circles and pipes as lines 
 

In the final step during feature extraction, the set of palm 
candidates 6?  and their connectivity to finger structures is 
determined. The palm candidates are defined as the topological 
endpoints of graph 7, i.e. those vertexes that have at maximum 
one connection. Further the set of candidates is limited to those 
distance features whose radius does not exceed a threshold of 13, 
which reflects the maximum palm size given the average distance 
of the user to the camera. This condition was added to filter the 
location of the head, which usually appears larger than the palm 
counterparts. For each remaining candidate the set of plausible 
finger matches @?  is derived using the palm center point as well 
as the finger base points. For successful matching, a maximum 
depth deviation of d between palm center and finger base is 
required, which reflects the constraint of equal/similar depth. 
Further, the distance between the two points in image space is 
required to lie below 20�pixels, which marks the empirical upper 
threshold for plausible associations given the average distance of 
the user to the camera. Likewise, for each finger structure the 
reverse mapping @> is established, i.e. the set of plausible palm 
candidate matches.  

 

 
(a) Feature grouping with circles 

marking detected features 

 
(b) Detected palm and tracked 

movement path of palm 
Figure 8: Examples of feature grouping and palm tracking 

 

Based on the previous sets for each palm candidate A 1 6?  , a 
score ,?  is calculated with ,? � / BC ! DEB>1@F

 (3) 

Finally, using this score the optimal palm to finger assignment G? is calculated as G? � �D 1 6>H C � IJKL#M?N1@O ,?NP@?NPQ (4) 

i.e. each finger is allocated to the plausible palm candidate with 
minimal average distance to its plausible finger connections. The 
result of the procedure is illustrated in Figure 8a. Both distance 
features and finger structures of the candidates are visualized 
using the previous annotation conventions. 

3.1.3 Hand Tracking 
The hand tracking step aims at identifying the true hand 

structures, and following their appearance through a sequence of 
frames. 

In the first step, the set of palms 6-�R in frame M is determined 
from the set of palms 6-�R�S using feature-based optical flow [20] 
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on the squared distance transform maps for pronouncing the 
individual feature locations. In cases where a palm was already 
tracked successfully in the previous frame, the expected location 
in the current frame is predicted by assuming constant linear 
motion in the image plane to account for time-related 
displacements. The window size for the optical flow algorithm is 
set to the maximum palm radius, which was encountered in the 
previous frame. Otherwise the convergence performance drops 
due to unreliable matching of window contents. After retrieving 
the converged location for each palm of the previous frame, the 
respective closest palm candidate of the current frame is selected, 
and an association is established if the distance between candidate 
and converged location does not exceed the maximum admissible 
palm radius of 13 pixels. In addition to the successfully tracked 
palms, those palm candidates are added to the set of palms, which 
are connected to exactly 5 finger structures. The last step defines 
the strategy for hand detection that is employed in the system. The 
result of the procedure is shown in Figure 8b. The previously 
detected palm is annotated using a green circle; the trajectory is 
annotated using a green line. The current linear predication is 
annotated using a thin red line. 

In the final step, for each palm of the previous frame, the 
temporal association of the associated fingers is determined. 
Similar to palm tracking, the algorithm uses feature-based optical 
flow on the tip feature map �� in order to track the location of 
the fingertips. The size of the search window is set to 7 x 7, which 
reflects the radius of the Bresenham circle. For prediction, again 
linear motion is assumed in the image plane. However, the 
apparent displacement of the palm is used instead of a finger-
specific velocity component. After retrieving the converged 
location for each finger of the previous frame, the closest finger 
structure in the current frame is selected and a connection is 
established if the distance between tip and converged location 
does not exceed the radius of the Bresenham circle. 

3.2 Interaction Design 
As part of our iterative development approach of the algorithm, 

we developed a demo application with basic 3D interaction. The 
interaction was designed to demonstrate interaction metaphors of 
existing multi-touch systems, such as selection, translation, 
rotation and scaling, in a three-dimensional context. To utilize 
familiarity effects with systems such as CityWall [24], the 
metaphors are applied to the problem of spatial picture 
arrangement. The formulation of the gestures is based on a 3D 
model of the picture frames T � 	C� U� V� W�X�Y, where C 
represents the center point and U� V� W denote the orthonormal 
basis vectors for frame rotation. Finally, X�Y represent the width 
and height of the frame in space units. In the following, the 
implementation of the gestures is described.  

3.2.1 Create Frame 
Usually, a session starts out with an empty screen space. The 

first action a user can perform is pull up new pictures from a 
picture database. The design of the corresponding gesture was 
inspired by the idea of popping up elements out of the empty 
space. This design naturally translates into a closed human hand, 
which suddenly extends all five fingers. Technically, the gesture 
is recognized for palm ZR in frame M if ��/�G-[� \ � ] �̂ / �G-[� _ �R�S`

a�R�b
R�`
a�R  (5) 

i.e. the average of the number of detected fingers is constrained 
by the respective thresholds. This step improves reliability of 

finger detections due to noise and appearance problems in the 
captured image. 

3.2.2 Select Frame 
Before the user can start manipulating frames, the desired target 

has to be selected. Borrowing from existing systems, the 
respective gesture is based on the simple touch event. Touching 
pictures in 3D geometrically amounts to the hand intersecting the 
picture plane within the width and height boundaries. A pilot user 
study, however, revealed that this definition is too restrictive, as 
users frequently missed the target. As a consequence, the touch 
event was extended to a box volume, which is aligned with the 
frame coordinate system. Technically, the select gesture is 
recognized for palm ZR and frame T if c d Te _ fg̀ h ijL ] c d Tk _ fl̀ h ijL ] c d Tm _ ��L  (6) 
with c � noR	ZR ! T?p (7) 

The mapping oR is used to retrieve the space coordinates for 
image location ZR, i.e. the palm center. 

3.2.3 Move Frame 
After selecting a frame with one hand, the user has the option to 

move it along all three coordinate axes. The respective gesture is 
inspired by the idea of grabbing small objects, which fit in the 
user’s hand, such as drinking glasses, before changing their 
position. Technically, the grab event is recognized for palm ZR if 

q r/	oR	ZR5 ! st` _ �jL`R�u
a�R v51we�k�mx ] �G-y� � � (8) 

 
with s � �i/oR	ZRR�u

a�R  (9) 

i.e. the hand position is required to be stable within a small 
window by means of the covariance constraint, and no fingers 
should be detected in the last frame. The stability constraint helps 
to prevent moving hands from accidentally grabbing frames due 
to unreliable finger detection in case of blurred motions resulting 
from 3D camera exposure time requirements. To release the 
object, a fully opened hand is required, which is defined 
analogously to the create action. 

3.2.4 Rotate/Scale Frame 
Both frame scaling and rotation around the V and W axes is 

supported as well. In accordance with other multi-touch systems, 
the interaction metaphor is based on two touch points, which 
operate on the object simultaneously. Following the previous 
conventions, the action is triggered if two hands are grabbing the 
same frame. Technically, grabbing is again defined as a 
covariance and zero finger constraint. Also, the release is 
supported on both hands to either switch back to simple 
movement or entirely detach from the object. 

3.2.5 Delete Frame 
Deletion of frames is supported to clear the screen and make 

space for new objects. The respective gesture is inspired by the 
metaphor of throwing dispensable objects into the trash. However, 
as currently fast motion cannot be supported by the optical hand 
tracking due to 3D camera exposure time requirements, this action 
was simply translated to moving frames across a certain spatial 
border in either the U or V direction. Technically, the delete event 
is triggered for hand ZR which is moving a frame T  if PoR	ZReP \ �ijL z PoR	ZRkP \ ��jL (10) 

 The coordinates and boundaries are expressed relative to the 
camera coordinate system. 
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4 EVALUATION 
The methods that have been selected to evaluate the system 

were mainly oriented towards the two main design goals of the 
project: (1) The development of a lightweight real-time algorithm 
with possible adaption to mobile hardware in the near future, and 
(2) the exploitation of this novel non-intrusive 3D motion capture 
platform with respect to existing gesture-based 3D interaction 
techniques. To account for these points, first a number of 
computation statistics have been collected across a series of input 
sequences. Second, the usability of the system has been evaluated 
through a series of user studies.  

4.1 Performance 
To develop a picture of the computational complexity, the 

algorithm has been applied to four test sequences on an Intel Core 
2 Duo with 2.6 GHz and 3GB RAM while recording average 
execution times over 10 iterations per frame (see Figure 9). 
Sequence 1 (12s, avg. of 0.84 hands/frame detected) contains one 
hand while the body of the user is hidden outside the camera 
view. Sequence 2 (18s, 1.23 hands/frame) captures a user that is 
showing and moving both hands at the same time. Sequence 3 
(23s, 0.62 hands/frame) captures again one hand but including all 
upper body parts and larger motion distances. Sequence 4 (12s, 
0.87 hands/frame) shows one-handed closed and open gesture 
transitions. All sequences include the user walking into and out of 
the view. The average hands/frame is to be seen as a measure of 
complexity for the sequences rather than accuracy (which is not 
inspected here). For performance analysis the average execution 
times are broken down into the portions that each individual 
algorithm step contributes from input filtering to finger tracking. 

 

Figure 9: Average execution time per test sequence 
 

When comparing the sequences 2 through 4, a strong similarity 
regarding the relative contributions of the individual algorithm 
steps can be recognized. In particular, across all three sequences 
fast classification uses 16-22% while topology extraction uses 25-
28% and palm tracking 16-20%. In contrast, sequence 1 mainly 
stands out due to the relatively low percentage of the topology 
extraction step with 8%. Since topology extraction aims at 
describing the structure of the segmented regions this divergence 
is easily explained by the fact that only the arm of the user was 
visible while the remaining body parts were hidden. 

Overall, it can be concluded that the relative execution times 
may vary significantly depending on a number of factors such as 
the diverse feature counts (segmented regions, distance maxima, 
tip map minima, pipe map segments, etc.). However, as 
demonstrated by the four test sequences and many more test runs 
the absolute execution times seem to behave fairly well within the 
10ms range, which is more than sufficient for real-time 
interaction. 

4.2 Evaluation with Users 
The purpose of the usability test was to evaluate the suitability 

of the non-intrusive hand and finger motion capture platform for 
standard gesture-based 3D interaction tasks. As noted by Nielsen 
[23], subjective satisfaction is an important part of acceptance and 
use of future technologies. To date no prior literature exists on 
user studies of ToF-based hand and finger tracking.  As a result 
our study was primarily aimed at identifying whether such an 
approach was perceived as user friendly by users to the extent that 
they would consider using it in future systems. As part of this we 
were interested in testing for perceived accuracy of the system 
within its given tasks and gauging their subjective responses to its 
use in particular as to whether it was suitable for 2D and/or 3D 
tasks. It is important to indicate we were not at this stage 
focussing on absolute numerical accuracy of the system. 

In common with earlier work on usability testing we adopted a 
quasi-iterative design perspective similar to that of Gould and 
Lewis [8] e.g. early involvement of users and tasks, empirical 
evaluation, and iterative design. This consisted of an early pilot 
study in which usability issues were identified and rectified. 
During the pilot phase the process of testing users was repeated 
and changes or redesigns were made until we were satisfied that 
problems had been rectified before the formal study was 
undertaken. Among the issues identified during the pilot/iterative 
phase were: (1) Inclusion of an explicit grab gesture, which was 
previously triggered by touch only. (2) Tuning the gesture 
recognition thresholds. And (3) extending the tracking algorithm 
to prevent frequent drift-off to the elbow. It should further be 
noted that the final study is intended to inform future design and 
development of such systems and is therefore also part of an 
iterative and on-going process.  

4.2.1 Method 
Participants were recruited from among administrative staff, 

researchers and students. They were aged between 21 and 53, had 
vary degrees of experience with computer games, multi-touch 
devices, motion tracking systems, and augmented reality software. 
All participants were asked to complete three tasks, an 
introduction phase, followed by a 2D and 3D puzzle. The 
introduction phase was used in order to familiarize the users with 
the system, such as the boundaries of the interaction volume and 
the individual gestures. The two main tasks were administered 
randomly. The 2D puzzle task involved reassembling a 
photograph from various parts, requiring the use of selection, 
rotation and scaling. The 3D task involved placing objects in the 
correct depth within a scene. After completion of each task, the 
users were asked to complete a simple questionnaire, which 
contained 5-point Likert-scale. On completion of all tasks, the 
subjects were asked for their overall opinions by providing written 
responses. In addition, the researcher took notes during each user 
test. In total 11 participants (7 male, 4 female) took part in the 
study, with a mean age of 29 (std. dev. 3.9). 

4.2.2 Results 
On average, the users rated the interaction scheme neutral to 

positive. A summary of the Likert-scale feedback is provided in 
Figures 11. In particular, the general concept of the application 
was well received.  Concerning the puzzles, the participants took 
on average 165 seconds to complete the 2D task, with time taken 
ranging from 78 to 290 seconds.  In contrast, they took less time 
to complete the 3D task, with times ranging from 56 to 269 
seconds (mean 135). Across all three tasks they rated the 
interaction scheme neutral to positive, with scores typically being 
3 or more for user actions such as selection and translation, with 
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positioning in the depth plane and rotation (see Figure 12) being 
identified as the most difficult actions across all tasks. 

 (a) 2D puzzle (b) 3D puzzle  
Figure 10: User rating on Likert-scale from 1 (disagree) to 5 (agree) 

 

The written user responses were grouped and are summarised in 
figure 12. The results point to the system being well received and 
this is indicated by comments such as: “Cool application, it’s 
really fun!” or “Original experience, it's fun!” The second most 
common theme (63% of users indicating this) was interesting 
which could be found in comments such as “Interesting 
experience, which shows, that there is also a world after the 
touch-interfaces.” Third to fifth place in terms of positive 
comments was that the system was innovative (55%), intuitive 
(55%) and responsive (36%). The issue of haptics was also noted 
but in a positive way with one user noting: “I expected that the 
absence of haptics is disturbing, but it was not like that!”  

(a) Positive user comments (b) Negative user comments
Figure 11: Summary count of comments made during tests 

Although the system was in general well received, problems 
with rotation tracking were noted in 63% of tests, while general 
tracking problems were identified in 36% of tests. Typical 
comments were: “The tracking errors are a little disturbing, but 
do not take the appetite to interact.” or “The experiment was 
completely positive regardless of the issues with tracking.” 
Problems with depth perception were identified in 45% of tests. 
This was, however, not related to the system but rested with the 
display, which did not have a stereoscopic 3D setting. However 
had a 3D stereoscopic display been used this would have added an 
additional variable to the test. 

5 DISCUSSION 
The performance data as well as the positive user feedback 

indicates that the system provides an effective environment for 
implementing and studying novel barehanded 3D interaction 
techniques. In this context the overall approach benefits notably 
from the simple and lightweight setup, allowing for individual 
usage in most environments within a couple of minutes. Also the 
technical requirements allow such a system to be operated on 
most currently available PCs. 

Through a user study the FLIGHT algorithm proved to be 
capable of robustly detecting hands and reliably estimating the 3D 
poses of the palms, fingers, and fingertips for a number of users, 
which can be seen in the many positive comments and 
impressions. Moreover, the calculated hand information seems to 
be stable enough for supporting real-time 3D gesture input and 
completing a range of interactive 3D tasks. This claim is 
supported by the fact that every participant was able to complete 
the given tasks while the immediate feedback was neutral to 
positive for the individual interaction styles (selection, translation, 
rotation, scaling) as depicted in Figure 10. In particular the graph 
formulation  for connecting distance features has been 
recognized as significantly improving the palm selection 
procedure through introducing an endpoint constraint that 
incorporates information about feature constellations. This 
contribution has been noted after introducing the graph concept in 
response to major tracking problems during a pilot study. 

Nevertheless, the user study also revealed issues with the 
current system, most importantly the robustness of the tracking 
component as indicated by the comment counts in Figure 11b. 
More precisely, one has to distinguish between rotation tracking 
and general tracking errors. The first seem to have a fairly simple 
explanation: many subjects tended to cross their hands for rotating 
objects 180 degrees around the  axis (see Figure 12), which 
caused either of the hands to be occluded from the view of the 
camera. As our algorithm does not support this case it is not 
surprising that problems were encountered. 

 

 
(a) Starting rotation task 

 
(b) Finishing rotation task 

Figure 12: Example of a user rotating an object 
 

The remaining tracking issues, however, suggest that the optical 
flow based tracking concept has general limitations, e.g. under 
higher motion in the image plane. To overcome these problems 
more advanced tracking methods such as the more robust shape-
based EigenTracker or the occlusion-sensitive Particle Filter 
approach may have to be adopted. 

Another known issue with the system is the long exposure time 
of the ToF camera limiting the maximum speed of motion before 
introducing a significant blur. Further, the rather low camera 
resolution requires the fingers to be clearly separated. These two 
effects become even more critical in currently available cheap 
ToF cameras. While standard stereo cameras may currently 
provide an alternative solution – in particular since they are cheap, 
robust, and provide a better resolution – it can also be expected 
that, based on recent developments regarding ToF cameras, 
appropriate modules will become significantly cheaper, providing 
increased frame rates, and at higher resolutions. In summary, the 
user study found that while there is room for improvement that the 
users liked the basic concept of bare-handed 3D interaction and 
that it is perceived as providing sufficient accuracy thus allowing 
them to complete desired tasks. However, it is acknowledged that 
improvements can be made and that future technologies will 
improve the system. In particular, a more powerful pose 
estimation method coupled with a more robust and accurate 
output would greatly enhance the degree of expressiveness that 
could be exploited for gesture definition. 
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6 CONCLUSION 
In this paper we presented our approach to lightweight palm 

and finger tracking, by providing a basis for 3D gesture-based 
interaction. Our approach allows for barehanded 6-DOF 3D multi-
touch interaction is based on a fast light-independent gesture and 
hand tracking algorithm (FLIGHT). It first preprocesses the depth 
information received from a time-of-flight (ToF) camera, 
classifying pixels for their tip- or pipe-likeness. It then extracts 
higher-level features identifying palm and finger candidates. 
Finally, the true hand structure is identified applying an optical 
flow approach to the palm and the fingertips. 

We use this as a basis to support a set of basic 3D multi-touch 
interaction techniques, naturally extending common 2D multi-
touch input gestures into the 3rd dimension. The overall 
performance of our approach allows for 50fps, mainly restricted 
due to the camera refresh cycle as the overall computation time 
usually is in the 10ms range. 

As the result of our qualitative user study, our approach proved 
to be suitable for 3D interaction and intuitive usage by 
inexperienced users. Restrictions still apply regarding fast 
movements, depth and detail resolution, and robustness regarding 
the connection of features in the graph. 

In our future work, we will explore possibilities to increase the 
robustness and the working volume e.g. by using additional time-
of-flight cameras. Working with different cameras we will further 
develop mathematical formulations for current “magic values” 
tailored to the single ToF camera available for early prototyping. 
This work will further enable us to conduct more elaborate 
evaluations of the algorithm performance. We will further 
examine the applicability in stereoscopic VR and AR scenarios as 
part of another user test to gather quantitative data. Finally, we 
will investigate particular gestures and possible application areas 
requiring the usage of individual fingers rather than the complete 
hand, as finger pipe and tip tracking is a unique feature of the 
presented approach. 
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