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Abstract—This paper presents the framework for the 

navigation and target tracking system for a mobile 

robot. Navigation and target tracking are to be 

performed using a Microsoft Xbox Kinect sensor which 

provides RGB color and 3D depth imaging data to an 

x86 based computer onboard the robot running Ubuntu 

Linux. A fuzzy logic controller to be implemented on 

the computer is considered for control of the robot in 

obstacle avoidance and target following. Data collected 

by the computer is to be sent to a server for processing 

with learning-based systems utilizing neural networks 

for pattern recognition, object tracking, long-term path 

planning and process improvement. An eventual goal of 

this work is to create a multi-agent robot system that is 

able to work autonomously in an outdoor environment. 

Keywords-mobile robot; fuzzy logic; path planning; 

neural networks; learning system 

I.  INTRODUCTION 

Many control schemes have been presented for navigation 
and target tracking for use on mobile robots. Control 
schemes used for navigation include conventional controller 
designs such as PD and PID controllers, and also controllers 
taken from intelligent control systems with fuzzy logic [1] 
and neural networks [2], [3] being the most commonly used. 
In the case of navigation, most algorithms plan a route 
ahead of time based on what data is available on the robot’s 
working environment and require minor real-time 
corrections based on local disturbances not identified in the 
original data on the environment. Therefore navigational 
algorithms can incorporate lengthy simulations or other 
non-real time operations running in tandem with the basic 
operations of the robot. Parallel processing of navigation 
and other critical operations allow a robot to perform 
obstacle avoidance and target tracking in real time, leaving 
lengthy computations to other agents in a system. 
Separating these operations is common in many mobile 
robot systems that allow distributed processing where the 
robot does not necessarily need to calculate its own path, 
such as sports playing robots as in [4] and [5]. Additionally, 

separation of navigation and other critical operations is 
performed using multiple computers or computing servers 
located either remotely or fixed on the robot.  

Several well known examples of unmanned ground vehicles 
were seen in the DARPA Grand Challenges where teams of 
researchers entered robotic automobiles in an autonomous 
race to successfully navigate a particular type of area or 
terrain. Vehicles in the Grand Challenge utilized either 
vision or depth information, or a fusion of both sensor data 
to navigate unstructured environments for which the 
researchers had limited previous knowledge. Examples of 
teams from the Grand Challenge using both laser range 
finders and cameras are [6] and [7], teams using only laser 
range finders included [8], and teams using only cameras 
included [9].  

Besides the DARPA Grand Challenge, many researchers 
have implemented similar systems for autonomous ground 
vehicles including [10]-[13]. Common to some of the 
aforementioned examples of systems using camera 
information to navigate an environment is the use of the 
Hough transform or similar methods to identify straight line 
features in an image. The straight line information is used in 
[3] and [12] to identify landmarks in images to compare 
between frames in order to track the progression of the 
robot through the environment. Also common to most 
works is the identification of the traversable region in an 
RGB or depth image. Various methods have been used and 
proposed based on the characteristics of the environment 
being traversed and usually rely on segmentation of the 
image into distinct areas for sub-processing [1], [10], [12], 
[13], [14]. The following sections investigate navigation, 
ground plane identification and fuzzy logic control of a 
robot for target tracking. The sections are ordered as 
follows: navigation of a mobile robot, object recognition, 
supervisory via remote computing server, and navigation 
and target tracking. 

II. NAVIGATION OF A MOBILE ROBOT 

Navigation of a mobile robot consists of path planning and 
heading changes towards the target destination. Navigation 
of a mobile robot can be assisted by systems covered in 
computational intelligence theory. Path planning and 
obstacle avoidance are considered here in this section. 
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A. Dynamic Model of Differential Drive Robot 

The basic dynamic model of a robot is required for its 
control. In this case we describe a model of a differential 
drive robot as shown in Fig. 1. The terms vℓ�t�, v��t�, v�t�, 
ω�t� and L in (1) below refer to the velocity of the right set 
of tires, velocity of the left set of tires, translational velocity 
of the robot, rotational velocity of the robot, and the length 
between the left and right sets of tires. 

��	� = ����	� + 	�ℓ�	�� 2⁄                        (1) 

��	� = ����	� −	�ℓ�	�� �⁄                       (2) 

 
 
This dynamic model is used later in Section IV for control 
of the robot. 

B. Object Recognition 

The purpose of object recognition in this paper is two-fold, 
firstly to identify objects to track in the environment and 
secondly to identify free space in the space in front of the 
robot for navigation purposes. The following sections detail 
the sensor capable of generating RGB-D images, and how 
we plan to use implement image processing and 3D depth 
image processing. 

1) RGB-D Sensor: The cost and power requirements of 

3D depth imaging sensors has long been a prohibitive 

factor in its deployment on small cheap mobile robots. 

Now with Microsoft’s Xbox Kinect, the cost of 3D depth 

imaging has gone down by at least a factor of 10 

(comparing to laser range finders costing greater than 1500 

USD) and the power requirement has been reduced due to 

the lack of moving parts, with exception of the motor for 

tilt control, such as those in 3D laser scanners commonly 

used on mobile robots. The Kinect is an RGB camera along 

with a 3D depth ranging sensor that works through infrared 

light [16]. This sensor provides access to two images, one 

RGB image and also a 3D depth image. Use of a 

combination of both of these images provides a fair level of 

capabilities for object recognition. Software used to 

interface with the Kinect to obtain access to its sensors and 

motor is provided by an open source software project 

called OpenKinect [18]. OpenKinect was used in this paper 

to acquire the depth and RGB images presented later in this 

section. 

2) Color Image Recognition: In this section use of the 

rg-chromaticity color space, adaptive color processing edge 

detection and color segmentation are proposed as being 

part of the color image recognition routine. This routine 

will be used for target tracking and navigation for the 

mobile robot. 

a) rg-Chromaticy Color Space: One of the main 

problems in color image processing is the variablility of 

colors due to local intensity shifts in the environment. To 

abate this problem, a color space called rg-chromaticity is 

used by [4], [5]   to remove the light intensity from the 

determination of the color. Transforms to the rg-

chromaticity space  are listed below in (2)-(5). 

��� =	� �� + � + ��⁄                      (3) 

��� = 	� �� + � + ��⁄                      (4) 

��� = 	 �� + � + �� �3 ∗ 255�⁄          (5) 

With rg-chromaticity, primary and secondary colors can be 

isolated into specific boundaries in the red and green 

chromaticity spaces with a fair amount of reliability. Given 

these boundaries, fuzzy logic can be applied to identify 

certain colors in systems of robots which rely on color 

identification as seen in [4] where a color camera is used as 

a global vision source to identify paths that the robots take 

and also location of their target (a golf ball). In the system, 

both the robots and the targets are marked with a specific 

color to aid in the identification of the objects. Example 

empirical values for rg-chromaticity determined by 

researchers in [18] are listed in Table 1. 

TABLE I.  SELECTED EMPIRCAL RESULTS FOR RG-
CHROMATICITY SPACE COLOR IDENTIFICATION [18] 

COLOR ���, !" ��, #$ %��, !" %��, #$ 

Red 0.6 0.7 0.088 0.176 

Orange 0.523 0.619 0.238 0.285 

Blue 0.1 0.2 0.3529412 0.441 

Black 0.2 0.3 0.2647059 0.352 

 

Examining results of [18] in Table 1, identification of 

colors in the rg-chromativity space is appropriate for fuzzy 

logic, as suggested in [18], as each color is defined within a 

certain region which may overlap. 

b) Adaptive Color Processing: In a system which is 

not used in a well defined area with a constant light source, 

an adaptive color processing algorithm is better suited for 

use than a non-adaptive one. In [4] researchers 

experimented with shifts in light intensity. In their 

experiments, they placed a known color reference chart in 

the image similar to the one depicted below in Fig. 2 (b). 

With the color reference chart present in the view of a 

camera, the researchers varied the intensity of light in the 

room while capturing image frames. In processing of the 
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Figure 1: Model of Differential Drive Robot 
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images, they used a dynamic correction algorithm which 

accurately corrected low lit colors to their original color 

based on the color reference pattern present in the image. 

With the original colors retrieved, they reliably tracked a 

robot through the images. The neural networks would be 

trained on the reference color pattern and would be used to 

identify the reference chart in the image frame. From the 

identified patterns, the transformation between the pattern 

in the image and the color reference chart would be known 

based on the difference between the colors and intensities. 

 

 
 

3) Color Segmentation: The combination of using the 

rg-chromaticity color space and light intensity correction 

provide two components necessary for color image 

recognition. An image can be further segmented into 

components containing colors similar to primary, 

secondary, and tertiary colors of varying intensities. With 

the color segmented image, candidates of objects known to 

be a certain color can be isolated in an image frame and 

examined further. 

C. 3D Depth Image Recognition 

A 3D depth image taken with the Kinect sensor is shown 
below in Fig. 3. In the image, it is apparent that the image 
provides a higher level of distance definition compared to 
that of a color RGB image taken by the RGB camera as 
seen above in Fig. 2. The traversable area can be identified 
in the depth image using a 2D gradient and a 2D log filter, 
as shown in Fig. 4. 

 
Figure 3: 3D Depth Image; Dark Areas Indicate Close Distances 

in Foreground and Areas of Noisy Data in Image Background 

 

Planned processing of the depth image involves finding the 
traversable area (shown in Fig. 4) and the planning a route 
using the depth image. One method used in [1], in which an 
RGB image was segmented into three vertical columns – 
center, left and right,  will be used to identify regions in the 
depth image for obstacle avoidance. 

 
Figure 4:  Log-Filtered Gradient of 3D Depth Image; Solid Dark 

Gray Patch Indicates Flat Traversable Region of Image (Indicated 

in Yellow) 

III. AUTONOMOUS SUPERVISORY OF ROBOT VIA 

REMOTE COMPUTING SERVER 

During the course of an experiment with an autonomous 
robot, it is crucial to record data on the robot’s interaction 
with the environment in order to improve its capability to be 
fully autonomous. Real-time learning by the robot is 
unlikely given the computing power a typical robot has and 
the time duration for learning algorithms to converge. 
Instead, we propose the use of a server to collect data from a 
robot in the field, to aggregate the data to find undesired 
trends in behavior to certain stimuli, and to provide a 
supervisory role in the control of a robot. 

A. Data Collection 

This section assumes that a robot has the ability to 
communicate to the computing server either over a Wi-Fi 
connection to a wired network or a 3G/4G modem with 
connection to the server over the internet. At regular 
intervals data collected by various processes running on the 
robot’s computer is uploaded to the server over a network. 
Data uploaded to the server is to be then stored and 
processed. Depending on the type of data sent to the server, 
a compressed container should be used to send the data 
when it is split between multiple files. Distance between 
backup intervals is dictated by the data rate and latency 
properties of the network in addition to the time sensitivity 
of the data collection. In the case that the server provides 
time sensitive feedback that the robot needs in order to 
make an action, the backups will be spaced close together. 
Otherwise data transactions are spaced further apart. 

B. Data Aggregation 

Aggregation is to be performed on data uploaded to the 
server to identify many different trends. Trends discovered 
in reactions to various stimuli can be used to identify when 
control algorithms are working properly and can be used to 
improve them when they are not. Logs including 
documented reactions to sensor data at timestamps 
matching the data can be examined by a dedicated process 
running on a server.  

 

 

(a) Image Frame 
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C. Supervisory Role in Control of Robot 

A supervisory role in the control of a robot can be 
performed by the remote server. Using concepts developed 
later in Section IV, the computing server component can 
recognize patterns using tools such as associative memories 
created with neural networks or radial basis function 
networks. The following is true of neural networks designed 
to be associative memories [19]: 

• A neural network designed to be an associative 
memory requires one or more sets of hidden neuron layers 
which are trained to identify patterns in input vectors.  

• Training vectors can be of any size as long as they 
provide sufficient information in the vector for recognition. 
In the case of grayscale, color or depth images, smaller 
compressed images are used as training vectors for the 
neural network as it reduces the overall time to train and 
identify patterns.  

• After training, the network is fed newly captured 
input vectors (images) to be identified. The network 
chooses the pattern most similar to that of the newly 
captured image. 

Design of the associative memory that provides the object 
tracking service to the robot is to be provided in a future 
research. 

IV. FUZZY LOGIC CONTROL OF ROBOT IN TARGET 

TRACKING MODE 

A. Generation of Fuzzy Rules 

Rules for target tracking can be generated based off of the 

data provided by the object tracking and recognition 

engine. Data that can be used for fuzzy variables include 

the translational and rotational velocity of the robot, and 

the identified target’s centroid and relative size. The 

process of fuzzifying the input data is depicted below in 

Fig. 5. 

 

The number of levels for each fuzzy variable are chosen 
based on the following criteria: level of precision in 
movements, size of targets, range of velocities of robot. 

B. Fuzzy Controller:  

An example of a fuzzy controller is shown in Fig. 6 for the 
data described above in Fig. 5. The process that the fuzzy 
controller undergoes is as follows: 

• If a target has been found and the robot is to track a 
target, the robot begins to follow the fuzzy controller output. 

• The fuzzifier receives velocity input from the 
microcontroller and target data from the object recognition 
and tracking engine. 

• The fuzzy inference engine output is fed to the 
microcontroller to control the motors to reach the desired 
translational and rotational velocities. 

 
 
 

Also depicted in the figure is the existence of five levels for 
each fuzzified variable. Fuzzy rules generated for the 
system in Fig. 6 can be described as follows in Table 2 
assuming the fuzzy sets include the following: 

• LN: Large Negative 

• SN: Small Negative 

•  Z: Zero 

• SP: Small Positive 

• LP: Large Positive 

TABLE II.  EXAMPLE FUZZY RULES FOR CONTROLLER 

RULE $, -, ., /�,� 0�,� /∗�,� 0∗�,� 

1 LP LP LN Z Z LP SP 

2 LP LP LP Z Z SN SP 

3 LN Z Z Z Z Z LP 

4 SP Z Z Z Z Z SN 

Generate levels 

for fuzzy 

variables x, y & 

size of target and 

v & w of robot 

��1234,567 �&894,567 
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Figure 6: Fuzzy Logic Control of Robot in Target Tracking 

Mode  

Figure 5: Generation of Fuzzy Variables for Controller 
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In Table 2, values for the location of the target are 
referenced to the center of the image, the relative size is 
referenced to the original size measurement with smaller 
than reference being negative, negative translation velocity 
being that in reverse, negative rotational velocity being 
rotation to the left, and �∗�	� and �∗�	� refer to the output 
of the controller in the next state. In the final controller, the 
number of fuzzy rules will likely be greater than that shown 
in Table II to achieve a finer level of control. Rule 3 for 
example describes the situation where: 

• The centroid of the target being tracked is to the far 
left of the robot 

• The robot will rotate in the next step to the left at a 
fast pace 

If the robot rotates too quickly for the fuzzy controller to 
recognize the motion, this is an indication that the target has 
been centered and that the target is now more to the right of 
the robot. Another rule such as that of rule 4 may fire to 
correct the overshoot, which is described by the following: 

• The centroid of the target being tracked is slightly 
to the right of robot 

• The robot will rotate in the next step to the left at a 
slow pace 

V. CONCLUSIONS 

In examination of resources available in vision based 
robotic systems, controllers for mobile robot navigation, 
path planning, and target tracking are possible and have 
already been implemented for various robots and robot 
systems. Many systems have been created to allow small 
robots to play tournament style sports, and for robots to 
autonomously navigate indoors and outdoors. Problems 
with the more expensive systems lie in their scalability due 
to their use of high-end equipment and need for computing 
power. In this paper the combination of low-cost 3D depth 
and color imaging is proposed to replace higher cost 
imaging systems. To supply the necessary computational 
power we suggested use of a remote server to perform target 
recognition and tracking in addition to aggregating data on 
performance of the robot. Fuzzy logic will supply the 
control mechanism necessary to follow and navigate 
towards targets. Target selection and registration is a field 
not yet explored by this author and is subject of future 
research. 

REFERENCES 

[1] A.R.N. Ravari, H.D. Taghirad, and A.H. Tamjidi, 

"Vision-based fuzzy navigation of mobile robots in 

grassland environments," in Advanced Intelligent 

Mechatronics, 2009. AIM 2009. IEEE/ASME 

International Conference on, 2009, pp. 1441-1446. 

[2] S. Tangruamsub, M. Tsuboyama, A. Kawewong, 

and O. Hasegawa, "Mobile robot vision-based 

navigation using self-organizing and incremental 

neural networks," in Neural Networks, 2009. 

IJCNN 2009. International Joint Conference on, 

2009, pp. 3094-3101. 

[3] M. Meng and A.C. Kak, "NEURO-NAV: a neural 

network based architecture for vision-guided 

mobile robot navigation using non-metrical models 

of the environment," in Robotics and Automation, 

1993. Proceedings., 1993 IEEE International 

Conference on , 1993, pp. 750-757. 

[4] Guy K. Kloss, Heesang Shin, and Napoleon H. 

Reyes, "Dynamic colour adaptation for colour 

object tracking," in Image and Vision Computing 

New Zealand, Wellington, 2009, pp. 340-345. 

[5] K.G. B. Leong, S. W. Licarte, G. M. S. Oblepias, 

E. M. J. Palomado, and E.P.Dadios N. G. Jabson, 

"The Autonomous Golf Playing Micro Robot: 

With Global Vision And Fuzzy Logic Controller," 

International Journal on Smart Sensing and 

Intelligent Systems, vol. 1, no. 4, pp. 824-841, 

December 2008. 

[6] R. Behringer et al., "RASCAL - an autonomous 

ground vehicle for desert driving in the DARPA 

Grand Challenge 2005," in Intelligent 

Transportation Systems, 2005. Proceedings. 2005 

IEEE , 2005, pp. 644-649. 

[7] K.A. Redmill, J.I. Martin, and O. Ozguner, 

"Sensing and Sensor Fusion for the 2005 Desert 

Buckeyes DARPA Grand Challenge Offroad 

Autonomous Vehicle," in Intelligent Vehicles 

Symposium, 2006 IEEE , 2006, pp. 528-533. 

[8] A. Bacha et al., "The DARPA Grand Challenge: 

overview of the Virginia Tech vehicle and 

experience," in Intelligent Transportation Systems, 

2004. Proceedings. The 7th International IEEE 

Conference on, 2004, pp. 481- 486. 

[9] A. Broggi, C. Caraffi, P.P. Porta, and P. Zani, "The 

Single Frame Stereo Vision System for Reliable 

Obstacle Detection Used during the 2005 DARPA 

Grand Challenge on TerraMax," in Intelligent 

Transportation Systems Conference, 2006. ITSC 

'06. IEEE , 2006, pp. 745-752. 

[10] S. Vitabile, G. Pilato, F. Pullara, and F. Sorbello, 

"A navigation system for vision-guided mobile 

robots," in Image Analysis and Processing, 1999. 

Proceedings. International Conference on , 1999, 

pp. 566-571. 

[11] A. Gopalakrishnan, S. Greene, and A. Sekmen, 

"Vision-based mobile robot learning and 

navigation," in Robot and Human Interactive 

Communication, 2005. ROMAN 2005. IEEE 

International Workshop on, 2005, pp. 48-53. 

[12] P. Borges, R. Zlot, M. Bosse, S. Nuske, and A. 

Tews, "Vision-based localization using an edge 

map extracted from 3D laser range data," in 

Robotics and Automation (ICRA), 2010 IEEE 

International Conference on , 2010, pp. 4902-

4909. 

303



 

[13] A. Miranda Neto and L. Rittner, "A simple and 

efficient Road Detection Algorithm for Real Time 

Autonomous Navigation based on Monocular 

Vision," in Robotics Symposium, 2006. LARS '06. 

IEEE 3rd Latin American , 2006, pp. 92-99. 

[14] T. Low and A. Manzanera, "Ground-plane 

classification for robot navigation: Combining 

multiple cues toward a visual-based learning 

system," in Control Automation Robotics & Vision 

(ICARCV), 2010 11th International Conference on 

, 2010, pp. 994-999. 

[15] G.N. Desouza and A.C. Kak, "Vision for mobile 

robot navigation: a survey," Pattern Analysis and 

Machine Intelligence, IEEE Transactions on , vol. 

24, no. 2, pp. 237-267, Feb 2002. 

[16] Stephanie Crawford. (2011, March) 

HowStuffWorks - Microsoft Kinect. [Online]. 

http://electronics.howstuffworks.com/microsoft-

kinect2.htm 

[17] Joshua Blake. (2011, April) Main Page - 

OpenKinect. [Online]. 

http://openkinect.org/wiki/Main_Page 

[18] N.H. Reyes and E.P. Dadios, "A fuzzy approach in 

color object detection," in IEEE International 

Conference on Industrial Technology, Bangkok, 

2002, pp. 232-237. 

[19] Laxmidhar Behera and Indrani Kar, "Multi-layered 

Neural Networks," in Intelligent Systems and 

Control Principles and Applications. United States 

of America: Oxford University Press, 2010, ch. 2, 

pp. 41-85. 

[20] Wen Shang, Xudong Ma, and Xianzhong Dai, "3D 

objects detection with Bayesian networks for 

vision-guided mobile robot navigation," in 

Control, Automation, Robotics and Vision 

Conference, 2004. ICARCV 2004 8th, 2004, pp. 

1134-1139. 

304


