
MAGIC: A Motion Gesture Design Tool

Daniel Ashbrook1,2 and Thad Starner1

1College of Computing and GVU Center
Georgia Institute of Technology

Atlanta, GA 30332
{anjiro,thad}@cc.gatech.edu

2Nokia Research Center Hollywood
Santa Monica, CA 90404

daniel.ashbrook@nokia.com

ABSTRACT
Devices capable of gestural interaction through motion sens-
ing are increasingly becoming available to consumers; how-
ever, motion gesture control has yet to appear outside of
game consoles. Interaction designers are frequently not ex-
pert in pattern recognition, which may be one reason for this
lack of availability. Another issue is how to effectively test
gestures to ensure that they are not unintentionally activated
by a user’s normal movements during everyday usage. We
present MAGIC, a gesture design tool that addresses both of
these issues, and detail the results of an evaluation.

ACM Classification Keywords
H.5.2: User interfaces—input devices and strategies; pro-
totyping; user-centered design. D.2.2: Design tools and
techniques—User interfaces

General Terms
Human Factors

INTRODUCTION
Although often a topic of research [13, 16], motion gestures
(as opposed to pen gestures) have not become common out-
side of gaming systems such as the Nintendo Wii. Research
indicates that users prefer devices that are fast to access [3,
14], and motion gestures can provide this desired speed by
obviating the need to push buttons or look at screens. Ges-
tures can even enable hands-free usage for on-body devices
such as wristwatches. Users could control tiny music players
with subtle shoulder movements, look at upcoming appoint-
ments on a watch display without having to touch the watch,
or dial a mobile phone with a wave of the hand. Both the
sensing and gesture recognition technology exist to create
these kinds of interfaces, but currently the Apple iPod is the
only device implementing quick gestures, with its “shake to
shuffle” motion. We see two causes for this lack of gesture
recognition in everyday life.

The first issue is that interaction designers are not gener-
ally domain experts in gesture or pattern recognition [4]. A
number of off-the-shelf tools for experimenting with pattern

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 10 – 15, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

recognition exist, such as Weka [19] or GT2K [18]; these
tools, however, act more as libraries of techniques rather
than full-fledged design tools.

The second issue is that testing gestures in everyday life can
be very difficult. This challenge is not just normal user test-
ing; for gestures to really move into everyday usage, they
must be usable in everyday situations. In particular, only
movements that are intended for the device should cause
functionality to be activated; that is, performing normal ac-
tivities such as eating, walking or normally gesticulating dur-
ing conversation should not cause unwanted activity on the
device. One solution to this problem is a “push to ges-
ture” mechanism, where a user first presses a button and then
makes a gesture; however, such an interaction obviates the
need for gestures in the first place, as the user could simply
press the button to activate the desired functionality with-
out making a gesture. Pushing to gesture can also slow the
interaction and make it inconvenient for the user.

With these needs in mind, we next define a list of desider-
ata for a gesture design tool and discuss related work. We
then introduce our system for Multiple Action Gesture In-
terface Creation (MAGIC), and describe its implementation.
We discuss the results of an evaluation of MAGIC’s usabil-
ity, and present related work.

MOTION GESTURE DESIGN TOOL DESIDERATA
In our experience, creating a gesture system has three basic
stages. In the first stage, the designer gathers requirements,
performs formative user studies and market research, and de-
cides what functionality to consider controlling with gesture.
In the second stage, the designer determines how motions
by the user will map to functionality activated on the device.
She ensures that only intended movements activate function-
ality, confirms that the gestures work reliably, and performs
initial user testing, especially related to how the designed
gestures work in conjunction with a user’s everyday move-
ments. The last stage is summative: the designer performs
final user testing and deploys the finished product.

In this paper, we discuss the creation of a tool to support
the middle stage of design. We have identified the following
desiderata for such a tool; the tool should:

allow non-expert use. Just as desktop UI designers are not
required to know details about circuit design, USB pro-
tocols, or operating system drivers to build a system that

responds to mouse clicks, interaction designers should not
be required to understand the underlying complexities of
gesture recognition in order to build a working system.

allow expert use. As designers use a system or a particu-
lar algorithm, they will naturally gain more expertise, and
may wish to push beyond novice-level support. Expert
use should be supported, and a smooth novice-to-expert
transition should be possible.

encourage iteration. Iterative design is one of the corner-
stones of good UI creation practices. Tools should encour-
age iteration by making it easy to explore alternatives. In
terms of gesture design, users should be able to quickly
try out different motions for a gesture-activated function
and experiment with recognition parameters in order to
get the desired results.

support retrospection. In contrast to pen gestures, motion
gestures can be difficult to represent graphically, with only
limited research in this area thus far [10, 11]. However,
designers still need the ability to recall and examine the
gestures they’ve created, understand how they are simi-
lar or different from other gestures, and remember what
motion corresponds to what function.

support further testing. Outside of recognition concerns,
there may be a number of other needs that the designer
should consider: social acceptability, memorability, us-
ability in different situations, etc. . . . The designer may
want to customize the gesture set for different user groups
or cultures. Support should be available for the designer
to perform further testing after the initial design phase.

We have developed MAGIC, a Multiple Action Gesture In-
terface Creation tool designed to meet these goals.

RELATED WORK
Our system, MAGIC, is related to classification systems,
which—although the particulars often differ—share the idea
of receiving unknown data and determining what category,
or class, that data belongs to. Almost all such systems—
whether pen [12] gesture, motion [13] gesture, or even face
recognition [17]—use a training and testing approach. In the
training phase, the system is given labeled data—a number
of examples of data that should be recognized and to which
classes the examples belong. In the testing phase, the system
is given more data and is asked to guess the correct class; the
performance of the system is then estimated by how closely
its guesses match the labels.

When providing training examples to a classification system,
it is important to ensure that the examples for a given class
are similar to one another; that is, the set of examples for
a class should be internally consistent. Training a speech-
based DVD player will work better with many examples of
someone saying “play” than if “start” is mixed into the train-
ing examples. Similarly, the sets of examples for multiple
classes should be distinguishable from one another: “stay”
is similar enough to “play” that it would be a poor choice for
the pause function. Helping the user to understand when and
how consistency and distinguishability are compromised is

one important consideration for making such systems more
usable by non-experts.

A number of classification-based systems in the literature at-
tempt to improve usability; MAGIC was influenced by many
of them. One major inspiration is Long’s quill [12], an in-
teractive system for designing pen gestures. quill supports
gesture creation by example, and offers automated advice
on improving the gestures. In the design process for quill,
Long found several issues with gesture design: some users
did not realize that two similar gesture classes might con-
flict with each other; users didn’t understand how the gesture
recognizer worked; and finding and fixing problems with
recognition was very difficult. To help alleviate these issues,
quill includes feedback on the quality of gestures and used
language to communicate issues; however, Long states that
“many participants did not understand the suggestions,” go-
ing on to posit that perhaps they “can be made more acces-
sible. . . by using more diagrams”.

Exemplar [6] is a more general system for creating sensor-
based interactive systems. In addition to training classifiers,
Exemplar can connect to real-world hardware so that inter-
actions can quickly be prototyped. Users of Exemplar train
the system by giving it examples of events to be recognized;
however, it does not differentiate between testing and actual
use, and so does not provide information on performance
with respect to internal consistency or between-class dif-
ferentiability. Such information is critical when designing
multiple gestures that should not interfere with one another.
Additionally, Exemplar provides no facility for comparing
defined events, which may make it difficult to keep track of
many examples or many classes.

Exemplar is related to d.tools [7], a system for prototyping
interactions with physical devices. d.tools concentrates on
reliable (that is, non classifier-based) input, but integrates
video analysis of user testing. MAGIC operates in a similar
fashion, providing video linked to input, to help the system
designer recall what input was provided for different actions.

Crayons [4] is an interactive computer vision classifier train-
ing system that takes in pre-recorded images and allows users
to interactively specify which classes various parts of an im-
age should belong to. Much like MAGIC, Crayons explicitly
encourages the user to iterate by providing immediate feed-
back on system performance; however, Crayons is focused
on classifier creation and does not consider end-user usage.

EnsembleMatrix [15] uses visualization to help users under-
stand the effect of different machine learning classifiers. It
is, however, focused on domain experts, and as such con-
centrates on explicating the confusion matrices of multiple
classification algorithms to users.

Wobbrock et al. [20] investigated gestures from a different
angle, using a tabletop environment to elicit motions from
users in response to a variety of graphical commands such as
“move”, “zoom” or ”rotate”. The authors found several com-
monalities in mental models about some of the commands.
This study gives a good model for designers to follow during
the initial formative phase of gesture system creation.

A

B

C
D

Figure 1. The Gesture Creation tab. A: recorded gesture view; B: live
sensor view; C: list of gestures and gesture examples; D: sorted list of
distances from currently selected example to every other example.

A
B

C D

Figure 2. The Gesture Testing tab. A: recorded test sample view with
boxes highlighting matches; B: live sensor view; C: list of test samples;
D: list of gestures matching currently selected test sample.

A

B

C D

Figure 3. The Everyday Gesture Library tab. A: EGL view with boxes
highlighting gesture occurrences; B: EGL video synchronized to EGL
view; C: gestures with number of occurrences in EGL (# Hits); D: list
of occurrences in EGL for selected gestures.

MAGIC: A GESTURE DESIGN TOOL
MAGIC is partially inspired by the design/test/analyze model
developed by Klemmer et al. [9] and supports a similar
three-stage workflow. The stages are not strictly linear; a de-
signer will fluidly move between them as they work. MAGIC
reflects these stages with three tabs in the interface: Gesture
Creation, Gesture Testing, and Everyday Gesture Library
(see Figures 1, 2, and 3). The stages are:

1. Gesture Creation In this stage, the designer creates ges-
ture classes and gesture examples. A gesture class repre-
sents one kind of movement—such as a punching forward
motion—that usually maps to one function in the inter-
face, such as “volume up”. A gesture example is an in-
stance of actual recorded motion data associated with a
class. Typically a designer will create several examples
for each class in order to account for variation in how a
user might make the gesture.

The Gesture Creation tab (Figure 1) includes support for
creating gesture classes, recording examples, and under-
standing how examples and classes relate to each other in
terms of recognition performance (consistency and distin-
guishability). To support experimentation, gestures and
examples may be deleted or temporarily disabled.

2. Gesture Testing In the testing phase, the designer tests
recognition by making motions that should be recognized
as one of the gesture classes trained in the creation phase,
or by making motions that should not be recognized. For
example, the designer might perform a punching forward
motion to make sure it is recognized, and also reach for a
glass of water to make sure that it is not falsely recognized
as the punching motion.

The Gesture Testing tab (Figure 2) allows the designer
to create free-form sequences of movements that—from
a recognition standpoint—are treated exactly the same as
if they were performed live. The results of recognition
are visualized, and the designer can re-run tests multiple
times after adjusting parameters. If portions of a test are
not recognized as members of the proper class, the user
can select that portion of the test sample and add it to a
class as a gesture example.

3. False Positive Testing One potential pitfall when creat-
ing gestures intended for everyday use is that end-users
may perform actions that the designer can’t anticipate,
which might lead to unwanted activation of functionality.
For example, the designer might think that adding a twist
to the end of a forward punch will eliminate any confusion
between the gesture performed intentionally and picking
up a glass of water, but it might instead be activated when
turning a doorknob. For this reason, it is important to test
the gestures during the actual daily activities of represen-
tative end-users.

The Everyday Gesture Library tab (Figure 3) presents the
designer with an interface similar to the Gesture Testing
tab. In this case, however, the movements used for recog-
nition are pre-recorded by a representative set of users,
allowing the designer to determine if the system will con-
fuse the created gestures with end-users’ everyday move-

ments. This pre-recorded data is called the “Everyday
Gesture Library” (EGL).

SENSING AND GESTURE RECOGNITION
MAGIC was designed to accommodate a variety of sensors.
For prototyping purposes, we use a wrist-mounted Bluetooth
±2G 3-axis accelerometer, sampling at 40Hz. Accelerome-
ters are inexpensive and widely available, and are the current
sensor of choice in consumer devices such as the Wii and
iPhone. We chose to mount the accelerometer on the wrist,
which has been shown to be a location that is easily accessi-
ble [1] for control and display and can allow for hands-free
operation of devices.

MAGIC can also take advantage of a variety of gesture recog-
nition algorithms. Due to its ease of implementation and rel-
ative computational efficiency (when optimized) we chose to
use dynamic time warping (DTW). Given two signals, DTW
returns a “distance” between them. For more information on
the particular methods used in MAGIC, see Fu et al. [5].

To perform recognition, MAGIC takes a potential gesture
(a candidate) and, using DTW, compares it in turn to each
recorded training example (each belonging to a particular
class). MAGIC uses the three axes of acceleration as well
as fast Fourier transform (FFT) based features computed for
each input sample. In order to be considered a match, an ex-
ample’s distance must first fall below a per-class threshold
value. Each example falling under the threshold is consid-
ered, and the class with the overall lowest score according
to weighted voting is considered to be the match. By de-
fault, the threshold is set automatically by MAGIC to maxi-
mize the “goodness” value (discussed below) for the gesture
class. If desired, the user may manually set the threshold,
or may revert to the automatic behavior through use of an
“Automatically Calculate Threshold” button.

GESTURE DESIGN WORKFLOW SUPPORT
Designing gestures can be a complex task, especially for
those not familiar with pattern recognition techniques and
terminology. MAGIC provides several features to assist users
in their task; recall that the three stages are gesture creation,
gesture testing, and false positive testing.

Everyday Gesture Library
In order to choose an effective set of gestures for everyday
use, it is essential to test each iteration of the gestures with
users: a user’s natural motions may, to the computer, resem-
ble the defined gesture, and therefore trigger undesired ac-
tions. Our research group has over a decade’s experience
with gesture interfaces for everyday life [8, 13, 18] and has
struggled with this issue. One solution is to test each new
gesture in the field as it is designed. Doing so can lead to
very long iterations, however; the designer of one interface
spent two weeks in this manner before giving up and adding
a push-to-gesture feature to the system.

MAGIC offers a partial solution to this problem. Rather than
requiring user testing in the initial phases of gesture design,
MAGIC allows designers to iterate rapidly through designs
while increasing the likelihood that the chosen gestures will

not be confused with everyday movements. MAGIC uses
a corpus of pre-recorded data that is representative of the
everyday motions of the designer’s target population. The
designer recruits a number of people to wear the same sen-
sor that will be used in the end product. Those people then
perform their daily activities, not explicitly interacting with
the sensor at all, but simply allowing it to record data. The
recorded data set—called an “Everyday Gesture Library”—
is used by MAGIC to help the designer more rapidly iterate
through gestures. At any point in the workflow, the designer
may test the currently defined set of gestures against the
EGL to see how frequently the gestures occur. MAGIC per-
forms a windowed search over the EGL to find occurrences,
which indicate times when the end user would have acciden-
tally triggered the functionality represented by the gesture.
If the number of occurrences for a gesture are deemed unac-
ceptable by the designer, she may continue to iterate.

Retrospection
One of the most important aspects of MAGIC is retrospec-
tion—the ability to return to previously-created content and
review the actions taken. MAGIC implements retrospec-
tion by graphically plotting recorded gestures and by making
available video of the designer performing the gesture.

In both the creation and testing phases, the designer records
motions. MAGIC displays a continuously-updating graph of
the output from the accelerometer (Figure 1B). The x, y, and
z axes are displayed as red, green, and blue lines, respec-
tively. After an example has been recorded, it is displayed in
the same way (Figure 1A). The live output is located to the
right of the training example display and continually scrolls
to the left, to give the impression that recorded training ex-
amples have simply continued leftward to be “captured” by
the example’s display.

When experimenting with many potential movements for
different functions, it can be easy to forget what movements
were made. MAGIC automatically records video of the de-
signer’s movements during gesture creation and testing sam-
ple creation. Two cameras with 170◦ fisheye lenses are used:
one is mounted on top of the designer’s monitor, and the
other is located in the brim of a hat (Figure 5). The hat-
mounted camera provides a first-person view of movements
to the designer, while the monitor-mounted camera offers a
view that may be more legible to others.

As the accelerometer view and the video are both represen-
tations of a movement by the designer, they change in con-
cert. The user can scrub back and forth through the video by
dragging a cursor within the recorded accelerometer display.
The user may also play back video at any time, in which case
the cursor follows along with the video. This functionality
is similar to that of d.tools [7], which allows designers to
replay video and sensor readings from a user test session.

Visualization: Gesture Design
For classification tasks such as gesture recognition, a confu-
sion matrix is a standard visualization of classification re-
sults, helping the user understand the source of incorrect
classifications. Because confusion matrices can be difficult

(a) (b) (c) (d)

Figure 4. Mean and standard deviation distance graphs for (a) each example within a class, (b) each class versus all other classes in aggregate, (c)
each class versus all other classes individually, and (d) a magnified view of a single row of (c), with dots representing occurrences in the EGL. The
horizontal scale in each case represents the DTW distance.

to read for non-experts [12], MAGIC provides different vi-
sualizations derived from the same information. Confusion
matrices are constructed by comparing every example in ev-
ery class with every other example in every class. MAGIC
displays this information on an example-by-example basis
in the match list (Figure 1D). The match list displays a given
example’s distance to every other example, sorted by dis-
tance. The small dots to the left of each entry in the match
list denote whether the distance to that example falls under
the threshold for the given gesture or not. In Figure 1D, the
threshold for Wave is set to 16.42, and the match list for ex-
ample Wave 4 is being shown. Every listing with a distance
≤ 16.42 is considered as a match to Wave, and shows a green
dot; every other listing is not a match and has a red dot.

MAGIC provides a summary of the match list by calculating
a “goodness” value for each example. An example’s good-
ness is based on the precision and recall for cross-validation
(the example compared to every other example in all classes).
Precision is the percentage of results labeled as a class that
actually belong to the class; in Wave 4’s match list, it is the
percentage of items with a green dot that actually belong to
class Wave. Recall is the percentage of a class as a whole that
was labeled as belonging to the class; in Wave 4’s match list,
it is is the percentage of Wave examples that have a green
dot. The goodness (G), is the harmonic mean of precision
(P) and recall (R): G = 2 · (P ·R)/(P+R). Goodness ranges
from 0–100%. Intuitively, an example only gets a goodness
score of 100% if it matches all and only all of the other ex-
amples from its class. A low goodness score may indicate
a problem with an example, or with the class as a whole.
MAGIC provides visualizations to assist the user in deter-
mining the source of low goodness scores.

Figure 4(a) is an example of a graph representing internal
consistency for the class Wave. Each numbered bar repre-
sents a single example in the class; in this case, six have
been created. For each bar, the thick center line shows the
average distance between that example and each other exam-
ple in that class. A dotted line extends downward from the
thick line to a circle at the bottom of the graph; this feature
allows the overall distribution of distances to be ascertained
at a glance. The width of each bar represents the standard
deviation of the distances to each other example in the class.

The thicker dotted line with the number above it illustrates
the recognition threshold for the class; the user may drag this
line to adjust the threshold interactively. By looking at the
graph, the designer is able to identify outliers visually. In
this case, two examples—5 and 6—are quite different from
the other examples, and might cause a low goodness score.

Figure 4(b)–(d) shows graphs visualizing inter-class vari-
ability for each class as compared to all other classes. In
Figure 4(b), each shaded row represents a single class. The
box in the row with a solid outline (on the left in each row)
shows the mean and standard deviation of the intra-class dis-
tances, while the box with a dotted line (on the right in each
row) shows the mean and standard deviation of distances be-
tween the class and all other classes. There is no relationship
between the shaded rows of the table except that they are
shown on the same numeric scale. This graph can be used to
determine how confusable a class is with other classes. For
example, class Thump shows very good differentiation from
other classes, while class Wave is more confusable.

Figure 4(c) is similar to Figure 4(b), but splits the dotted-
line box into its constituent classes. While the graph in 4(b)
gives a general overview of how each class performs with
respect to the other classes, this graph allows the user to de-
termine if a single class is causing the problem. (With many
classes, the graph can become very dense; Figure 4(d) shows
a zoomed-in view of the row for class Wave.) The box that
is the same color as the background represents the class in
question; for Wave it is the bottom box. Each other box is
color-coded according to the other classes, and shows the
mean and standard deviation of the distances from (in this
case) Wave to that class. A quick glance reveals that Wave
and Punch (the top box in Wave’s row) are similar to each
other. Looking at Wave’s box in the other rows of Figure 4(c)
(the bottom box in every row), it can bee seen that the stan-
dard deviation of Wave with respect to each of these other
classes is high.

Visualization: Gesture Testing
During gesture testing—both on the Testing tab and the EGL
tab—the gestures created by the designer are compared with
streams of pre-recorded data. In the Testing tab, the de-

signer creates the streams; in the EGL tab, the sensor streams
are recorded a priori by representative members of the de-
signer’s target user population. MAGIC provides visualiza-
tions of the results of the gesture search in two places.

The first is the results list (Figures 2D and 3D), which lists
the matches between the testing stream and the gesture ex-
amples the designer has created. Each entry in the list gives
the distance between the two examples, the time at which the
match was found, and the name of the matching example.

The same information is visualized in the recorded sensor
graph (Figures 2A and 3A). Each entry in the results list has
a corresponding box superimposed on the sensor graph. The
vertical space of the graph is divided into N slices, where N
is the number of gesture classes defined; this allows over-
lapping boxes to remain distinguishable (this may be seen in
Figure 3A). Clicking on a box in the recorded sensor graph
highlights any matching results in the results list; the in-
verse is also true. Double-clicking in either location plays
the video (Figures 5(b), 5(c), 3B) associated with that por-
tion of the sensor stream.

Because it may often be the case that results from a compari-
son with the data in the EGL tab will number in the hundreds
or thousands, it can be difficult to tell the root cause of the
problem. MAGIC displays each match in the EGL as a black
dot on the inter-class graphs. This is illustrated for the Wave
class in Figure 4(d). The dots are plotted according to dis-
tance on the same horizontal scale as the rest of the graph
elements, while the vertical scale is according to time. This
display allows the designer to tell, at a glance: if there are
many or few EGL matches; if all of the matches occur at one
time or are evenly distributed throughout the EGL; and if the
threshold for the gesture can be adjusted to remove most of
the matches. (In Figure 4(d), the threshold cannot be moved
to the left far enough to eliminate all EGL matches.)

EVALUATION
In order to determine the efficacy of MAGIC, we conducted
a user study. Our goals in the study were to:

• qualitatively assess the usability of MAGIC by observing
users utilizing it to design gestures;

• understand the design strategies used by designers when
creating gestures; and

• determine how effective the Everyday Gesture Library is
in helping users to design gesture sets that are unlikely to
be accidentally activated by everyday movements.

EGL Creation
In order to create an Everyday Gesture Library to test against,
eight volunteers wore data collection systems for a total of
over 58 hours over a period of seven days. The data collec-
tion system consisted of the wrist-mounted accelerometer,
an Asus eeePC 901 netbook computer, a shoulder-mounted
bag, and a hat with a fisheye camera lens mounted in the
brim, pointing downwards (see Figure 5(b) for a representa-
tive image). The EGL includes a wide variety of activities,

such as eating, working at the computer, shopping at a mar-
ket, cooking, attending an academic conference, walking to
work, attending meetings, driving, playing pool, and nap-
ping. A small portion (about 5.3 hours) of collected data
was separated for use in the experiment, with the remaining
data reserved for post-hoc testing.

Procedure
There were two experimental groups, with the same task for
each group. Group noEGL received the MAGIC interface
with the EGL tab removed, and participants in this group
were ignorant of the existence of the EGL; group EGL used
the full interface with the experimental portion of the EGL.

Each participant was seated at a desk in a chair without arms
(to allow for free arm movement). To begin, the participant
was requested to wear the hat with the camera, and to wear
the wireless accelerometer on the left wrist. Each partici-
pant worked through a tutorial on the use of MAGIC which
also provided a brief introduction to gesture recognition. On
average, participants required an hour to complete the tuto-
rial; afterwards, they were given the opportunity to ask any
questions, and then were given a printout explaining the ex-
perimental task.

The printout asked participants to design and create eight
gestures to control a hypothetical wrist-mounted, gesture-
controlled digital audio player. The functions to control were:
Play/Pause, Next Track, Previous Track, Volume Up 10%,
Volume Down 10%, Next Playlist, Previous Playlist, and
Shuffle. These functions were chosen because they are com-
mands that would be plausible to control with gestures, and
were intended for a type of device with which participants
would be familiar.

In addition, the instructions asked participants to ensure that
each gesture met the following criteria:

• The gesture must reliably activate the desired function.
• Performing the gesture must not activate other functions.
• The functionality associated with a gesture must not be

activated by a user’s everyday movements.
• The gesture should be easy to remember.
• The gesture should be easy to perform.
• The gesture should be socially acceptable.

Participants were provided scrap paper and the tutorial, and
were given approximately 2.5 hours to complete the task us-
ing the MAGIC software. At completion of the experiment,
the researcher conducted a semi-structured interview with
each participant, focusing on overall strategy of gesture cre-
ation and use of the software. After the interview, each par-
ticipant was asked to complete a paper survey about the ex-
periment, comprised of the Questionnaire for User Interface
Satisfaction (QUIS) [2], QUIS-inspired questions about the
gestures, and a section requesting descriptions of why the
participant chose the particular movements for each gesture.

Participants
We recruited a total of 16 participants; one participant took
over two hours to complete the tutorial and was therefore

(a) (b) (c)

Figure 5. Experiment setup, showing participant wearing accelerometer and hat camera (a) and views from hat camera (b) and monitor camera (c).

discarded as an outlier, leaving 15 participants. Our criteria
for recruitment was a familiarity with user-centered design
or building user interfaces; participants were mostly gradu-
ate students or recent graduates from the HCI and Computer
Science programs at our institution.

We requested participants to complete a brief demographic
survey before starting the experiment. The questions in-
cluded experience with motion-sensing devices such as the
Nintendo Wii game system, and the iPhone or T-Mobile G1
mobile phones and, on a 9-point scale, experience with user-
centered design, with designing user interfaces, and with
pattern recognition. See Table 1 for a summary of partici-
pant information.

Cond # Age #F Watch Wii Phone UCD UI PR
noEGL 7 29.0 2 3.5 3.2 2.0 5.9 6.7 4.0
EGL 8 31.6 2 2 3.4 1.4 6.6 5.6 3.0

Table 1. Demographic information for participants. Columns from left
to right are: experimental conditions; number of participants; mean
age; number of female participants; number of participants wear-
ing a watch (“sometimes” responses counted as .5); experience with
Nintendo Wii (1-9); experience with motion-sensing mobile phones (0-
5); experience with user-centered design (1-9); experience in designing
user interfaces (1-9); and experience with pattern recognition (1-9).

RESULTS
Participant response to the software was very positive, with
comments such as “gesture creation was easy” and “it’s re-
ally fun.” Some participants expressed some frustration with
the difficulty of the task, both in terms of creating gestures
with high goodness values and finding gestures that did not
conflict with the EGL. One such participant commented, “I
found the experiment pretty frustrating. . . [but] a relatively
small fraction was due to the software itself.” Participant re-
sponse to the QUIS questionnaire was positive, although not
overwhelmingly so, with the mean response for nearly every
question falling between 6 and 8 on a scale of 1–9.

User Performance
On average, participants required two hours to complete the
experimental task, regardless of the condition. Contrary to
our expectations, almost all participants proceeded through
the task in a very linear manner, creating all of the classes
and examples first, then testing them on the Testing or EGL

tabs, rather than creating one gesture at a time and testing
each one. Within the creation tab, the approach was also
quite linear, with the usual flow being as follows: create a
gesture class; record one or more examples for that class;
troubleshoot the class if it has a low goodness; record any
desired final examples; repeat by starting with a new class.

Overall, participants were successful in the gesture creation
task, with none failing to create distinct gestures for the eight
functions. The mean goodness value for the gestures over all
the participants was 89.8% (SD = 15.9%), with three achiev-
ing 100% goodness for all eight gestures and seven with
scores for all gestures above 97%. The poorest-performing
participant had an average goodness (across all classes) of
68%, with the worst gesture having a 44.9% goodness. There
was no significant correlation between the goodness of ges-
tures and the experimental condition.

Participants used MAGIC in an exploratory and iterative fash-
ion. Only one of the participants pre-planned gestures; the
rest immediately started to experiment with different move-
ments. As particular examples (or entire gesture classes)
failed to conform to expectations, participants disabled or
deleted the offending item and tried to create something that
would work better. Participants moved fluidly between check-
ing whether their gestures worked as expected on the testing
and EGL tabs and modifying the gestures on the creation tab.

Retrospection
During post-experiment interviews, it was the features en-
abling retrospection which were identified as most useful,
especially the video playback of example gestures. Often,
participants forgot how they had made a particular gesture
and used the video to remind them of the proper movements.

The recorded video also proved useful during initial gesture
creation. Several participants related occasions when one
example of a class—thought to be nearly identical to the
others—performed markedly better or worse in terms of the
goodness score. In such cases, the participant watched the
video for the affected example and two or three others of the
same class to discern the difference. Frequently it was found
that some unintentional movement had been included in the
gesture; in some cases, where the example in question per-

formed better than the others, the participant incorporated
the unintentional movement into the gesture, re-recording
the other examples to include the motion.

The video automatically saved with each testing sample that
was recorded was also found to be useful by many partici-
pants. While some performed gestures from only one class
in each testing sample, other participants made multiple ges-
tures in sequence. Frequently, some of the motions would
fail to be recognized—either at all, or as the correct gesture
class—and the participant would watch the video to deter-
mine whether the movement had been made poorly or if it
really should have been recognized. It was in such situations
that many participants made use of the ability to select a por-
tion of the test sample and add it as an example to a particular
class, allowing free-form movements made during testing to
be used post hoc as input to the system.

As can be seen in Figure 5, participants were recorded by
both a hat-mounted and a monitor-mounted camera during
gesture recording. Contrary to our expectations, the moni-
tor camera was more popular amongst participants than was
the hat camera. We anticipated that users would prefer a
first-person view to help them understand and remember the
movements they performed; however, many participants in-
dicated they felt more able to understand their gestures from
a forward perspective than from a top-down view.

The least-used visualization was the recorded accelerome-
ter graph (Figure 1A). Similar to the graph of a sound wave
in an audio program, participants were able to determine
the magnitude of the movement but little else. This graph
was of use to them, however: several participants mentioned
using the appearance of the graphs to determine whether a
newly recorded example sufficiently matched the previously
recorded examples. Some users were able to glean more in-
formation by looking at the differently-colored axes—one
participant mentioned being able to remember what a move-
ment was like based on the directions implied by the colors—
but most were unable to connect the shape of the three lines
to the arm and wrist movements that produced them. It is in-
teresting to note that, while this visualization was little-used,
it the visualization currently used in most systems involving
interaction with time-series data [6, 18].

Comprehension
In addition to aiding designers in understanding what they
have done, MAGIC offers visualization features designed to
help users understand what the system has done. Overall, we
consider the set of features a success. There was no feature
that participants did not report using, likely due to the com-
plexity of the task and the difficulty in understanding pattern
recognition topics by non-experts in the domain.

Some participants found the live accelerometer graph (Fig-
ure 1B) useful, especially for experimenting with the effects
of arm movements on the resulting shape of the trace. Con-
trary to our expectations, no participants reported looking
at the live graph during actual example recording, instead

remaining focused on the list of examples to see when the
newly recorded example appeared.

Participants considered essential the statistics about the per-
formance of individual gesture examples, including the “Rec-
ognized As” and “Goodness” columns (Figure 1C), the match
box showing similarity scores (1D), and the intra-gesture
graph (4(a)). Several participants found that gesture exam-
ples that they intuitively felt to be exactly what they wanted
were shown to be outliers by the goodness score or intra-
gesture graph. A minority of users found the match box to
be confusing, and few compared the numbers within the box
to each other, instead relying on the ordering of examples.

The intra- and inter-class graphs (Figure 4(b)–(d)) were not
as widely used. Many users found them confusing, or inter-
preted them in a way that was not consistent with the design.
One of the major criticisms brought up was that these graphs
were overwhelming, without the benefit of providing guid-
ance on how to fix the problems revealed therein.

Everyday Gesture Library
In this section, we assume p < .05 for significance. As ex-
pected, the participants with access to the EGL (condition
EGL) had fewer EGL occurrences—disregarding an outlier,
an average of 1.9 per gesture per hour (SD = 9.6)—than
those without (condition noEGL), who had an average of
52.1 occurrences per gesture per hour (SD = 117.8). Four
participants (one from condition noEGL, three from EGL)
achieved zero occurrences in the EGL. Four had an average
of one occurrence/gesture/hour, one had four occurrences/
gesture/hour, and the rest of the participants had more than
five occurrences/gesture/hour.

As mentioned earlier, eight volunteers collected EGL data,
and about five hours of the data was used during the ex-
periment. An independent-samples t-test on the number of
occurrences in the reserved portion of the EGL revealed a
significant difference between the two conditions. Discard-
ing an outlier subject (with number of occurrences > 2SD),
there was a significant 87% correlation between the num-
ber of occurrences in the experimental portion of the EGL
and the remaining 53 hours, suggesting that—at least for this
particular combination of sensor, recognition algorithm, and
task—that a small EGL can allow for fast and accurate pre-
liminary testing before moving on to a larger one.

The EGL proved a success in terms of avoiding gestures that
might appear in everyday life. In terms of this goal, par-
ticipants were positive about the utility of the EGL and the
usability of the interface. However, the difficulty of finding
gestures that did not occur in the EGL caused some users
frustration. In the words of one condition EGL participant,
“I just kinda feared the EGL.”

Surprisingly, few participants took advantage of the EGL
video to determine what movements made by the subject of
the EGL conflicted with the created gesture. One participant
commented, “I didn’t care why I was hitting the Everyday
Gesture Library; I can’t change what’s in there!”

Design Strategies
In designing gestures, participants had several competing
concerns. For condition noEGL, we observed the concerns
to be (in decreasing order of importance to participants):

1. gestures should be easy to remember;
2. gesture examples should have high goodness scores;
3. gesture classes should have high average goodnesses;
4. testing samples should be recognized correctly; and
5. gestures should be socially acceptable.

Condition EGL added the EGL, and with it the further con-
cern, most important of all to the participants, that

1. gesture examples should have few or no EGL occurrences;

with the other concerns shifted downward in priority.

These concerns influenced how participants interacted with
the system, and the strategies that were used to design ges-
tures. Reviewing the videos recorded for each gesture exam-
ple across all gesture classes and participants, we identified
several ways in which the participants attempted to achieve
these conflicting goals.

Some strategies were exercised solely for the sake of mem-
orability, usually involving iconic gestures—movements in-
tended to represent particular objects or visuals in the world.
One of the most common iconics used by participant was
making movements in the form of shapes—both simple and
more complex—such as circles, letters, or familiar icons such
as the play () or pause () symbols. More complex icon-
ics were also used; a common motion created by participants
for the Next and Previous Playlist commands was to mime
turning pages in a book.

Another strategy frequently used for memorability was pair-
ing—defining gestures for two related commands in such a
way that the motions are also related. An example is the
Next Track and Previous Track commands: a gesture for
Next Track might be to wave the hand to the left, while the
Previous Track gesture might be waving the hand in the op-
posite direction.

Frequently, motions used for memorability were modified or
composed with other motions in order to influence recogni-
tion by improving goodness scores or testing performance,
or to reduce the number of occurrences found in the EGL. A
very common strategy was to repeat a motion multiple times
to make it more distinguishable, for example by tracing a cir-
cle in the air twice. Another approach was to add an impact
somewhere in the movement, such as hitting one hand with
another, or by snapping the fingers. Motions were also mod-
ified by adding another movement component, for example
by adding abrupt stops or directional changes to the motion.
A special case of this approach is the common “shake to
Shuffle” motion that several participants implemented.

Some participants developed the idea of a trigger motion.
In the same manner that one might unlock a mobile phone
by pushing a particular sequence of buttons, the participants
designed either pre- or post-fix motions that were common

across all gestures, indicating that the motion was intended
to be a command to the system. For example, one participant
prefixed every command with an ear-cupping motion, while
another ended every motion with a confirmatory wrist-twist.

DISCUSSION
Earlier, we introduced a number of desiderata for a motion-
gesture design tool. We now revisit these items and discuss
how well MAGIC fulfills them.

allow non-expert use We consider MAGIC to be a success
on this point. As can be seen in Table 1, our participants
were not expert in pattern recognition. The three partic-
ipants who rated themselves as expert or near-expert in
pattern recognition did appear to better understand the in-
tra/extra graphs; this result was expected, as those graphs
present familiar information such as inter- and intra-class
variance.

allow expert use Some facilities exist in MAGIC for a user
more expert in pattern recognition to adjust system be-
havior: users can pick and choose between examples to
use, and can adjust the recognition threshold for any ges-
ture. We plan to add further capabilities: for example, we
could expose the parameters used in DTW, or give differ-
ent options for calculating features. It was clear during
the study, however, that the task was difficult enough that
even the users claiming pattern recognition expertise did
not change the parameters in any way, preferring to adjust
their gestures to the system.

support retrospection MAGIC’s support for retrospection
was heavily used, and widely regarded by participants as
essential. Some users requested more support for compar-
ative retrospection; they wanted to watch two more more
videos simultaneously, or view multiple recorded sensor
graphs overlaid.

support further testing Both the EGL and recorded video
support post-hoc testing. The EGL allows a designer to
test new gestures on a wide variety of subjects, in dozens
of different circumstances. The video that is recorded
alongside each gesture example is not only useful for ret-
rospection during design, but can also be used for training
others to use the gestures, or to test for others’ reactions
in terms of social acceptability.

Shortcomings
There are a number of shortcomings in MAGIC that we plan
to address. The difficulty experienced by some participants
in understanding the intra- and inter- graphs (Figure 4) points
to the need for more research into the best way to visualize
the information presented therein. Many participants gave
up entirely on those graphs, instead gleaning the desired in-
formation from the match box or from the goodness scores;
however, the information is not entirely redundant and we
believe there is value in communicating it.

While effective for our experiment, we wish to improve our
gesture recognition algorithms. By using new or different
features, or implementing more complex algorithms such as
hidden Markov models [18], MAGIC should be more effec-
tive in recognizing intentional gestures and ignoring unin-
tentional ones. We also plan to integrate other sensors, such

as gyroscopes for more accurate motion sensing, or micro-
phones for an entirely different modality of operation.

As many of our participants remarked, gesture creation is
a surprisingly challenging task, especially for non-experts.
Several expressed a desire for more guidelines in creating
gestures, hoping for guidance as to what sort of motions
would make gestures with high goodness and low rates of
EGL occurrences. As far as we are aware, no such guide-
lines exist. However, given the data we now possess, we
intend to investigate creating an automated gesture advisor,
not unlike Long’s quill system for pen gestures [12].

Lacking specific guidelines on motions, we can provide au-
tomated behavior in other areas. For example, very few
participants manually adjusted the threshold—preferring the
default automatic behavior—and those who did quickly re-
verted to the “Automatically Calculate Threshold” button.
The threshold calculation routine simply optimized for the
highest overall goodness score for a given class, but there is
no reason that it could not further take into account the EGL
and attempt to minimize the number of matches as well.

The ability for more complex annotation was a frequently
requested feature. Many participants made use of the gesture
name to include notes or mnemonics about the gesture, such
as “Pause (||)” or “next playlist (flip forward 90)”. Multiple
users requested further capabilities, such as making notes
for each gesture example or testing sample, or annotating
the testing tab accelerometer graph with the correct gesture
for comparison with the system’s results.

While we feel that our experiment accomplished our goals to
assess MAGIC’s usability, understand users’ design strate-
gies, and determine the efficacy of the EGL, our evaluation
was lacking in some areas due to its preliminary nature. A
primary area we will improve upon in our next study is the
amount of time given to the software: 3.5 hours was a long
time for participants to spend at once, but not as much time
as we wanted for them to achieve expert status with the sys-
tem. We plan to divide the study over multiple days to un-
derstand how users interact with the software longer term.

Another issue with our study is the lack of variability in ges-
turing situations. All of our participants were seated during
gesture creation and testing, while the EGL was recorded in
many different mobility situations. We plan to make a mo-
bile variant of the data collection system to allow designers
to move about as they record gestures.

CONCLUSION
We have presented MAGIC, an interactive system for explor-
ing and designing motion gestures. MAGIC encourages iter-
ation in design, provides facilities for retrospection of input,
and allows the designer to test the created gestures against a
corpus of everyday activity to ensure that the gestures will
not be unintentionally activated by a user.

References
1. D. Ashbrook, J. Clawson, K. Lyons, N. Patel, and

T. Starner. Quickdraw: The impact of mobility and on-

body placement on device access time. In Proc. CHI,
2008.

2. J. Chin, V. Diehl, and K. Norman. Development of an
instrument measuring user satisfaction of the human-
computer interface. In Proc. CHI, 1988.

3. Y. Cui, J. Chipchase, and F. Ichikawa. A cross culture
study on phone carrying and physical personalization.
In HCI International, 2007.

4. J. Fails and D. Olsen. A design tool for camera-based
interaction. In Proc. CHI, 2003.

5. A. W.-C. Fu, E. Keogh, L. Y. H. Lau, C. A. Ratanama-
hatana, and R. C.-W. Wong. Scaling and time warping
in time series querying. In The VLDB Journal, 2008.

6. B. Hartmann, L. Abdulla, M. Mittal, and S. Klem-
mer. Authoring sensor-based interactions by demonstra-
tion with direct manipulation and pattern recognition. In
Proc. CHI, 2007.

7. B. Hartmann, S. Klemmer, M. Bernstein, L. Abdulla,
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective
physical prototyping through integrated design, test, and
analysis. In Proc. UIST, Oct 2006.

8. J. Kim, J. He, K. Lyons, and T. Starner. The gesture
watch: A wireless contact-free gesture based wrist in-
terface. In Proc. ISWC, Jan 2007.

9. S. Klemmer, A. Sinha, J. Chen, J. Landay,
N. Aboobaker, and A. Wang. Suede: a wizard of
oz prototyping tool for speech user interfaces. In Proc.
UIST, 2000.

10. S. Kratz and R. Ballagas. Unravelling seams: Improving
mobile gesture recognition with visual feedback tech-
niques. In Proc. CHI, 2009.

11. J. Linjama, P. Korpipää, J. Kela, and T. Rantakokko. Ac-
tioncube: a tangible mobile gesture interaction tutorial.
In Proc. TEI, 2008.

12. C. A. Long. Quill: a Gesture Design Tool for Pen-based
User Interfaces. PhD thesis, University of California,
Berkeley, 2001.

13. T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The
gesture pendant: A self-illuminating, wearable, infrared
computer vision system for home automation control
and medical monitoring. In Proc. ISWC, Atlanta, GA,
2000.

14. T. Starner, C. M. Snoeck, B. Wong, and R. M. McGuire.
Use of mobile appointment scheduling devices. In Proc.
CHI, 2004.

15. J. Talbot, B. Lee, A. Kapoor, and D. Tan. Ensemblema-
trix: Interactive visualization to support machine learn-
ing with multiple classifiers. In Proc. CHI, 2009.

16. B. Tognazzini. The “starfire” video prototype project: a
case history. Proc. CHI, pages 99–105, 1994.

17. M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

18. T. Westeyn, H. Brashear, A. Atrash, and T. Starner.
Georgia tech gesture toolkit: supporting experiments in
gesture recognition. In Proc. ICMI, 2003.

19. I. H. Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kauf-
mann, San Francisco, 2nd edition, 2005.

20. J. Wobbrock, M. R. Morris, and A. D. Wilson. User-
defined gestures for surface computing. In Proc. CHI,
2009.

