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ABSTRACT

We developed a new hand model for increasing the robustness of
finger-based manipulations of virtual objects. Each phalanx of our
hand model consists of a number of deformable soft bodies, which
dynamically adapt to the shape of grasped objects based on the ap-
plied forces. Stronger forces directly result in larger contact areas,
which increase the friction between hand and object as would oc-
cur in reality. For a robust collision-based soft body simulation, we
extended the lattice-shape matching algorithm to work with adap-
tive stiffness values, which are dynamically derived from force and
velocity thresholds.

Our implementation demonstrates that this approach allows very
precise and robust grasping, manipulation and releasing of virtual
objects and performs in real-time for a variety of complex scenarios.
Additionally, laborious tuning of object and friction parameters is
not necessary for the wide range of objects that we typically grasp
with our hands.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Virtual reality; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—direct manipulation;

1 INTRODUCTION

The integration of physical behavior has significantly increased the
quality of games and virtual environments overall. Consequently,
the interaction with simulated objects also needs to occur on a phys-
ical basis. This turns out to be quite challenging, since the represen-
tation of a user in the virtual world needs to be physically modeled
to achieve a realistic interaction between user and virtual objects.
One particular difficulty is the modeling of the finely articulated
human hand to enable finger-based interaction. Pioneering work by
Borst et al. [1] relies on a hand model constructed from rigid bod-
ies. While this approach was the first to demonstrate the potential
of finger-based physical interaction, it could not correctly consider
friction between fingers and virtual objects due to the rigid body
approach and thus required careful tuning of parameters for a rea-
sonably stable interaction.

We developed a new hand model for increasing the robustness
of finger-based manipulations of virtual objects. Our approach
is based on a soft body model for each finger phalanx to enable
pressure-based deformation of the soft finger contact areas when
object surfaces are encountered. Thus, friction is naturally in-
creased by higher pressure and results in a firmer grip of an object.
Realistic friction handling of the deformable objects is realized by
an extended version of the Fast Lattice Shape Matching (FastLSM)
algorithm [14]. Our extensions allow us to consider dynamically
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changing stiffness parameters based on force and velocity compu-
tations and lead to a robust grasping behavior.

Our work is motivated by the vision to realize a fully functional
virtual car model, wherein every part of the car is physically mod-
eled and simulated. Such a car model allows many more aspects
to be virtually assessed as compared to today’s reduced mockups.
In addition, the collaborative discussion and evaluation of car func-
tionalities (see e.g. [15]) require a system that can simultaneously
handle multiple user inputs. As already noted in [6], physics pro-
vides this capability for free, since the superposition of applied
forces is a basic ingredient in any physics simulation. While these
systems are getting increasingly more robust and allow for the han-
dling of thousands of ideally convex objects, they are not at the
point where each knob and screw of a car can be physically simu-
lated. Nevertheless, if parts of a car can be handled (e.g. such as
the trunk or the engine) and manipulated by the hands and fingers
of multiple users, a first and important step has been achieved.

The main contribution of this work is a new hand model based
on a hybrid approach using soft bodies coupled with rigid bodies,
which simulate the back of the hand. Furthermore, our extended
version of the FastLSM algorithm considers adaptive stiffness val-
ues, which are a requirement for the robustness of our approach and
make the FastLSM algorithm applicable to a much larger class of
problems. The dynamic adaptation of the stiffness values also leads
to a much simplified configuration of object and friction parame-
ters for a wide variety of scenarios. Our implementation shows that
the system allows for very precise and robust finger-based grasp-
ing, manipulation and releasing of virtual objects. The CPU imple-
mentation performs in real-time for various complex scenarios and
could be directly applied to finger-based manipulations in many ap-
plication areas.

2 RELATED WORK

A direct and robust finger-based manipulation relies on three major
issues: stable grasping of objects, robust manipulation and con-
trolled releasing of objects. In general, there are two common ways
to achieve these goals: grasping through heuristics and collision-
based physical simulations.

The use of a heuristic classification of the hand pose for the de-
tection of valid grasps can be sufficient (e.g.[9]), since grasping
of objects is performed by just a few different hand poses [22].
Moehring et al. [10] showed that a heuristics-based approach could
be combined with a pseudo-physical simulation to generate plau-
sible object movement. They focus on the particular manipulation
of constrained objects by implementing a set of rules for each con-
straint type. The realism of the interaction is limited according to
the implemented rules and remains mostly plausible, but it lacks
general physical correctness. Heuristics-based approaches for di-
rect finger-based manipulation have in common that they enable
hand-object interactions while object-object interactions are hard
to plausibly simulate without physics and thus are mostly ignored.

There are many techniques for offline simulation of virtual
grasping for use with animated characters, which do not have the
strong real-time requirements as virtual grasping controlled by a
user does. Li et al. [7] used a database of predefined hand poses
to identify an ideal grasping pose. Their algorithm returns a set of



suitable hand poses and the animator has to choose the best match-
ing one. Ciocarlie et al. [2] developed an approach based on finite
elements to simulate the complex nature of soft finger-object con-
tacts. The high computational requirements of this approach make
its application for interactive virtual environments difficult.

Froehlich et al. [6] showed that the integration of a physical
simulation into interactive virtual environments allows complex as-
sembly tasks involving multiple hands and users to be supported.
This new user interface paradigm exploited the inherent properties
of physical simulations–in particular the superposition of applied
forces and the consideration of constraints. Their interaction was
based on connecting a set of springs from the user’s hand to the
physically simulated virtual object. Borst et al. [1] significantly ex-
tended this concept by creating a rigid body hand representation
for a direct interaction based on collision forces. A stable grasp-
ing could be established by assigning high friction values to the
rigid-body elements. However, this could result in a certain stick-
iness and could make the releasing of objects awkward. The hand
representation was coupled to the user’s input by a spring-damping
system. Both the choice of friction parameters and spring-damping
coefficients made the approach fragile and only careful manual pa-
rameter optimization led to stable interaction results.

Physics simulations rely on a basic friction model to simulate
object-object interaction for which it is mostly suitable, but it is
of limited use for precise and robust object manipulation. Duriez
et al. [5] addressed this problem by directly calculating friction at
skin level. They developed a skinning method based on a skeleton-
driven hand motion. Their quite realistic deformable hand model is
used for grasping rigid body objects. However, they only achieved
interactive frame rates for scenes with very low complexity (1500
triangles). Our goal is to use a real-time soft body approach to
provide an implicit friction model which relies on a dynamically
varying contact area and adaptive finger phalanx stiffness.

3 REAL WORLD GRASPING

Grasp stability in the real world largely depends on the applied con-
tact force in proportion to the object’s weight. When touching a
surface, the contact surface increases and thus a higher amount of
friction is applied between finger and object (see Figure 1). As
the contact force increases, simultaneously the skin’s surface gets
equally stiffer. We demonstrate how this behavior could also be
transmitted to virtual grasping.

Figure 1: Increasing contact area with increasing contact force. left:
loose touch. right: strong pressure between finger and a pane of
glass. The red ellipse indicates the contact area in either case.

It is obvious that a deformable finger model should be preferred
over a rigid body configuration in order to achieve this effect. How-
ever, just the introduction of soft bodies as finger phalanxes is not
sufficient. If overly floppy soft bodies are used, the user will not
be able to transfer the necessary force to attain stable grasping. A
more rigid model does not allow for adaption to the object’s surface.
Therefore, a model for the realistic and dynamic approximation of
the fingers’ stiffness behavior is most important to allow a solid

adaption of the contact area. As a result, we enable the user to re-
alistically grasp and manipulate objects while maintaining a high
contact force to avoid slipping.

4 LATTICE SHAPE MATCHING

Our approach is based on the FastLSM algorithm introduced by
Rivers et al. [14]. It is able to simulate both stiff and soft mod-
els at similar costs. In comparison to the original shape matching
algorithm of Mueller et al. [11], FastLSM mainly improves the per-
formance and controllability of the deformation of arbitrary geom-
etry. Ohta et al. [12] showed that the shape matching algorithm of
Mueller et al. is suitable to simulate the dynamic adaptation of stiff-
ness at run time. This kind of versatility is also possible with our
extended version of the FastLSM approach, which is at the same
time computationally more efficient.

FastLSM voxelizes any geometry into a uniform lattice of cubic
cells. This original lattice provides the rest configuration of the in-
dividual grid points. Their positions are denoted by x0

i . A weight mi
is assigned to each grid point i, which is referred to as a particle. If
external forces fext act on these particles they will deform the lattice
and the original surface geometry is deformed with the lattice. The
idea now is that the particles are always seeking their rest position.

For a more sophisticated deformation model, several particles
are grouped together in overlapping regions. Thus, particles influ-
ence each other’s motion. Now, instead of moving towards their rest
position, a target position gi for each particle is calculated (Equa-
tion 1). The calculation of gi considers the influence of other parti-
cles and defines the position each particle should move to. There-
fore, at each time step, each region r finds the best rigid body trans-
formation to match the initial configuration of its particles. This is
done by calculating a least-squares transformation Tr. This compu-
tationally expensive calculation can be accelerated to be executed
in constant time by using a fast summation operator F, the details
of which can be found in [14]. In Equation 1, Ri denotes the list of
particles that influence the particle i.

gi =
1
|Ri|

F
r∈Ri
{Tr}x0

i (1)

Rivers et al. [14] introduced a parameter w, which controls the
overlapping amount of the regions and thus the stiffness of the lat-
tice. Figure 2 illustrates how the stiffness depends on the size and
overlap of the regions. A fairly soft behavior could be achieved by
using sparse overlapping regions (small w), and therefore regions
that barely influence adjacent regions. Using a large w results in
stiff behavior since the particles are reaching their target positions
much faster. This behavior is pivotal to our approach in that it aids
us in the development and ability to account for the dynamically
adapting stiffnesses.

w = 1

fext fext

rest configurationtarget position point pulled out by fext

w = 2

Figure 2: Small regions result in little overlap and soft behavior. In-
creasing region size and overlap increases the stiffness.

The FastLSM approach uses an Euler integration to simulate the
movement of the particles towards their target positions. For this,
Equations 2 and 3 are used to calculate the actual velocities vi and
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Figure 3: System architecture for direct, collision-based interaction in
an immersive environment.

positions xi of the particles for each integration step h. Further
details about the integration scheme can be found in [11].

vi(t +h) = vi(t)+
gi(t)−xi(t)

h
+h

fext(t)
mi

(2)

xi(t +h) = xi(t)+h vi(t +h) (3)

Steinemann et al. [16] proposed hierarchical voxelization to han-
dle irregular meshes with a smaller amount of resulting particles.
Furthermore, they described how different stiffness values could be
applied for different regions of a body’s shape. Since we use quite
simple shapes for representing our hand model, we prefer a regular
voxelization. Using FastLSM approach we found it to be very re-
liable and robust with convincing simulation results as a basis for
our hand-model.

5 SYSTEM DESIGN

The following describes the main components of our approach. The
software architecture shows the integration of our approach in a
scenegraph system. Optical finger tracking ensures precise infor-
mation about the pose of each finger. Our virtual hand model con-
sists of a rigid skeleton and soft finger pads. The consideration
of collisions and the use of a physical simulation warrant com-
putation of physically realistic multi-handed and multi-user inter-
actions. The physics simulation uses simplified proxy objects to
guarantee interactive response times.

5.1 Software Architecture
We integrated our approach in a VR System which is based on the
scenegraph system OpenSG [13] and the physics library bullet [19].
The software architecture is shown in Figure 3. The application is
split into several components, while a main loop synchronizes the
states between each of them. Since we use independent representa-
tions for the visible geometry and the geometry for the physics cal-
culation, the results of the physics calculation need to be transferred
into the scenegraph for updating the objects’ poses. The genera-
tion of the physics proxies is explained in section 5.5. The internal
capabilities of OpenSG are used to perform cluster rendering in a
multi-projector environment.

For a general physics simulation, we use the bullet physics li-
brary, which, along with PhysX [21] and Havok [20], is a very
popular physics engine for enabling physical effects in mainstream
video games. Since its main purpose is geared toward video games,
it especially allows for fast calculation results for many colliding
rigid body objects and is well suited for real-time applications.

The user input is received by the tracking plugin, which runs in a
separate thread to achieve the highest update rates possible. Our ap-
proach for a collision-based interaction is implemented as a plugin
called “Physics interaction”. At startup, the two plugins “Tracking”

fixed point

connection

(with offset)

rigid body

tracking data

(tracking hand)

b)a) movement

Figure 4: (a) Tracking latency between user’s hand (left) tracked hand
(middle) and physics hand (right). b) Fixed point coupling between
tracked hand and physics hand.

and “Physics interaction” perform a handshake procedure through
an event handling mechanism. This makes it possible to use the
current input data directly to calculate the pose of the physics hand,
without going through the event system. The main communication
between the components is event driven, such as state changes or
collision events.

5.2 Tracking
We rely on an optical finger tracking system [18] to transfer the
user’s hand into the virtual environment. We use seven evenly
spread cameras for a 3m3 volume. This system is capable of pre-
cisely determining the user’s finger poses. The correct positions of
the fingers’ tips is especially important to allow precise manipula-
tion. In Figure 4a, a finger tracking system is shown in conjunc-
tion with two virtual representations: tracking hand (middle) and
physics hand (right). The tracking hand represents the poses we re-
ceive from our tracking system. In the image, the user moves his
hand quickly in a horizontal direction from right to left to show the
effects of the system’s latencies. The physics hand model is paired
with the tracking device’s position values by fixed point connec-
tions (some kind of constraint in the physics simulation) at each
phalanx as described below, but the physics simulation needs one
frame to process that input. Thus, you see the position difference
occurring between the different hand representations. The latency
of the tracking system alone is around 20ms before the values are
accessible in our system. These values are then used to calculate
the physics hand pose, which is in terms the virtual hand repre-
sentation used for actual interaction. The pose of the physics hand
representation needs to be calculated by the physics engine since
adjusting object poses directly within the physical simulation is not
recommended. This would invalidate the internal solver state, what
would lead to an unstable simulation.

The physics hand is almost at the same distance from the tracking
hand as the tracking hand is to the user’s hand. Therefore, we can
conclude that in our setup, we roughly double the latency through
our physics calculations. The total latency including the physics
simulation is at least 60ms before the hand representation is ren-
dered on screen–or two frames when running at 30Hz frame rate.

A robust coupling between user’s hand (tracking hand respec-
tively) and physics hand representation is very important. It directly
controls the efficiency of the force transferred towards the virtual
objects. To achieve the coupling, Borst et al. [1] used a spring-
damper system. We found this approach to be quite limited, since
laborious tuning of damping values was needed to achieve stable
grasping results. The achieved coupling stiffness was also not suf-
ficient to allow a constant force transfer to the grasped objects. The
offset between real hand and physics hand becomes too large when
fast movements were performed by the user. To overcome this lim-
itation, we substituted this model by using fixed point constraints
for coupling. In Figure 4b, the fixed point connection for a finger
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Figure 5: Distance between tracking data and physics hand over time
while user performed an interaction. Values are measured from the
index fingertip.

tip is visualized. The distance between blue and gray spheres is
constrained to zero, enabling direct coupling. Being able to con-
figure rigid bodies at three points on the tracking hand, the virtual
hand model will then be able to follow the user’s input quite directly
and the correct orientation is implicitly conserved. The fixed point
connections are applied as constraints to the physics library solver.

A typical interaction sequence is plotted in Figure 5. It shows
the distance between tracking data and physics hand at its index
fingertip during a common interaction task, due to latencies. Even
though the movement speed is 1m/s at its maximum the offset of
about 60mm is never exceeded. This is about one width of the palm
of a hand, as shown in Figure 4a. These higher speeds are achieved
during unconstrained movement of the hand. During the interaction
with an object, the movement is slower, thus resulting in a shorter
offset. Therefore we can show that a fixed connection allows a
tight coupling to achieve optimal force transfer at high interaction
speeds.

It must be noted that a fixed point connection yields the possibil-
ity to apply infinite input forces to the simulation system by moving
the hand arbitrarily deep into virtual objects. Interestingly, we did
not find this to be a problem in the proposed applications we have
tested thus far. Deep penetration of the user hand result in a pop-
through effect, which occurs due to a limited collision response.
Nevertheless it is a problem that should be solved by a more so-
phisticated collision detection and response.

Duriez et al. [5] used a skeleton to apply their inputs to the virtual
hand. This approach utilizes an accurate calibrated glove for each
user’s hand sizes. Since calibration is required for the best interac-
tion results, we found that in real life the calibration step is often
neglected or not desired at all. We therefore decided to transfer the
user input to independent finger phalanxes; each finger consisting
of three phalanxes. As we are separating the phalanxes, we do not
apply any constraints between the finger parts. Through this, we
allow different users with similar hand sizes to use the same cali-
bration. Our hand model is robust enough to handle variations in
finger lengths. We found that using two or three different calibra-
tion setups is sufficient to support most users, allowing them precise
interaction.

Figures (6, 8, 10) clearly show the separated finger parts. The
finger tip positions, as well as the joint positions between each part,
are maintained through tracking input. The characteristics of our
physics hand model will be discussed in the following section.

5.3 Hand Model
Based on the assumptions we made for coupling input data, we
developed a hand model based on soft and rigid bodies to allow for
robust, stable and versatile interaction. Considering that the fingers
are utilized for precise interaction, we decided to simply use a rigid
body only palm as in [1].

Figure 6: Developed hand model in lateral view while touching a vir-
tual sphere. The deformation of finger-pads upon collision is clearly
visible (right).

The phalanxes follow a different concept, consisting of two
parts: a rigid body and a soft body. Figure 6 shows the virtual
hand from a lateral perspective. Two fingers of the left hand are
in touch with a virtual sphere. The twofold of rigid and soft parts
stands out. The rigid parts acting as the skeleton are displayed in
grayscale. They are coupled to the tracking input as previously ex-
plained. Each rigid finger part is accompanied by a deformable
body, visualized in a green shade. The coupling between the two
parts is achieved by fixing the penetrating particles’ target positions
to the movement of the rigid body. Each finger is made of three
parts: the outer, middle and inner. The outermost part, represent-
ing the fingertip, is most important for precise interaction. The two
other parts come in hand when a stable grasp is needed. They help
to increase the contact area to a maximum and therefore apply a
large amount of friction.

We use the soft finger-pads to simulate the increasing contact
area when colliding, as simulated in Figure 6. Upon collision with
an object, the bodies deform to match the shape of the obstacle
and thus enable a realistic collision result by increasing the colli-
sion area. Another positive side effect is the smoothing of the force
transfer towards virtual objects. The proposed fixed point coupling
is characterized by a direct force transfer. The soft bodies have the
effect of running this force transfer controlled. They act like shock
absorbers which facilitates the interaction.

Each soft body consists of about 220 particles, depending on the
phalanx size. For one hand with five fingers, we use 15 soft bodies
(3275 particles total) and 16 rigid bodies. The extra rigid body
represents the hand’s palm, as previously noted. The palm serves as
a collision partner on enclosing grasp gestures where a robust grasp
is required, but in general no exact manipulation is performed.

We have tested our approach with up to four users’ hands in
complex scenes without detecting bottlenecks in stability or perfor-
mance. The soft bodies’ independence helps to maintain calculation
speed, considering no further constraints have to be calculated ex-
cept for the fixed point connection between tracking and the physics
hand’s rigid skeleton.

5.4 Collision Handling

For collision handling of the deformable finger-pads, we are using
a penalty-based approach as described by Teschner et al. [17]. This
collision handling approach was also used by Mueller et al. [11] in
their initial shape matching algorithm and provides good results if
collision forces are moderate. Penetration occurs if forces rise. The
forces acting on scene objects are calculated and directly applied to
the physics library. Although there is potential to further enhance
the stability of grasping by better collision handling, we did not
refine the provided model.

Self collision for the finger-pads is disabled as well as the colli-
sion between all phalanxes. The rigid bodies and soft bodies could
therefore move freely, which helps in maintaining the hand pose
directed by tracking input and reduces calculation costs. The colli-



Figure 7: left: model of a car consisting of approx. 10 million poly-
gons. right: convex decomposition of cars rear trunk, resulting in 132
convex objects.

sion between different hands is also disabled, including hands from
different users. The collision detection is active both on the rigid as
on the soft parts of the hand in conjunction with scene objects. Col-
lision response is therefore only calculated between hand parts and
scene objects, as well as between scene objects to allow for realistic
object-object interactions.

5.5 Scene Preparation

Our goal is to support interaction with complex scenes. As we dis-
covered, for most interaction tasks it is sufficient to approximate
the visible geometry to receive an underlying, optimized physics
scene. A physics calculation is then performed on a coarser model.
For this, the visible geometry and simulation geometry are handled
separately.

We are using a convex decomposition technique, developed by
Lien [8], to extract our physics scene from visible geometry. Be-
cause of convex decomposition, the physics models can be effi-
ciently handled by the physics library. By using a convex decom-
position, we furthermore improve interaction speed, since collision
detection does not need to be performed on a triangular basis. Ob-
jects are converted to a cluster of convex shapes, which are handled
by the physics library.

A rough decomposition used for a car’s boot trunk interaction is
displayed in Figure 7. In this example, the car is roughly approxi-
mated by 132 convex objects, each consisting of 128 vertices. The
vertex limit is proposed by the bullet library to efficiently calculate
compound shapes.

In general, our scene models currently consist of up to 20 mil-
lion triangles. By deriving a separate physics representation, we are
able to perform all necessary calculations at interactive rates. This
is applicable for interaction tasks where a plausible, but not pre-
cise, object reaction is needed. The accuracy of the approximation
has to be considered for each application. Considering that in most
grasping situations the user could not distinguish between a coarser
and a precise approximation, the simulation result for the task itself
depends directly on approximation quality. For assembly tasks an
exact approximation is needed. Lien’s method allows for approx-
imation of different quality by taking volume error and concavity
thresholds into account.

6 DYNAMIC ADAPTING OF STIFFNESS

Different stiffness properties are needed to transfer the forces from
grasping as directly as possible to the affected object while still
maintaining a stable grasp. The latter could be done by increas-
ing the contact area as stated in section 3. To extend the FastLSM
through dynamic adapting stiffness, we need to precalculate sev-
eral stiffness configurations which we can later select based on the
actual requirements.

6.1 Precalculated Stiffness Regions
We precompute several stiffness configurations by using different
region widths w. For each value of w, we store a neighborhood
list Rs of the corresponding particles, as they represent different
stiffness configurations of the pads, and therefore a smaller or larger
neighborhood which influences a certain particle.

With just five different levels of effective stiffness we have
achieved fast and stable grasping results. Consequently, we choose
the number of region lists to be L = 5, and thus w ∈ [1,5]. Our
approach is not limited to five different region widths. Consider-
ing the small amount of particles for each finger-pad and the stable
interaction results, a larger variation in region widths was not nec-
essary.

While it is important to be able to apply various stiffness setups,
the selection of the most appropriate one which ideally fits each
situation proves just as crucial. A dynamic adapting of stiffness is
achieved by choosing a corresponding neighborhood list Rs, which
is selected by the calculated index value ws. Therefore, we intro-
duce two thresholds which are used to influence the finger-pad’s
stiffness: forces and velocities. The thresholds are calculated inde-
pendently for each body, depending on its collision state.

6.2 Velocity Threshold
The velocity threshold is used whenever the body is not in contact
with other scene objects. This occurs when the user freely moves
his hands around. Even in this case it is important to dynamically
adapt the soft bodies’ stiffness. It is important to hold a velocity-
adapted configuration, especially for the change from free move-
ment towards the case of collision. While slowly approaching an
object, we want to get a different collision behavior than for fast
movements. During the slow approaches, a soft configuration pre-
vents uncontrolled force transfer, while a more rigid configuration
provides a very direct force transfer in case of collision.

To calculate the velocity threshold, the rigid body parts of the
hand model are used. The velocity is calculated for the center of
mass from the rigid body that is directly connected to the soft body.
The desired stiffness configuration is selected by taking a prede-
fined maximum velocity into account.

We use a linear dependency to adapt the stiffness, clipping at a
predefined maximum velocity value that is adapted to the move-
ments’ speeds that we measured in virtual environments–typically
1m/s. The maximum velocity is divided by L to match the number
of stiffness regions available. If the user moves his hands faster, a
wider and therefore stiffer region configuration is selected. The re-
sulting stiffness index ws is then used for the next simulation step.
It represents the index for selecting a region list. In our setup we
use five precalculated region width configurations, therefore ws is
clipped to the interval [1,5].

Dynamic adaption
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Figure 8: Hand is moved quickly in vertical direction. If dynamic
adaption is disabled, the soft bodies deform through inertia.

By selecting an appropriate region width, we allow the finger-
pads to follow the movement of the user. As shown in Figure 8,
without the velocity threshold, the finger-pad experiences high de-
formations, considering that the fixed connections to the rigid body



indirectly result in a huge force which is applied to the body. With
velocity threshold enabled, a larger region width is selected and
thus the bodies’ particles reach their target positions gi (Equation 1)
more rapidly.

6.3 Force Threshold
If a user closes his grasp, he wants a more stable object interaction.
Therefore, a better force transfer towards the virtual object has to
be guaranteed. This can be done by monitoring the acting forces. In
case of contact, the desired stiffness is recalculated using force val-
ues at each particle position. For this, we use the distance between
the current and target positions of each particle within a soft body.
Forces acting on the finger-pads are calculated using their particles’
velocities. Their velocity vi in respect to the elapsed time is used to
obtain the particles’ unconstrained forces (Equation 4).

fi = miai with ai =
∆vi

∆ t
(4)

With Listing 1, the necessary calculation steps are given to se-
lect an appropriate stiffness index for the next simulation step. The
calculation is performed separately for each finger-pad.

Listing 1 Force threshold: calculate stiffness index ws

1 for all finger-pad s do
2 favg = 1

n ∑ |fi| // average force, (Equation 4)

3 fnorm = clip( favg,0, fmax) // normalize force by clipping

4 ws = round((L−1) fnorm
fmax

)+1 // stiffness index for part s
5 end for

At first the average force favg acting on all particles is calcu-
lated, where n is the number of particles in the finger-pad. The
force is then normalized and divided by the number of available
region widths L. A force fmax is defined beforehand, which repre-
sents the maximum force a user should apply to a body before the
stiffest configuration is selected. Using the normalized force value,
an appropriate index ws is selected. In this case we use linear map-
ping. A non-linear function could be used to simulate the non-linear
elasticity of the human skin. Since our results were satisfactory, we
have not investigated further.

6.4 Algorithm Details
In each simulation step, the tracking data is used to update the con-
straints for the fixed-point coupling between the moving tracking
hand and the rigid bodies of all hand parts. The tracking hand be-
comes a target configuration, while the algorithm in Listing 2 is
performed to update the virtual hand model and scene objects.

Firstly, a single simulation step of the physics engine is per-
formed. The fixed point constraints between tracking data and rigid
parts of the hand representation are calculated by the solver of the
bullet physics engine. It calculates the poses for all scene objects
and provides collision forces that are used for our implementation
of the FastLSM. As the rigid bodies’ target positions are calculated,
the target position for the fixed particles at the finger-pads is ap-
plied. The forces that were acting on the scene objects were applied
to the configuration of the virtual hands. For each finger-pad, its de-
formation state is calculated. Therefore, in line 5 of Listing 2, the
current stiffness index ws is used to select a region list Rs, which
is used as the region list Ri in Equation 1 to calculate the target
positions gi of the finger-pads’ particles.

For each pad, penalty forces are calculated using the approach
of Teschner et al. [17]. All friction forces between finger-pads and
scene objects are applied as penalty forces to the scene objects.

After calculating the position of all scene objects, the velocity
and acting force on the rigid body of each phalanx is calculated by

Listing 2 Simulation step
1 perform bullet stepSimulation()
2 apply forces to extended FastLSM
3 for all finger-pads s do
4 for all particles i do
5 select Rs as Ri using ws
6 calculate gi (Equation 1)
7 calculate vi(t +h) (Equation 2)
8 calculate xi(t +h) (Equation 3)
9 end for

10 perform collision detection [17]
11 apply collision forces to bullet
12 if s is in contact then
13 calculate ws using Listing 1 lines (2-4)
14 else
15 calculate ws using velocities
16 end if
17 end for

the rules explained in section 6.2 and section 6.3. When performing
this for each finger-pad, an appropriate stiffness value ws for the
next simulation step is selected.

At the end of each simulation step, the pose of the visible rep-
resentation is synchronized with the calculated pose of the physi-
cal representation. The physics geometry is generally not visual-
ized, but may be helpful for debugging purposes. To reduce the
risk of a bottleneck, we use mutual exclusion to synchronize the
asynchronous threads running the rendering and physics calcula-
tions. Because the finger-pads consist of a small number of trian-
gles, we update each vertex position by trilinear interpolation of the
surrounding particles’ positions on the CPU. Rivers et al. [14] also
presented a way to accelerate soft body rendering through a GPU
shader.

7 SIMULATION RESULTS

In Figure 9, simulation values of a short interaction sequence are
given. The values represent the movement of an index fingertip.
They were collected at key frames in a 0.5s interval. The figure
shows the ratio between velocities, acting forces, the selected re-
gion width representing the pad’s stiffness and calculation time for
the physics simulation. The benchmark was performed with a sim-
ple scene, consisting of few objects (see Figure 10 and 11) on a test
system running Intel Core i7-940. Two user hands were enabled.

The figure is split into four plots. Whenever the force is at zero,
the user moves his hand freely around. In these cases the stiffness
index is solely selected based on velocities. The change in velocity
directly adapts the region’s width of the finger-pad.

Whenever the force is greater than zero, the user directly in-
teracts with a scene object. When the force gets smaller by the
eighth second, the user loosens his grasp. This results in selecting
a smaller stiffness index.

In this representative benchmark, the stiffness is often at higher
values, indicating an experienced user who does not hesitate to
move or to grasp objects in a resolute way. This is also reflected
by the relatively fast movement speeds throughout the interaction
sequence. The high stiffness ensures a quite direct force transfer,
enabling stable grasps.

The calculation time is measured for the whole simulation step,
not just the simulation time for the fingertip. Nonetheless, it never
exceeds 10ms throughout the 25 seconds of interaction. You may
notice that the simulation time is quite constant, regardless of
whether or not the user interacts. This ensures a smooth interac-
tion experience.
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Figure 9: Interaction over time, showing the ratio between calculation
times, velocities and selected region width.

In section 5.5 we mentioned that our scene mainly consists of
compound convex objects. Through this, we are able to simulate
a full-featured car interior with up to 30 frames/s, but with a loss
in accuracy as the trade-off. Physics simulation with two hands is
done in about 1 to 10ms depending on collision state and stiffness
value. Propagating scene changes to the display system and render-
ing itself takes another 33ms. With this result, we always maintain
interactive frame rates, all the while the latency does not seem to be
too disturbing for the users while performing their actual task.

We did not perform an extensive user study based on our hand-
model as generally only selected experts are using the virtual grasp-
ing. The following findings therefore reflect discussions and com-
ments made by several users who interacted with the system with-
out prior instructions. The users did not get any additional visual
or other feedback upon collision besides that the virtual objects just
start moving when they were touched.

Some users, who never used collision-based grasping before,
were able to interact quite well. After a short time of usage, most
users were quite eager in performing very precise interactions by
stacking or combining virtual objects in the scene. As observed in
other grasping approaches [1], we also had a wide variation among
users at their first grasping attempts. The users mentioned that their
learning curve was rampant, as they realized to grasp as in the real
world rather than closing their hands to form a fist. The users liked
that the objects behave realistically, which helps to manipulate ob-
jects quite fluently. The system latencies did not seem to influence
the interaction results that much, as no one mentioned that the sys-
tem reacts too slowly.

Some users noticed that the interaction behavior was different,
depending on how fast they reached towards the objects. They
stated that they saw quite well how the virtual object reacts based
on their input. For most users, the movement of the object served
as a sufficient clue indicating that their grasp was successful. Dis-
abling the soft pads and thus relying on the rigid parts of our virtual
hand, it became evident that we needed much higher friction values
to establish stable grasps. As a result, it was harder to unhand ob-
jects and not possible to glide over objects without applying huge
friction forces.

There were no instances in which the users claimed that the vi-
sual world does not parallel the interaction result. They were some-

Figure 10: Unconstrained interaction with a horse model. The finger-
pads adapt to the geometries’ shape, enabling stable and robust in-
teraction.

Figure 11: Two handed interaction with non-constrained objects. Col-
lision response between torus and stick is enabled through physics
simulation.

Figure 12: Interaction within an immersive display system. A user
interacts with a constrained steering wheel using both hands, thus
reproducing a real-world interaction.

what surprised to hear about the optimization achieved by using
convex decomposition and thus not acting on the visible geometry
itself.

Overall, the users’ findings indicate that the virtual scene pro-
vides very solid feedback regarding object manipulation, enabling
very precise manipulation tasks. The sensitive manipulation with
the fingertips especially benefits from the finger-pads as shown in
Figure 10. One thing the users complained about was the unnatu-
ral appearance of the virtual hand, since it consisted of independent
disconnected finger phalanxes.

Most users that were utilizing our virtual grasping tended to use
just one hand for interaction. When given more complex tasks and
asked to use two hands, the users did not find it any different from
using just one hand. They were also able to perform tasks that in-
cluded object-object interaction as well. In Figure 11, a two handed
interaction is shown. The task is to put a torus on a stick. This kind
of task could be easily fulfilled using our approach–even for novice
users.

Interaction with constrained objects is just as possible as with
freely movable objects. In a more complex scene, the users were
able to use typical constructional elements that were constrained.
Figure 12 shows a user interacting with a virtual car. As a matter
of course, he uses both hands to control the steering wheel. The



wheel is constrained using a revolute joint, thus allowing for rota-
tion around one axis. The interaction is very similar to how it would
be in real life, in the sense of being able to rotate the wheel simply
based on friction by putting the hand on top of the steering wheel.

8 CONCLUSIONS AND FUTURE WORK

Our new hand model is based on soft bodies coupled to a rigid body
hand skeleton. It allows for very precise and robust finger-based
grasping, manipulation and releasing of virtual objects. The dy-
namic adaptation of the stiffness values of the soft bodies handled
by the extended FastLSM algorithm is the basis for the robustness
of our approach. An important advantage is the implicit friction
model which results from the pressure-based increasing and de-
creasing of the contact area of the simulated finger phalanxes. In
contrast to pure rigid body-based interactions, where only a single
friction value per object can be selected, the dynamic stiffness adap-
tation results in a stable behavior for a wide variety of parameters.
Our implementation indicates that the system runs in real-time for
complex scenarios.

There are various ways to further improve the realism and the
scope of our physically-based grasping approach.

• Currently, only the finger phalanxes are represented by a
soft body. Enclosing grasps involve the palm and thus the
palm should also be represented by a single large or multiple
smaller soft bodies. Care must be taken in choosing the shape
of the soft body for the palm, since it plays an important role
in achieving stable behavior.

• In extreme cases, the absolute stiffness of the finger-pads can
be insufficient. Powerful grasps might result in a collapsing
finger-pad and thus the grasping occurs through the rigid body
hand skeleton. Since the finger-pads are exchangeable on the
fly, it might be possible to choose a different deformation al-
gorithm depending on the situation. Approaches that special-
ize in simulating very stiff objects [4, 3] could have an advan-
tage over the FastLSM algorithm for larger forces.

• A skinned hand representation would significantly improve
the visual appearance of our hand model. One solution might
be to use locally different stiffness regions per soft body as de-
scribed in [16]. However, further investigations on the achiev-
able absolute stiffness as well as how to couple such a skinned
hand in an optimal way to the tracked real hand remain nec-
essary.

The combination of a rigid body skeleton and a set of soft bodies
with different and adaptive stiffness values could also be a promis-
ing approach for a physically-based representation of an entire hu-
man. Our soft hand model is a first step in this direction.
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