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ABSTRACT

Issues such as hand and tracker jitter negatively affect user perfor-
mance with the ray-casting selection technique in 3D environments.
This makes it difficult for users to perform tasks that require them
to select objects that have a small visible area, since small targets
require high levels of precision. We introduce an approach to ad-
dress this issue that uses progressive refinement of the set of se-
lectable objects to reduce the required precision of the task. We
present a design space of progressive refinement techniques and an
exemplar technique called Sphere-casting refined by QUAD-menu
(SQUAD). We explore the tradeoffs between progressive refine-
ment and immediate selection techniques in an evaluation compar-
ing SQUAD to ray-casting. Both an analytical evaluation based
on a distal pointing model and an empirical evaluation demonstrate
that progressive refinement selection can be better than immediate
selection. SQUAD was much more accurate than ray-casting, and
SQUAD was faster than ray-casting with small targets and less clut-
tered environments.

Keywords: 3D interaction, 3D selection, progressive refinement,
distal pointing.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques.

1 INTRODUCTION

Selection, which involves the specification of one or more objects
by the user, is one of the fundamental tasks in 3D environments [1].
Although various metaphors for selection of single objects have
been developed, such as virtual-hand [19] and image-plane tech-
niques [15], ray-casting [13] is perhaps the most popular selec-
tion style in VEs due to its simplicity and generality. Ray-casting
requires only two degrees of freedom and works at any distance,
while virtual hand techniques require at least three degrees of free-
dom and are often limited to a certain distance from the user. How-
ever, even though ray-casting provides better performance than vir-
tual hand techniques in many applications, it has limitations. When
the visual size of the target is small, due to the object size, oc-
clusion, or distance from the user, ray-casting is slow and error-
prone [17], because it does not provide high-precision pointing at a
distance.

The first IEEE 3DUI Grand Prize [2] provides an example of
a selection task for which ray-casting is unsuitable. The contest
environment was a virtual supermarket where, among other tasks,
selection of occluded objects in a highly cluttered environment was
required. To simply use ray-casting for this task would require the
user to select partially occluded targets very precisely from a dis-
tance, to remove occluding objects to increase the visual size of
the targets, or to spend time traveling close to the targets to make
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them easier to select. Any of these options would have a high error
probability and/or take a long time to achieve.

A number of techniques have been proposed to deal with the pre-
cision limitations of ray-casting. Examples include snapping [7],
cone-casting [10], 3D bubble cursor [20] and PRISM-style point-
ing [4]. However, some of these techniques do not perform well in
highly cluttered environments. They require users to interact very
carefully to accomplish a single precise selection, and may actually
provide worse performance than standard ray-casting in some sit-
uations. There are several tasks that could benefit from techniques
that allow accurate selection in cluttered environments without re-
quiring users to be precise. Examples include tasks that involve in-
teraction with very large data sets, such as astrophysical or atomic
datasets, in addition to the supermarket task already mentioned.

To address this challenge, we propose a selection method that
uses progressive refinement of the set of selectable objects. The
main idea is to gradually reduce the set of selectable objects until
the target is the only one left without requiring the user to be pre-
cise at any point during the refinement. This is in contrast to tradi-
tional techniques that use immediate selection, requiring precision.
We can see an inherent tradeoff between these two categories of
techniques. Progressive refinement requires a process of selection,
often using multiple steps, although each step can be very fast and
accurate. Immediate techniques, on the other hand, involve a single
high-precision spatial selection at the expense of being slow and
having a higher error probability. The goal of the work presented in
this paper is to explore this tradeoff to determine whether progres-
sive refinement techniques are useful. In other words, we want to
know when it makes sense to sacrifice the simplicity of immediate
selection in order to improve speed and accuracy.

As an example of selection by progressive refinement, we de-
signed the Sphere-casting refined by QUAD-menu (SQUAD) se-
lection technique, which uses two distinct refinement phases. In the
first phase, the user specifies a volume containing the target object.
The user then refines the initial selection progressively by selecting
the subset of objects containing the target from a four-item menu
displaying all the remaining objects, until the target is finally se-
lected. SQUAD makes it possible to accomplish precise selection
without requiring the user to use precise actions at any moment dur-
ing the selection task.

We hypothesize that SQUAD and other progressive refinement
selection techniques have nearly perfect accuracy. This is because
these techniques can successfully select any object, no matter how
cluttered the scene, or how small the object, by allowing users
to make refinements in an imprecise, careless manner. We also
believe that selection techniques based on progressive refinement
can be faster than immediate techniques in cases where targets are
small, as long as the number of required refinements is not too high.
To test these hypotheses, we compared SQUAD to standard ray-
casting analytically (using a predictive model of distal pointing [9]
and a novel progressive refinement selection model), and empiri-
cally (through a controlled user study).

2 RELATED WORK

Bowman et al. [1] divided selection techniques into four main cat-
egories: selection by pointing (e.g., ray-casting [13]), selection



by touching (e.g., virtual-hand [14]), selection by occlusion (e.g.,
image-plane techniques [15]) and indirect selection (e.g., selection
by attributes [1]). Most of these techniques can be classified as im-
mediate selection, since they only require a single high-precision
selection without refinement.

Ray-casting [13] is a widely used pointing-based technique, in
which the user points with a virtual ray extending from the hand
or input device to specify an object in the scene. Although it is
very simple, this technique in its pure form suffers from a number
of issues, mostly because of natural hand tremor and tracker jitter,
which make it difficult for the user to control the origin and orien-
tation of the ray. This is a bigger issue with ray-casting than with
other techniques because the small hand movements are amplified
at the end of long rays, causing ray-casting to be less precise as tar-
get objects get farther from the user. These issues make ray-casting
difficult to use when the objects have a small visual size [17], as
selecting such objects by pointing requires high levels of precision.

In order to address these issues, a number of improvements have
been proposed. Even though such techniques improve selection
performance in general, they can have a negative effect in very clut-
tered environments. Cone-casting [10], for example, extends ray-
casting by adding a cone-shaped volume to the ray to make it easier
to select objects that are distant. In cluttered environments, how-
ever, many objects will fall inside the cone, so that the user still has
to point precisely to select the desired object. The snapping tech-
nique presented by Haan et al. [7] uses a selection volume to cal-
culate and accumulate scores over time for each object. This way,
it can estimate which object the user wants. The bubble-cursor [5]
is a 2D technique that dynamically resizes a circular cursor so that
it only contains one object. A 3D extension of the bubble-cursor,
which uses a sphere instead of a circle, was presented by Vanacken
et al. [20]. Both of these techniques may actually perform worse in
cluttered environments, since even small movements will cause the
ray or the cursor to constantly snap or resize to select new targets.

Other techniques improve ray-casting accuracy by changing the
control-display ratio, either automatically (e.g., PRISM [4], when
moving slowly) or manually (e.g., ARM [9], by pressing a but-
ton), or by providing the ability to zoom (e.g., zoom-and-pick [3]).
While these techniques can achieve very high levels of precision,
all of them have limitations. PRISM and ARM cause a significant
mismatch of the physical pointing direction to the perceived point-
ing position, and the mapping is nonlinear. Zoom-based techniques
suffer from potential loss of detail. Finally, these techniques re-
quire the user to interact very carefully and with full attention. Our
proposed approach of selection by progressive refinement aims to
allow “lazy” interaction with high accuracy.

There are existing progressive refinement techniques in the lit-
erature. For example, the shadow cone-casting technique [18] uses
continuous movement with cone-casting to disambiguate selection.
In [16], Steed presented a general model for selection using 3D
gestures and proposed a range of techniques that can use the same
concepts. The depth-ray technique [6], which adds depth control to
the classic ray-casting technique to select occluded objects, requires
two actions to specify the target. PORT [11] allows the selection of
multiple objects and uses a series of movement and resizing actions
to define the set of targets.

The flower ray technique [6], in which occluding targets are con-
currently selected by ray-casting and disambiguated in a second
phase by a marking menu is perhaps the closest existing technique
to our approach. Although this technique is suited for highly clut-
tered environments, it requires high precision for the ray selection
and does not scale well, since the marking menu object specifica-
tion is done in a single phase.

To the best of our knowledge, there has been no prior general-
ization of the progressive refinement concept, and no comparison
of progressive refinement techniques to immediate techniques.

3 SELECTION BY PROGRESSIVE REFINEMENT

As we stated above, the concept of selection by progressive re-
finement is to gradually reduce the set of selectable objects until
only the target remains. We identify three dimensions to the design
space, which are shown in Figure 1.

Figure 1: Design space of selection by progressive refinement.

First, progressive refinement can be done either through several
discrete steps, as in SQUAD, or with a continuous process, as in
shadow cone-casting [18].

The method of refinement defines another dimension of the de-
sign space. This refers to the criteria that are used to reduce the set
of selectable objects. Refinement can be specified spatially within
the environment context, for example through the use of a volume
or area in the image plane, limiting the region of the environment
where the target can be. Refinement can also be by the specifica-
tion of attributes of the desired object, such as color, size or shape.
Refinement can also be done through “out-of-context” subset spec-
ification, which involves picking a subset of objects from a list or
menu instead of from the environment. The quad-menu refinement
in SQUAD is an example.

The design space is further defined by the method used to display
the current set of selectable objects. Subsets of selectable objects
can be displayed in context, for example through zooming, visual
explosion, highlighting, moving the viewpoint closer to the subset
or through the removal or dimming of non-selectable objects. The
subset of selectable objects can also be displayed out-of-context,
through the use of menus, which may be sorted in some way or
arranged randomly.

We can also characterize progressive refinement selection tech-
niques along a continuum based on the gradualness of refinement.
At one end of the spectrum we have the immediate techniques,
which directly specify the target object. This can be thought of
as a “refinement” from the entire set of selectable objects in the en-
vironment to one or zero (in case of a failed selection) in a single
step. At this end of the continuum, too much precision may be re-
quired, as an exact element needs to be specified immediately. At
the other end of the continuum we can imagine a technique that
has many refinement steps, with an extreme case being a technique
where each refinement simply excludes one object from the set of
selectable objects. Here precision is also required, and in fact such
a technique requires many high-precision selections. In the middle
of the continuum are the techniques of interest, where the reduction
in the set of selectable objects is rapid and accurate.

3.1 SQUAD Selection
We designed a progressive refinement selection technique that falls
in the middle of the gradualness continuum. It uses discrete pro-
gression, a combination of spatial and out-of-context refinement
methods, and a combination of in-context and out-of-context dis-
play of the subset of selectable objects. We call this technique
Sphere-casting refined by quad-menu (SQUAD).

We designed SQUAD as part of our entry to the 3DUI Grand
Prize contest, described in [2]. The main challenge proposed by
the contest was to design techniques that support interaction in a
highly cluttered environment. In a virtual supermarket, users had to



Figure 2: Sphere-casting.

select specific objects identified by textures with unique character-
istics. To achieve rapid yet precise selection, we designed SQUAD
as a progressive refinement technique that divides selection into two
discrete steps, the first being spatial and in-context and the second
being out-of-context.

The first step uses a modified version of ray-casting that casts
a sphere onto the nearest intersecting surface to determine which
objects will be selectable. We call this subtask sphere-casting.
The user simply has to ensure that the desired object is inside or
touching the sphere, so that it can be picked from among the other
objects in the next phase. Items that will be made selectable are
highlighted. In order to improve confidence that the desired object
will be available, the sphere’s radius increases the farther the user
is from the nearest intersecting surface, thus increasing the overall
number of objects available in the second phase. Figure 2 illustrates
this selection phase. (Note that in the study described in section 4,
however, the sphere size is fixed since all objects are placed at the
same distance from the user.) Sphere-casting avoids the precision
issues of ray-casting, and also allows selection of occluded objects.

Upon completion of the first phase, all objects that were inside
or touching the sphere are evenly distributed among four quadrants
on the screen, without regard for the spatial locations of the objects
in the 3D environment. We call this the quad-menu, and note its
similarity to marking menus. Contrary to zone menus [23], where
breadth of selection is achieved by relative position of multiple
marking gestures, in the quad menu phase users refine the selec-
tion by repeatedly pointing anywhere in the quadrant that contains
the item they are looking for, each time reducing the number of ob-
jects per quadrant until the desired object is the only one left. This
process is illustrated in Figure 3. The maximum number of selec-
tions necessary in the quad menu is dlog4 ne, where n is the initial
number of items. For example, if the sphere has between 17 and
64 objects inside it, our technique would require at most four clicks
to select the target (one click for sphere-casting and three clicks for
the quad-menu).

SQUAD is an example of a progressive refinement technique that
works well in environments where there are many objects that are
arranged along a surface, and where the desired object is visually
distinct from the rest. For other selection tasks or environments,
however, different design choices (e.g., using a cone as the selection
volume or distributing items in the menu based on spatial location)
might be preferred.

Figure 3: Quad-menu. Note that the target object needs to be visually
distinct for the selection to be feasible.

4 EVALUATION

We conducted a formal evaluation comparing SQUAD to standard
ray-casting.

4.1 Experiment Overview
We evaluated the task of pointing at circular targets that varied in
radius, on a screen that was filled with distractor objects varying in
number and density.

4.1.1 Goals and Hypotheses

The overall goal of the experiment was to explore the tradeoff be-
tween ray-casting and SQUAD. While ray-casting requires only one
click, it requires precision with visually small targets. SQUAD, on
the other hand, requires very little precision from the user, at the
expense of multiple steps until the desired target is selected.

With this tradeoff in mind, we expected there to be an interaction
between technique and target size. We hypothesized that SQUAD
would take constant time with respect to target size, while ray-
casting would be slow with small targets and fast with large targets.
We were unsure how the constant SQUAD times would compare to
the times for ray-casting with the various target sizes, but expected
that SQUAD would be faster in at least some target size conditions.

We also hypothesized that the number of distractor objects
around the target would have a significant effect on time to select
with SQUAD, but that the number of distractors would have no ef-
fect on ray-casting. We expected that SQUAD would outperform
ray-casting when the number of distractors was small.

With respect to accuracy, we hypothesized that SQUAD would
yield virtually no errors, due to its low required precision, whereas
ray-casting would have more errors as the target sizes decrease.

Finally, we hypothesized that situations in which the tracking
has more jitter would result in more errors and slower time for ray-
casting, but would not impact SQUAD, as all the steps of the tech-
nique require very low pointing precision.

4.1.2 Design

We used a factorial within-subject design with repeated measures.
There were four independent variables: technique (ray-casting,
SQUAD), tracking (normal, jittery), target size (radii 0.01m or
0.26◦, 0.015m or 0.40◦, 0.04m or 1.06◦), and the number of dis-
tractors inside the selection sphere (referred to as distractor density)
(16, 64, 256). After Kopper et al. [9], we emphasized in varying the



target size, while keeping the movement amplitude within a roughly
constant range (see section 4.3.1). The design was, thus, 2x2x3x3.

The order of presentation of technique and tracking was coun-
terbalanced, blocked by technique, such that each participant per-
formed both tracking conditions within the same technique before
moving to the next one. Within the combinations of technique and
tracking, each of the nine conditions of target size vs. distractor
density was repeated eight times and presented in random order.

4.2 Analytic Evaluation
Before running an empirical study (section 4.3), we analytically
evaluated performance in our experimental conditions based on pre-
dictive models.

The tradeoff between speed and accuracy described in Fitts’ law
is well known for pointing tasks [12,22]. Recently, a similar model
was shown to apply for distal pointing tasks, in which the input
device is remotely located with respect to the display area and the
pointing is done in a direct fashion, as opposed to indirectly, for
example, through the use of a mouse [9]. SQUAD and ray-casting
both use distal pointing, making this model relevant to our study.

Kopper et al.’s predictive model of distal pointing states that
the time to acquire a distal target through direct pointing depends
strongly on the angular width of the target and, to a much lesser de-
gree, on the angular amplitude of the wrist/arm movement required
to complete the task. The difficulty of the task is expressed as

IDDP =
[
log2

(
α

ωk +1
)]2

, (1)

where IDDP is the index of difficulty, α is the angular amplitude of
the movement and ω is the angular width of the target. The constant
k is a power factor greater than one that expresses the higher impor-
tance of the target width relative to movement amplitude. The value
of k was shown to be around three in the experimental setting used
by Kopper et al. While our study used a different environment, we
believe that it was similar and the value of the constant k should be
approximately the same.

The goal of the progressive refinement technique that we propose
is to reduce the index of difficulty of an individual pointing action
to a minimum at the expense of increasing the number of actions
needed to achieve the goal of selecting a single unique object in a
highly cluttered environment.

In order to reduce IDDP to a minimum in our study, we set the
diameter of the selection sphere to 26.3◦. The targets were chosen
within a constant range from the starting point, so that the move-
ment amplitude was selected randomly between 10.0◦ and 17.9◦,
with an average α of 14.0◦. This yields an IDDP of

IDDP =

[
log2

(
14.0
26.33 +1

)]2
≈ 1.23×10−6. (2)

Thus, the index of difficulty of the task of selecting the target
region becomes virtually zero, and the expected time to select the
target is very small. Similarly, the difficulty of selecting a quad-
rant in the quad-menu is minimal, as the angular width of each of
the quadrants is 45◦, yielding an IDDP very near zero. Accord-
ing to Kopper et al.’s model, the intercept of the regression line
for predicted selection times (when IDDP tends to zero) is 1.091s.
However, values of IDDP this close to zero have not been tested ex-
perimentally. With ω higher than α , we anecdotally observed that
selection time is typically under the lower limit of 1s set in Kopper
et al.’s model.

During the quad-menu phase of selection, the user needs to first
find the quadrant containing the intended target, then point and click
to select it. Although the target stands out and is easily distinguish-
able from the distractors, in theory the time for visual search will
be greater when the number of distractors is larger. We base this

assumption on the facts that the visual size of the target is smaller
in the quad-menu when there are a lot of distractors, and that the
perceived contrast diminishes as the objects become smaller [8].
Thus, we hypothesize that the time it takes to select a target using
SQUAD selection is

MTSQUAD = c+
N

∑
i=1

(c+ vi), (3)

expressed in seconds, where N is the number of refinement itera-
tions required during the quad-menu phase of the technique, c is an
empirically determined constant related to the time it takes to point
at a target whose difficulty tends to zero, and vi is the visual search
time to find the target in the quad-menu before movement starts. We
expect v1 to take the longest time, because, first, there is a switch in
interaction mode, from sphere-casting to quad-menu selection, and
a change in the visual environment. Also, the number of distractors
is at its maximum, and it decreases as refinements are made, reduc-
ing the target search space and time. Due to the visual distinction of
the target in relation to the distractors in our experimental setting,
we expect vi to be low in all phases of refinement and to not affect
selection time by a large amount.

Here, we note some interesting characteristics of SQUAD selec-
tion as compared to ray-casting. First, the target size plays no role
in the time it takes to complete a selection. We acknowledge that
there may be a longer search time for visual segmentation in highly
dense environments with small and occluded targets, but the motor
movement time is constant once the target has been found. Second,
the time it takes to select a target with SQUAD selection is directly
proportional to the amount of clutter – or the number of distractor
objects that exist in the region of the desired target. While the time
it takes to select a target grows linearly with the increased number
of iterations, the growth in the number of iterations is rather slow,
on the order of dlog4(n)e, where n is the number of objects inside
the sphere [2].

In order to compare ray-casting with SQUAD, we decided to
vary both the target size and the number of distractor objects that
fall inside the selection sphere at any given time. We defined tar-
get ωs as 0.53◦, 0.80◦ and 2.12◦, yielding for ray-casting an IDDP
of 42.9, 23.4 and 1.67, respectively. The predicted time to com-
plete the ray-casting tasks for each of the respective target sizes was
2.29s, 1.74s and 1.14s, respectively. We set the number of distrac-
tor objects inside the sphere to be 16, 64 and 256, yielding a total of
3, 4, and 5 clicks to select the target with SQUAD in each distractor
density condition. This leads to a theorized 3c+ vt0 , 4c+ vt1 and
5c+vt2 seconds to select a target, where vti is the total visual search
time across all refinement phases in each condition. The value of c
needs to be empirically determined, but we expect it to be less than
one. Again, we believe vti to be low and not affect movement time
by a large amount.

4.3 Empirical Evaluation
In order to empirically validate the results from our analytic evalu-
ation, we performed a comparative study of SQUAD and standard
ray-casting.

4.3.1 Apparatus
We used a back-projected VisBox-SX system, with only one pro-
jector (monoscopic) to display the experimental environment on
a 2.29m x 3.05m screen. The resolution of the graphics was
1400px x 1050px. A wireless Intersense IS-900 Wand was used
for controlling the cursor on the screen.

The experimental software was written using the Vizard Virtual
Reality Toolkit by WorldViz. It ran under Microsoft Windows XP
on a workstation with an Intel Core2 660 CPU at 2.40GHz and
2GB of RAM. The frame rate was fixed at 55 frames per second for



all conditions except with the high-density distractor conditions, in
which it went down to around 15 frames per second in the sphere-
casting phase only, because many collision tests with the selection
sphere were necessary. We were comfortable with the drop in frame
rate for that one condition because the sphere-casting selection was
very easy to perform.

The environment consisted of circular objects as shown in Fig-
ure 4. The user stood at the center of an invisible sphere of 2.155m
radius, at an orthogonal distance of 1.52m to the display surface.
The red target and the gray distractors were evenly distributed on
the surface of the sphere. There was no head tracking or any vir-
tual navigation of the environment and the user remained at a fixed
location. The perspective projection of the objects caused them to
have the correct visual size from the user’s point of view at the cen-
ter of the sphere. We made the decision to render the circles on the
surface of a virtual sphere, as opposed to on the flat screen plane,
because the effective angular width of objects displayed far from
the center of a flat screen decreases [9]. The perspective rendering
of the circles near the edges of the display compensated for this ef-
fect in our environment, such that all objects had the same angular
width from the user’s point of view.

Figure 4: Left: Experimental setup with sphere-casting. Right: quad-
menu stage of SQUAD in the experiment.

The target position was randomly selected from a list of can-
didate targets that fell inside a torus-shaped section of the display
sphere, and was limited by a small radius of 0.52m and a large
radius of 0.77m. This ensured that targets were presented in all
directions from the center of the projection.

The cursor position was determined by a function of the yaw and
pitch of the IS-900 wand and the display’s field of view. With the
user standing at a fixed position in front of the display, the position
of the cursor closely matched the ray extending from the wand. We
decided to rely only on the angular readings of the wand, rather
then implementing 3D ray-casting based on the combination of po-
sition and orientation information, because we wanted to keep the
motor difficulty to complete the task constant. Participants were
told to keep their hand position within a small range over a mark
on the floor that determined the center of the virtual sphere, and not
to reach out with their arms. With the cursor position dependent
solely on the wand’s yaw and pitch, we were able to keep the motor
behavior identical to that of ray-casting from the sweet spot at the
center of the virtual sphere. There was then, of course, a mismatch
between the position of the displayed cursor and that of the position
of the 3D ray extending from the user hand with the screen. This
offset was, however, minimal and no participant seemed to mind,
or even notice, the difference.

Each task began with only two objects on the screen: a large
yellow circle in the center, and the red target. Once the user clicked
the large yellow object, it disappeared and the rest of the screen was
filled with distractor objects. We did this for two reasons. First,
clicking at a pre-determined spot before the start of a task meant
that the angular amplitude of the movement was kept in a controlled
range. Second, by not showing the distractors in the beginning, the
user could find the target location before starting the task, reducing

any cognitive time to segment the target from the distractors to a
minimum.

For the ray-casting condition, a crosshair represented the cursor
and the task was finished when the user clicked the trigger button
on the IS-900 wand. When the cursor intersected with an object,
either the target or a distractor, the object was highlighted with a
yellow border.

In the SQUAD condition, after the user clicked at the yellow ob-
ject in the center of the display to begin the task, the cursor changed
to a sphere (Figure 4, left). All objects that were inside or intersect-
ing with the surface of the sphere were rendered with a highlight,
indicating that they were active for selection. The sphere-casting
action was committed by a click with the trigger button, and the
display changed to the quad-menu (Figure 4, right). In order to
maintain experimental control, for each distractor density, the quad-
menu contained the same number of elements, even if the sphere
did not have exactly that number of objects inside. These numbers
were close enough that no participant ever noticed a mismatch be-
tween the objects inside the sphere and the objects displayed in the
quad-menu. In the quad-menu, we decided to limit the display of
the objects to approximately 50◦ of the view-field, as opposed to
the full 90◦ of the projection screen. We made this decision to min-
imize the potential visual search time after the menu was displayed,
and we found that 50◦ was enough to display a large number of
objects, while still allowing the user to spot the target without any
head movement. To refine the quad-menu selection, the user only
needed to point anywhere in the quadrant that contained the target
and click the trigger button.

We applied a dynamic recursive low-pass filter [21] to the raw
pitch and yaw data from the IS-900 wand. This filter provided a
rapid response time while reducing tracking jitter to a minimum
(the Kalman filters provided by the IS-900 system had a significant
lag when the cursor was moving precisely, causing strange cursor
“stickiness” effects).

For the jittery conditions, we applied a random offset between
−0.21◦ and 0.21◦ at each frame to the filtered yaw and pitch read-
ings of the wand. This resulted in a maximum error of 80% of the
smallest target width, such that participants had a reasonable chance
of successful selection in the hardest ray-casting condition.

4.3.2 Participants

We recruited 16 voluntary unpaid participants from the campus
community to perform the study. Participants’ ages ranged from
20 to 31 years old, with a median age of 22.5. Nine of the partici-
pants were female.

4.3.3 Procedure

Upon arrival, participants were greeted by the experimenter and
given an informed consent form to read and sign. They were then
given a color blindness screening test and proceeded to complete a
background questionnaire. After that, they were shown the exper-
imental setting and started learning the first technique vs. tracking
combination. The learning was done with an easy condition so they
could understand the technique without making errors. They were
then given a practice session, in which they had to practice all nine
target size vs. distractor density combinations in the current condi-
tion for at least 90s.

After practicing, they were reminded that they had to perform
the trials as quickly as possible while trying not to make errors,
and then performed eight sets of each of the nine combinations.
When errors were made, the application displayed a message (“Not
quite!”) for 0.7s and the next task was displayed. The erroneous
trial was then put into an array of trials that was presented in a
new random order after the end of the set of trials for the current
technique vs. tracking combination. This process was repeated to a
maximum of five attempts per trial. If the user made five errors on a



trial, it was deemed failed and was not presented again. The target
position was the same for all attempts of a given trial.

After the end of each technique vs. tracking session, the partic-
ipant completed a set of rating-scale questions and rested for up to
two minutes. They then moved on to the next condition, following
the same protocol, until all four technique vs. tracking combina-
tions were completed.

Finally, the participant filled out a post-hoc questionnaire, com-
paring both techniques overall and in light of the other variables.

4.3.4 Results

We performed a factorial ANOVA with repeated measures on both
dependent variables: time to complete a task and mean number of
errors per trial.

Time Overall, ray-casting was significantly faster than
SQUAD (F1,15 = 4.92, p < 0.05), but only by two-tenths of a sec-
ond. Interestingly, there was no main effect of tracking (F1,15 =
0.001, p = 0.979).

There were main effects of both distractor density (F1,15 = 398.6,
p < 0.0001) and target size (F1,15 = 153.4, p < 0.0001). This in-
dicates that the effects of distractor density on SQUAD and target
size on ray-casting were so large that the variables were significant
overall, but when we examine the interactions, we get a clearer pic-
ture of the effects.

The tradeoff of a single precise selection compared to multi-
ple coarse selections can be clearly seen in the interactions of
technique with target size and distractor density. Figure 5 shows
the significant interaction between technique and distractor density
(F2,30 = 290.51, p < 0.0001). The 95% confidence interval, at each
density level, showed that SQUAD was significantly faster in the
low density, that there was no significant difference for the medium
density, and that ray-casting was significantly faster with high den-
sity.

As expected, all densities were significantly different from each
other with SQUAD, while there was no statistical evidence for a dif-
ference for ray-casting between any distractor density pairs. There
was, however, a slight increase in the mean task completion time for
ray-casting as the distractor density increased. We believe that this
may have been caused by an increase in visual processing time, as
the distractors were highlighted as the cursor intersected with them.
However, further studies should be done to verify this effect.

Figure 5: Interaction between technique and distractor density. The
error bars represent standard error.

The other interaction that evidences the tradeoff is that of tech-
nique with target size. There was a highly significant interaction
of these factors (F2,30 = 135.17, p < 0.0001), illustrated by Fig-
ure 6. As expected and predicted by the distal pointing model,

pairwise comparisons showed that the smallest targets took signifi-
cantly longer to select with ray-casting, while there were no signif-
icant differences among target sizes for SQUAD.

Figure 6: Interaction between technique and target size. The error
bars represent standard error.

Looking at the interaction between technique and tracking, we
expected to see that ray-casting would be slower with jittery track-
ing, while SQUAD would not be affected by tracking jitter. How-
ever, this interaction was not significant at a 95% confidence level
(F1,15 = 3.93, p = 0.066). Despite near-significance, the mean dif-
ference in time with ray-casting was only about 0.1s, and more er-
rors were made with bad tracking, which could indicate that partic-
ipants favored speed over accuracy, even if instructed otherwise.

No other significant interactions were found, which is consistent
with our hypotheses.

Figure 7 shows the mean results for all technique-density-target
size combinations (the three densities for ray-casting are averaged
in this graph, since density had no effect on ray-casting perfor-
mance). It is clear from this graph that SQUAD was significantly
faster than ray-casting with low density and either small or medium
size targets, and with medium density and small targets. In two
other conditions, there was no significant difference between the
two techniques. Finally, there are four conditions where ray-casting
is significantly faster than SQUAD.

Figure 7: Mean results for all technique-density-target size combina-
tions. Note that all ray-casting densities are averaged and displayed
in a single line, since there was no significant difference among them.
The error bars represent standard error.

Errors As expected, there was a significant main effect of tech-
nique with respect to errors (F1,15 = 56.86, p < 0.0001), with more
errors being made with ray-casting. In fact, virtually no errors were
made with SQUAD. The overall error rate with this technique was
0.007 errors per trial.



The lack of errors with SQUAD makes it interesting to look at
the effects of tracking, target size and distractor density on ray-
casting. Thus, we performed a new repeated measures ANOVA
removing all the SQUAD conditions.

As expected, there was a significant main effect of target size
on the number of errors per trial with ray-casting (F2,30 = 46.21,
p < 0.0001), with more errors made with the smallest targets.

Although the average number of errors was higher for the jit-
tery conditions, we found no statistical evidence of this difference
(F1,15 = 1.12, p < 0.31). We believe that, since the amount of jitter
was controlled, users were able to learn and compensate for it, since
the low pass filter applied before the jitter allowed most participants
to keep the cursor fixed on an exact pixel when needed. That, com-
bined with the fact that the maximum jitter was 80% of the mini-
mum target width and the continuous clear highlighting feedback
of cursor intersection may have caused users to adapt and learn to
select accurately with ray-casting despite the jittery cursor.

User preference SQUAD was largely preferred by all partici-
pants of the experiment. When asked which technique they favored
overall, when the cursor was jittery and when the targets were small,
all 16 participants answered SQUAD. When asked about which
technique they preferred when there were many distractors in the
scene, the majority (nine) still preferred SQUAD, suggesting that
the increased number of steps did not outweigh the overall pref-
erence of the technique; two participants were undecided, and the
remaining five preferred ray-casting when many distractors were
present.

It is also interesting to look at subjective ratings the participants
gave for various aspects of both techniques. Participants were in-
structed to fill out a survey immediately after completing each of
the techniques, and to rate the techniques on a seven-point scale for
ease of learning, ease of use, and how hard the techniques were in
various conditions (when the cursor contained artificial jitter, the
targets were small, and there were many distractors). Also on a
seven-point scale, participants were asked to rate their wrist, leg
and back fatigue. Before answering the survey after the last tech-
nique, participants were instructed to respond independently of the
answers to the first one.

We performed Wilcoxon Signed Rank tests on each of the ques-
tions. There was no significant difference in the reported ease of
learning between the techniques (n= 7,W = 20, insigni f icant). For
ease of use, ray-casting (mdn = 4.5) was ranked significantly more
difficult than SQUAD (mdn = 1) (z = 3.16, p < 0.001). Partici-
pants found ray-casting significantly more difficult when the cur-
sor was jittery (z = 3.24, p < 0.001) and when the targets were
small (z = 3.5, p < 0.001). There was no significant difference
with respect to task difficulty when many distractors were present
(mdnray−casting = 2,mdnSQUAD = 3.5,z =−0.18, p = 0.19).

Participants reported significantly more arm fatigue with ray-
casting (mdn = 5) than with SQUAD (mdn = 3.5) (z = 2.65, p <
0.05). No significant difference was found between the two
techniques for leg (n = 5,W = 5, insigni f icant) and back fatigue
(mdnray−casting = 3,mdnSQUAD = 2,z = 1.52, p = 0.064).

4.4 Model Validation
Based on the analytic evaluation and the empirical results of both
techniques, we can validate the predictive models for the ray-
casting and SQUAD pointing tasks.

Figure 8 left shows the close linear fit of the IDDP’s of each ray-
casting conditions based on the distal pointing model to the actual
task performance time. However, we note that the intercept of the
regression line is quite a bit higher than that predicted by the orig-
inal model proposed by Kopper et al. [9]. We believe that this is
due to the nature of how errors were considered in the two experi-
ments. In Kopper’s experiment, errors did not invalidate a trial, so
participants could be more careless when trying to select a target,

as they could click multiple times to achieve the selection. In our
case, on the other hand, the whole trial had to be attempted again,
so we believe participants were more careful and certain that the
cursor was inside the target area before they clicked. This resulted
in a higher minimum time to complete a trial. The slope of the re-
gression line is quite similar (0.028 in the original model and 0.037
in our experiment), and the correlation coefficient (R2) is as high as
97.5%, which provides evidence that the distal pointing model was
valid in our experimental environment.

We can analyze the SQUAD pointing trials based on the time it
took for each of the phases, which consisted of sphere-casting fol-
lowed by two, three or four refinements. Overall, as we predicted,
the selection time has a linear relationship with the number of re-
finements, as shown in Figure 8 right. Notice that the growth is
linear and the intercept is very close to zero, which emphasizes the
constant increase in time as more refinements are needed.

Figure 8: Scatter plot and regression line for the (left) ray-casting and
(right) SQUAD pointing conditions.

Interestingly, there was a significantly longer time for the quad-
menu selection in the first refinement step of the high-density dis-
tractors condition, in which there were a total of 256 objects in the
quad-menu. The difference was on the order of 0.2s longer than
in any other refinement phase, which were all within 0.05s. The
conclusion we derive from this is that visual search time was only
meaningful when there were a very large number of objects in the
quad-menu, while in all other conditions, this time was negligible.
However, the time to complete the first refinement phase was sig-
nificantly higher for all three target densities.

5 DISCUSSION

The analytical evaluation of SQUAD selection was backed up by
the results of an empirical study comparing it to standard ray-
casting. We verified that the there is, indeed, a performance trade-
off between immediate techniques that use one precise action to
select an object and progressive refinement techniques that require
very low precision at the expense of multiple steps. The use of
SQUAD, and, by extension, other progressive refinement selection
techniques, should be based on a consideration of this tradeoff. We
found that SQUAD is significantly faster for selection of small ob-
jects and selection in low-density environments. When errors are
considered, the case for SQUAD is even stronger, as it achieved
near-perfect accuracy. A positive aspect of our approach is that the
increase in the number of refinements needed grows very slowly,
such that the task is not likely to take many refinement phases. An-
other interesting aspect of SQUAD is that the time to complete a
task grows linearly as the number of refinements increase, whereas
with standard ray-casting, the time increase is exponential as targets
become smaller.

There is potential for much further research on selection by pro-
gressive refinement techniques. SQUAD is only one of a large
set of techniques that fall within the design space of progressive
refinement techniques. While SQUAD was highly efficient with
near-zero error rates and better time than standard ray-casting with
small targets, it has some limitations that need to be acknowledged.
SQUAD was designed with a particular application setting in mind,
and the nature of the task, which involved distant objects roughly



arranged on a surface, influenced the design of SQUAD. Its sphere
casting component is not well-suited for selecting from among
items distributed in depth. However, SQUAD can be adapted to
work well in such situations. For example, instead of a selection
sphere, a cone or cylinder could be used to specify a deeper region
of initial selection for further refinement in the quad-menu phase.

In addition, SQUAD works well for tasks that require the selec-
tion of objects that are visually distinct from other possible objects
in the vicinity, and that do not depend on the spatial context. Se-
lection tasks that depend on object location rather than visual fea-
tures, for instance, cannot be achieved by SQUAD, but still may
be achieved effectively with selection by progressive refinement.
For example, objects can be kept within their spatial context if re-
finement is accomplished by zooming. In this case, the refinement
would consist in the specification of an area in the view that would
zoom to fill the display, decreasing the number of selectable objects.
This is not necessarily equivalent to navigating close to objects to
select them; the zooming could be done discretely. After the selec-
tion task, the viewpoint could return to the original position.

We found that the distal pointing model proposed by Kopper et.
al [9] accurately predicted performance with ray-casting. We also
were able to find evidence that the performance of discrete pro-
gressive refinement selection techniques can be modeled by a di-
rect linear relationship to the number of refinements necessary for
completing a task. The use of analytical models in the evaluation
of such techniques can provide a benefit in more realistic settings,
in which control can be traded off for ecological validity. In such
situations, many aspects, such as user strategy, confound the exper-
imental control, and using reliable analytical models in the perfor-
mance assessment may be the best choice.

6 CONCLUSION AND FUTURE WORK

We have introduced the concept of selection by progressive re-
finement and proposed a design space. We designed a progres-
sive refinement technique, Sphere-casting refined by QUAD-menu
(SQUAD), and evaluated it against standard ray-casting. The re-
sults indicate that there is a tradeoff between the number of refine-
ments and the required pointing accuracy that must be taken into
account for the design of 3D selection techniques. When the visual
size of objects is too small and the density of the environment is
not too high, selection can be achieved more efficiently by progres-
sive refinement. Furthermore, progressive refinement techniques
can ensure very high levels of accuracy because they do not require
precise pointing.

We plan to continue this research by designing and evaluating
additional progressive refinement techniques. In addition, we plan
to compare SQUAD and similar techniques to high-precision point-
ing techniques such as PRISM.

REFERENCES

[1] D. A. Bowman, E. Kruijff, J. J. L. Jr., and I. Poupyrev. 3D User
Interfaces: Theory and Practice. Addison-Wesley, 2004.

[2] P. Figueroa, Y. Kitamura, S. Kuntz, L. Vanacken, S. Maesen, T. D.
Weyer, S. Notelaers, J. R. Octavia, A. Beznosyk, K. Coninx, F. Bacim,
R. Kopper, A. Leal, T. Ni, and D. A. Bowman. 3DUI 2010 con-
test grand prize winners. IEEE Computer Graphics and Applications,
30:86–96, 2010.

[3] C. Forlines, R. Balakrishnan, P. Beardsley, J. van Baar, and R. Raskar.
Zoom-and-pick: facilitating visual zooming and precision pointing
with interactive handheld projectors. In UIST ’05: Proceedings of the
18th annual ACM symposium on User interface software and technol-
ogy, pages 73–82, New York, NY, USA, 2005. ACM Press.

[4] S. Frees, G. D. Kessler, and E. Kay. PRISM interaction for enhanc-
ing control in immersive virtual environments. ACM Trans. Comput.-
Hum. Interact., 14(1):2, 2007.

[5] T. Grossman and R. Balakrishnan. The bubble cursor: enhancing tar-
get acquisition by dynamic resizing of the cursor’s activation area. In

CHI ’05: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 281–290, New York, NY, USA, 2005. ACM
Press.

[6] T. Grossman and R. Balakrishnan. The design and evaluation of selec-
tion techniques for 3D volumetric displays. In UIST ’05: Proceedings
of the 18th annual ACM symposium on User interface software and
technology, pages 3–12, New York, NY, USA, 2006. ACM Press.

[7] G. D. Haan, M. Koutek, and F. H. Post. Intenselect: Using dynamic
object rating for assisting 3D object selection. In Virtual Environments
2005, pages 201–209, 2005.

[8] M. W. C. Jr and S. C. Fullenkamp. Perceived contrast and stimulus
size: Experiment and simulation. Vision Research, 28(6):695 – 709,
1988.

[9] R. Kopper, D. A. Bowman, M. G. Silva, and R. P. McMahan. A human
motor behavior model for distal pointing tasks. International Journal
of Human-Computer Studies, 68(10):603 – 615, 2010.

[10] J. Liang and M. Green. Jdcad: A highly interactive 3D modeling sys-
tem. In 3rd International Conference on CAD and Computer Graph-
ics, pages 217–222, August 1993.

[11] J. Lucas. Design and evaluation of 3D multiple object selection tech-
niques. Master’s thesis, Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, VA, USA, 2005.

[12] I. S. MacKenzie. Fitts’ law as a research and design tool in human-
computer interaction. Human-Computer Interaction, 7:91–139, 1992.

[13] M. R. Mine. Virtual environment interaction techniques. Technical
report, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA, 1995.

[14] M. R. Mine, J. Frederick P. Brooks, and C. H. Sequin. Moving ob-
jects in space: exploiting proprioception in virtual-environment inter-
action. In SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 19–26, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[15] J. S. Pierce, A. S. Forsberg, M. J. Conway, S. Hong, R. C. Zeleznik,
and M. R. Mine. Image plane interaction techniques in 3D immersive
environments. In SI3D ’97: Proceedings of the 1997 symposium on
Interactive 3D graphics, pages 39–ff., New York, NY, USA, 1997.
ACM.

[16] A. Steed. Towards a general model for selection in virtual environ-
ments. In Proceedings of the 2006 Symposium on 3D User Interfaces.,
pages 103–110. IEEE, 2006.

[17] A. Steed and C. Parker. 3D selection strategies for head tracked and
non-head tracked operation of spatially immersive displays. In 8th
International Immersive Projection Technology Workshop, pages 13–
14, 2004.

[18] A. Steed and C. Parker. Evaluating effectiveness of interaction tech-
niques across immersive virtual environmental systems. Presence:
Teleoper. Virtual Environ., 14:511–527, October 2005.

[19] R. Stoakley, M. J. Conway, and R. Pausch. Virtual reality on a WIM:
interactive worlds in miniature. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, CHI ’95, pages 265–
272, New York, NY, USA, 1995. ACM Press/Addison-Wesley Pub-
lishing Co.

[20] L. Vanacken, T. Grossman, and K. Coninx. Exploring the effects of
environment density and target visibility on object selection in 3D vir-
tual environments. 3D User Interfaces, 2007.

[21] D. Vogel and R. Balakrishnan. Distant freehand pointing and clicking
on very large, high resolution displays. In UIST ’05: Proceedings
of the 18th annual ACM symposium on User interface software and
technology, pages 33–42, New York, NY, USA, 2005. ACM Press.

[22] S. Zhai, J. Kong, and X. Ren. Speed–accuracy tradeoff in Fitts’ law
tasks–on the equivalency of actual and nominal pointing precision.
International Journal of Human-Computer Studies, 61(6):823 – 856,
2004.

[23] S. Zhao, M. Agrawala, and K. Hinckley Zone and polygon menus:
using relative position to increase the breadth of multi-stroke marking
menus. In CHI ’06: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 1077–1086, New York, NY, USA,
2005. ACM Press.


