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ABSTRACT

This paper presents a method of estimating camera pose in-an u

known scene. While this has previously been attempted bytexdg
SLAM algorithms developed for robotic exploration, we posp a
system specifically designed to track a hand-held camerarimagi
AR workspace. We propose to split tracking and mapping o t
separate tasks, processed in parallel threads on a dualeoon-
puter: one thread deals with the task of robustly trackirmater
hand-held motion, while the other produces a 3D map of peiat f
tures from previously observed video frames. This allovesitbe of
computationally expensive batch optimisation techniquatsusu-
ally associated with real-time operation: The result issteay that
produces detailed maps with thousands of landmarks whiclbea
tracked at frame-rate, with an accuracy and robustnedéimyahat
of state-of-the-art model-based systems.

1 INTRODUCTION

The majority of Augmented Reality (AR) systems operate with
prior knowledge of the user’s environment - i.e, some forrmaf.
This could be a map of a city, CAD model of a component reqgirin
maintenance, or even a sparse map of fiducials known to bergres
in the scene. The application then allows the user to intevih
this environment based on prior information on salientgaftthis
model (e.g. “This location is of interest” or “remove thistrftom
this component”). If the map or model provided is comprehens
registration can be performed directly from it, and thishie tom-
mon approach to camera-based AR tracking.

Unfortunately, a comprehensive map is often not availaiften
a small map of only an object of interest is available - forraxa
ple, a single physical object in a room or a single fiducial kear
Tracking is then limited to the times when this known featar be
measured by some sensor, and this limits range and qualisgef
istration. This has led to the development of a class of tigclas
known (in the AR context) asxtensible tracking21l,[14,[4 [ 28[12]
in which the system attempts to add previously unknown se¢ne
ements to its initial map, and these then provide regisnagiven
when the original map is out of sensing range. [Inh [4], theiahit
map is minimal, consisting only of a template which providest-
ric scale; later versions of this monocular SLAM algorithemaow
operate without this initialisation template.

The logical extension of extensible tracking is to trackderses
without any prior map, and this is the focus of this paper. c8pe
cally, we aim to track a calibrated hand-held camera in aiptsly
unknown scene without any known objects or initialisatiargét,
while building a map of this environment. Once a rudimentagp
has been built, it is used to insert virtual objects into tbene, and
these should be accurately registered to real objects iarthieon-
ment.

Figure 1: Typical operation of the system: Here, a desktop is
tracked. The on-line generated map contains close to 300 po
features, of which the system attempted to find 1000 in theentir
frame. The 660 successful observations are shown as dosa Al
shown is the map’s dominant plane, drawn as a grid, on whieh vi
tual characters can interact. This frame was tracked in 18ms

based AR applications. One approach for providing the usér w
meaningful augmentations is to emploseanote experf4, [16] who
can annotate the generated map. In this paper we take aediffer
approach: we treat the generated map as a sandbox in whighlvir
simulations can be created. In particular, we estimate airtmh
plane (a virtual ground plane) from the mapped points - amgre

of this is shown in FigurEl1l - and allow this to be populatechwit
virtual characters. In essence, we would like to transformy ftat
(and reasonably textured) surface into a playing field for &fiR-
ulations (at this stage, we have developed a simple buptastd
action game). The hand-held camera then becomes both angiewi
device and a user interface component.

To further provide the user with the freedom to interact viita
simulation, we require fast, accurate and robust cameckitrg, all
while refining the map and expanding it if new regions are esqa.

This is a challenging problem, and to simplify the task soimewv

we have imposed some constraints on the scene to be tradked: i
should be mostlgtatic i.e. not deformable, and it should bmall

By small we mean that the user will spend most of his or her time
in the same place: for example, at a desk, in one corner ofra,roo
or in front of a single building. We consider this to be conilplat

Since we do not use a prior map, the system has no deep underwith a large number of workspace-related AR applicationsgne

standing of the user’s environment and this precludes mask-t
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the user is anyway often tethered to a computer. Explordtmsiys
such as running around a city are not supported.

The next section outlines the proposed method and contrasts
this to previous methods. Subsequent sections describetéil d
the method used, present results and evaluate the methartts-p
mance.



2 METHOD OVERVIEW IN THE CONTEXT OF SLAM
Our method can be summarised by the following points:

e Tracking and Mapping are separated, and run in two parallel
threads.

to maintain real-time performance), achieving exceptiacauracy
over long distances. While we adopt the stereo initiakisgtand
occasionally make use of local bundle updates, our methdd-is
ferent in that we attempt to build a long-term map in whichtdiees
are constantly re-visited, and we can afford expensiverfidp op-
timisations. Finally, in our hand-held camera scenario,camenot

e Mapping is based on keyframes, which are processed using rely on long 2D feature tracks being available to initialisatures

batch techniques (Bundle Adjustment).

e The map is densely intialised from a stereo pair (5-Point Al-
gorithm)

e New points are initialised with an epipolar search.
e Large numbers (thousands) of points are mapped.

To put the above in perspective, it is helpful to compare this
approach to the current state-of-the-art. To our knowledge
two most convincing systems for tracking-while-mappingim s
gle hand-held camera are those of Davison eflal [5] and Eadle an

and we replace this with an epipolar feature search.

3 FURTHER RELATED WORK

Efforts to improve the robustness of monocular SLAM have re-
cently been made by [22] andl[3][_122] replace the EKF typical
of many SLAM problems with a particle filter which is resilieto
rapid camera motions; however, the mapping procedure does n
in any way consider feature-to-feature or camera-to-featior-
relations. An alternative approach is taken by [3] who repla
correlation-based search with a more robust image descwgtich
greatly reduces the probabilities of outlier measuremenitss al-

Drummond [B[]. Both systems can be seen as adaptations of al lows the system to operate with large feature search regitthsut

gorithms developed for SLAM in the robotics domain (respety,
these are EKF-SLAM126] and FastSLAM 2[0]17]) and both are in
cremental mapping methods: tracking and mapping are itgiipna
linked, so current camera pose and the position of everyntaankl
are updated together at every single video frame.

Here, we argue that tracking a hand-held camera is moreutffic
than tracking a moving robot: firstly, a robot usually rees\some
form of odometry; secondly a robot can be driven at arbityaiow
speeds. By contrast, this is not the case for hand-held muenoc
lar SLAM and so data-association errors become a problech, an
can irretrievably corrupt the maps generated by increniesyts:
tems. For this reason, both monocular SLAM methods mentione
go to great lengths to avoid data association errors. 8Stavtith
covariance-driven gating (“active search”), they mustiar per-
form binary inlier/outlier rejection with Joint Compatlitty Branch
and Bound (JCBB]119] (in the case bf [5]) or Random Sample-Con
sensus (RANSAC)110] (in the case 0l [7]). Despite theseresfo
neither system provides the robustness we would like for A& u

This motivates a split between tracking and mapping. Iféhes
two processes are separated, tracking is no longer pradtabil
cally slaved to the map-making procedure, and any robuskitrg
method desired can be used (here, we use a coarse-to-firaaappr
with a robust estimator.) Indeed, data association betwreeking
and mapping need not even be shared. Also, since modern tompu
ers now typically come with more than one processing corezave
split tracking and mapping into two separately-scheduledads.
Freed from the computational burden of updating a map atyever
frame, the tracking thread can perform more thorough image p
cessing, further increasing performance.

Next, if mapping is not tied to tracking, it is not necessamy t
use every single video frame for mapping. Many video frames
contain redundant information, particularly when the cearis not
moving. While most incremental systems will waste theirdira-
filtering the same data frame after frame, we can concentate
processing some smaller number of more useful keyframessé&'h
new keyframes then need not be processed within stricttireal-
limits (although processing should be finished by the tingertéxt
keyframe is added) and this allows operation with a largen@mn
ical map size. Finally, we can replace incremental mappiitg w
a computationally expensive but highly accurate batch otgthe.
bundle adjustment.

While bundle adjustment has long been a proven method for off
line Structure-from-Motion (SfM), we are more directly pised
by its recent successful applications to real-time viswnetry
and tracking[[ZD1€.19]. These methods build an initial naonf
five-point stered[27] and then track a camera using locadieiad-
justment over theV most recent camera poses (whéfés selected

compromising robustness. The system is based on the uedcent
Kalman filter which scales poorly (O{3)) with map size and hence

no more than a few dozen points can be mapped. However the re-
placement of intensity-patch descriptors with a more rollter-
native appears to have merit.

Extensible tracking using batch techniques has previoosén
attempted by[[11["28]. An external tracking system or fiducia
markers are used in a learning stage to triangulate new rieatu
points, which can later be used for trackind._1[11] employasel
sic bundle adjustment in the training stage and achievesotabple
tracking performance when later tracking the learned featubut
no attempt is made to extend the map after the learning sj2gk.
introduces a different estimator which is claimed to be nrotmist
and accurate, however this comes at a severe performana#ypen
slowing the system to unusable levels. It is not clear if diéel
system continues to grow the map after the initial trainihgse.

Most recently, [[2] triangulate new patch features on-lingilev
tracking a previously known CAD model. The system is most no-
table for the evident high-quality patch tracking, whiclesia high-
DOF minimisation technique across multiple scales, yigjdion-
vincingly better patch tracking results than the NCC searftén
used in SLAM. However, it is also computationally expensise
the authors simplify map-building by discarding featueattire co-
variances — effectively an attempt at FastSLAM 2.0 with oaly
single particle.

We notice thatl[155] have recently described a system whist al
employs SfM techniques to map and track an unknown environ-
ment - indeed, it also employs two processors, but in a differ
way: the authors decouple 2D feature tracking from 3D pose es
mation. Robustness to motion is obtained through the usedial
sensors and a fish-eye lens. Finally, our implementatiomafR
application which takes place on a planar playing field majtén
a comparison with[25] in which the authors specifically cb®to
track and augment a planar structure: It should be notedithie
the AR game described in this system uses a plane, the faus li
on the tracking and mapping strategy, which makes no fundtahe
assumption of planarity.

4 THE MAP

This section describes the system’s representation ofsbesuen-
vironment. Sectiofd5 will describe how this map is trackead a
Sectior® will describe how the map is built and updated.

The map consists of a collection 8f point features located in a
world coordinate framé\V. Each point feature represents a locally
planar textured patch in the world. Thiéh point in the mapg;)

has coordinatep;,v = (z;w y;w zjw 1)* in coordinate frame



W. Each point also has a unit patch normgl and a reference to
the patch source pixels.

The map also containd” keyframes: These are snapshots taken
by the handheld camera at various points in time. Each keadra
has an associated camera-centred coordinate frame, dedpter
theith keyframe. The transformation between this coordinamé
and the world is therEx ;. Each keyframe also stores a four-
level pyramid of greyscale 8bpp images; level zero storesful

640x 480 pixel camera snapshot, and this is sub-sampled down to

level three at 8@ 60 pixels.

The pixels which make up each patch feature are not storéd ind
vidually, rather each point feature has a source keyfrarppieally
the first keyframe in which this point was observed. Thus eaah
point stores a reference to a single source keyframe, aessingirce
pyramid level within this keyframe, and pixel location wittthis
level. In the source pyramid level, patches correspond«8 Bixel
squares; in the world, the size and shape of a patch deperttie on
pyramid level, distance from source keyframe camera ceatrd
orientation of the patch normal.

In the examples shown later the map might contain some
M=2000 to 6000 points and¥=40 to 120 keyframes.

5 TRACKING

This section describes the operation of the point-basegitrg sys-
tem, with the assumption that a map of 3D points has alreaely be
created. The tracking system receives images from the hatab-
video camera and maintains a real-time estimate of the capuse
relative to the built map. Using this estimate, augmentegblgics
can then be drawn on top of the video frame. At every frame, the
system performs the following two-stage tracking procedur

1. A new frame is acquired from the camera, and a prior pose
estimate is generated from a motion model.

. Map points are projected into the image according to the
frame’s prior pose estimate.

. A small number (50) of the coarsest-scale features are
searched for in the image.

. The camera pose is updated from these coarse matches.

. Alarger number (1000) of points is re-projected and deadc
for in the image.

. A final pose estimate for the frame is computed from all the
matches found.

5.1 Image acquisition

Images are captured from a Unibrain Fire-i video camerapmmpd
with a 2.1mm wide-angle lens. The camera delivers>6480 pixel
YUV411 frames at 30Hz. These frames are converted to 8bpp
greyscale for tracking and an RGB image for augmented displa

The tracking system constructs a four-level image pyransid a
described in sectiofl 4. Further, we run the FAST{I0 [23] eorn
detector on each pyramid level. This is done without nonimak
suppression, resulting in a blob-like clusters of corngiams.

A prior for the frame’s camera pose is estimated. We use ageca
ing velocity model; this is similar to a simple alpha-betanstant
velocity model, but lacking any new measurements, the estich
camera slows and eventually stops.

5.2 Camera pose and projection

To project map points into the image plane, they are firststran
formed from the world coordinate frame to the camera-ceht@
ordinate frameC. This is done by left-multiplication with a>44
matrix denotedtcyy, which represents camera pose.

1)

pic = Eewpjijw

The subscrip€W may be read as “framé from frameW". The
matrix Ecyy contains a rotation and a translation component and is
a member of the Lie group SE(3), the set of 3D rigid-body tfamns
mations.

To project points in the camera frame into image, a calilorate
camera projection model CamProj() is used:

(

We employ a pin-hole camera projection function which sutspo
lenses exhibiting barrel radial distortion. The radialtdifon
model which transforms — »’ is the FOV-model of[[5]. The cam-
era parameters for focal lengtfi.(, f.), principal point o, vo) and
distortion (v) are assumed to be known:

Usi
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> = CamProj(Ecywpiw) (2
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r = 1 arctan(2r tan 2) (5)
Cw 2

A fundamental requirement of the tracking (and also the map-
ping) system is the ability to differentiate Hg. 2 with resp&o
changes in camera pogeryy. Changes to camera pose are rep-
resented by left-multiplication with ax44 camera motiord/:

(6)

where the camera motion is also a member of SE(3) and can be
minimally parametrised with a six-vect@r using the exponential
map. Typically the first three elements @frepresent a translation
and the latter three elements represent a rotation axis agim
tude. This representation of camera state and motion alfows
trivial differentiation of EqL®, and from this, partial d&frentials of
Eq.[2 of the formg—lj,g’:, are readily obtained in closed form. De-
tails of the Lie gron SE(3) and its representation may badon
29

E¢w = MEcw = exp(p) Ecw

5.3 Patch Search

To find a single map poinp in the current frame, we perform a
fixed-range image search around the point’s predicted in@ge
tion. To perform this search, the corresponding patch mrsitbie
warped to take account of viewpoint changes between thén’patc
first observation and the current camera position. We perfan
affine warp characterised by a warping matdxwhere

duc duc
— 5] 5}
A= 9 )
Ous Ovg

and{us, vs} correspond to horizontal and vertical pixel displace-
ments in the patch’s source pyramid level, gnd, v. } correspond
to pixel displacements in the current camera frame’s zeffotl
size) pyramid level. This matrix is found by back-projegtianit
pixel displacements in the source keyframe pyramid levéb oime
patch’s plane, and then projecting these into the curremyét)
frame. Performing these projections ensures that the wanpia-
trix compensates (to first order) not only changes in petspgeand
scale but also the variations in lens distortion acrossrttage.

The determinant of matrid is used to decide at which pyramid
level of the current frame the patch should be searched. €he d
terminant of A corresponds to the area, in square pixels, a single



source pixel would occupy in the full-resolution imagkst(A)/4

is the corresponding area in pyramid level one, and so on.tdhe
get pyramid level is chosen so thatet(A)/4! is closest to unity,
i.e. we attempt to find the patch in the pyramid level which mos
closely matches its scale.

An 8x 8-pixel patch search template is generated from the source
level using the warpd/2' and bilinear interpolation. The mean
pixel intensity is subtracted from individual pixel valugsprovide
some resilience to lighting changes. Next, the best matckhis
template within a fixed radius around its predicted positgiound
in the target pyramid level. This is done by evaluating zewan
SSD scores at all FAST corner locations within the circukarsh
region and selecting the location with the smallest diffiesescore.
If this is beneath a preset threshold, the patch is congiderend.

In some cases, particularly at high pyramid levels, an ieteg
pixel location is not sufficiently accurate to produce srhatoack-
ing results. The located patch position can be refined bypaifg
an iterative error minimisation. We use the inverse contpmsil
approach offlil], minimising over translation and mean pattén-
sity difference. However, this is too computationally expige to
perform for every patch tracked.

5.4 Pose update

Given a setS of successful patch observations, a camera pose up-
date can be computed. Each observation yields a found patch p
sition (4. ©)" (referred to level zero pixel units) and is assumed to
have measurement noiseat = 2% times the X 2 identity matrix

(again in level zero pixel units). The pose update is contpitéza-
tively by minimising a robust objective function of the rejgction

error:
u = argminz Obj <M70T> (8)

B jes 93

wheree; is the reprojection error vector:
e; = < Zj ) — CamProj (exp (1) Ecwpy) - 9)

Obj(-, or) is the Tukey biweight objective functiohl13] and- a
robust (median-based) estimate of the distribution’s daieah de-
viation derived from all the residuals. We use ten iteragiaf
reweighted least squares to allow the M-estimator to cga/éom
any one set of measurements.

5.5 Two-stage coarse-to-fine tracking

To increase the tracking system'’s resilience to rapid camecel-
erations, patch search and pose update are done twice. #al ini
coarse search searches only for 50 map points which appés at
highest levels of the current frame’s image pyramid, anslskarch
is performed (with subpixel refinement) over a large seaathius.

A new pose is then calculated from these measurements. tAfsgr
up to 1000 of the remaining potentially visible image pathes
re-projected into the image, and now the patch search ismeed
over a far tighter search region. Subpixel refinement isquaréd
only on a high-level subset of patches. The final frame posalis
culated from both coarse and fine sets of image measureneents t
gether.

5.6 Tracking quality and failure recovery

Despite efforts to make tracking as robust as possible, teskn
tracking failure can be considered inevitable. For thisosa the
tracking system estimates the quality of tracking at eveayng,
using the fraction of feature observations which have beeness-
ful.

If this fraction falls below a certain threshold, trackingadjty
is considered poor. Tracking continues as normal, but tiseeay

is not allowed to send new keyframes to the map. Such frames
would likely be of poor quality, i.e. compromised by motioluty
occlusion, or an incorrect position estimate.

If the fraction falls below an even lower threshold for madnar
a few frames (during which the motion model might succegsful
bridge untrackable frames) then tracking is consideret] b a
tracking recovery procedure is initiated. We implement rigxeov-
ery method ofi[3D]. After this method has produced a posengsé,
tracking proceeds as normal.

6 MAPPING

This section describes the process by which the 3D point map i
built. Map-building occurs in two distinct stages: Firsh iaitial
map is built using a stereo technique. After this, the mapiriou-
ally refined and expanded by the mapping thread as new kegfram
are added by the tracking systems. The operation of the mgppi
thread is illustrated in FigurEl 2. The map-making steps axe n
individually described in detail.

Stereo initialisation

New keyframe?

Update keyframe
data association

Locally

v converged?
Integrate
keyframe Local
bundle adjust
Globally
\ 4 converged?
Add new
features Global

bundle adjust

Update
data association

Sleep 5ms

Figure 2: The asynchronous mapping thread. After init&#ien,
this thread runs in an endless loop, occasionally receiviegy
frames from the tracker.

6.1 Map initialisation

When the system is first started, we employ the five-pointester
algorithm of [Z7] to initialise the map in a manner similar to
[20,[18,[9]. User cooperation is required: the user first gdaihe
camera above the workspace to be tracked and presses a lthis At
stage, they system'’s first keyframe is stored in the map, @96 1
2D patch-tracks are initialised in the lowest pyramid lemegalient
image locations (maximal FAST corners.) The user then shiypot
translates (and possibly rotates) the camera to a sligffgtoposi-
tion makes a further key-press. The 2D patches are trackedgh
the smooth motion, and the second key-press thus provideoad
keyframe and feature correspondences from which the fivetpb
gorithm and RANSAC can estimate an essential matrix and-tria
gulate the base map. The resulting map is refined throughléund
adjustment.



This initial map has an arbitrary scale and is aligned witk on
camera at the origin. To enable augmentations in a meaningfu
place and scale, the map is first scaled to metric units. Bhismne
by assuming that the camera translated 10cm between theo ster
pair. Next, the map is rotated and translated so that the remhi
detected plane lies at=0 in the world. This is done by RANSAC:
many sets of three points are randomly selected to hypaiesi
plane while the remaining points are tested for consensuse T
winning hypothesis is refined by evaluating the spatial maaah
variance of the consensus set, and the smallest eigenwfctioe
covariance matrix forms the detected plane normal.

Including user interaction, map initialisation takes arduhree
seconds.

6.2 Keyframe insertion and epipolar search

The map initially contains only two keyframes and describesl-
atively small volume of space. As the camera moves away from
its initial pose, new keyframes and map features are addéukto
system, to allow the map to grow.

Keyframes are added whenever the following conditions a& m
Tracking quality must be good; time since the last keyfranaes w

minimise the robust objective function:

{{pzpun}, {Ph-ph}} = argmin Z > Obj

{uh i} I Jo5

<|eﬂ| )
04 or

(10)
Apart from the inclusion of the Tukey M-estimator, we use &n a
most textbook implementation of Levenberg-Marquardt beiadi-
justment (as described in Appendix 6.6 0f[12]).

Full bundle adjustment as described above adjusts the pose f
all keyframes (apart from the first, which is a fixed datum) and
all map point positions. It exploits the sparseness inharethe
structure-from-motion problem to reduce the complexitycabic-
cost matrix factorisations from QI + M)?) to O(NV?), and so the
system ultimately scales with the cube of keyframes; in fiwac
for the map sizes used here, computation is in most cases domi
nated by OV M) camera-point-camera outer products. One way
or the other, it becomes an increasingly expensive comnipuatas
map size increases: For example, tens of seconds are re:dpiira
map with more than 150 keyframes to converge. This is acblpta
if the camera is not exploring (i.e. the tracking system camkw
with the existing map) but becomes quickly limiting duringpto-

added must exceed twenty frames; and the camera must be a minration, when many new keyframes and map features are inél

imum distance away from the nearest keypoint already in tap.m
The minimum distance requirement avoids the common moaocul
SLAM problem of a stationary camera corrupting the map, and e
sures a stereo baseline for new feature triangulation. Tihemam
distance used depends on the mean depth of observed feamires
that keyframes are spaced closer together when the camesayis
near a surface, and further apart when observing distarswal

Each keyframe initially assumes the tracking system’s came
pose estimate, and all feature measurements made by thétac
system. Owing to real-time constraints, the tracking systeay
only have measured a subset of the potentially visible featin
the frame; the mapping thread therefore re-projects andsonea
the remaining map features, and adds successful observatiagts
list of measurements.

The tracking system has already calculated a set of FAST cor-
ners for each pyramid level of the keyframe. Non-maximal-sup
pression and thresholding based on Shi-Tonlasi [24] scera@r
used to narrow this set to the most salient points in eachnpigra
level. Next, salient points near successful observatidrexisting
features are discarded. Each remaining salient point isididate
to be a new map point.

New map points require depth information. This is not a\déa
from a single keyframe, and triangulation with another viswe-
quired. We select the closest (in terms of camera positieyframe
already existing in the map as the second view. Correspaeden
between the two views are established using epipolar sepboi
patches around corners points which lie along the epipatarih
the second view are compared to the candidate map pointg usin
zero-mean SSD. No template warping is performed, and matche
are searched in equal pyramid levels only. Further, we dseatch
an infinite epipolar line, but use a prior hypothesis on thkelji
depth of new candidate points (which depends on the deptti-dis
bution of existing points in the new keyframe). If a match hasn
found, the new map point is triangulated and inserted ineatiap.

6.3 Bundle adjustment

Associated with the théth keyframe in the map is a s&; of
image measurements. For example, jtie map point measured
in keyframei would have been found &fii;; 9;;)” with stan-
dard deviation ofr;; pixels. Writing the current state of the map
as{Ex,w, ...Exyw} and{pi,...pn }, €ach image measurement
also has an associated reprojection eergrcalculated as for equa-
tion (@). Bundle adjustment iteratively adjusts the map sdca

(and should be bundle adjusted) in quick succession.

For this reason we also allow the mapping thread to perform
cal bundle adjustment; here only a subset of keyframe poses are
adjusted. Writing the set of keyframes to adjust¥asa further set
of fixed keyframes&” and subset of map poing, the minimisation
(abbreviating the objective function) becomes

{tneex} {plez}} = avgmin 30 37 Obi(i.d).

w3APY} e XUy jezns;
(11)

This is similar to the operation of constantly-exploringswal
odometry implementation$ [lL8] which optimise over the (asty)

3 frames using measurements from the lagiefore that. How-
ever there is an important difference in the selection oapwters
which are optimised, and the selection of measurements fosed
constraints.

The setX of keyframes to optimise consists of five keyframes:
the newest keyframe and the four other keyframes nearesino i
the map. All of the map points visible in any of these keyframe
forms the setZ. Finally, Y contains any keyframe for which a
measurement of any point i has been made. Thatis, local bundle
adjustment optimises the pose of the most recent keyframétsn
closest neighbours, and all of the map points seen by theggg u
all of the measurements ever made of these points.

The complexity of local bundle adjustment still scales witap
size, but does so at approximately d{/) in the worst case, and
this allows a reasonable rate of exploration. Should a keyé be
added to the map while bundle adjustment is in progresssadju
ment is interrupted so that the new keyframe can be integjiate
the shortest possible time.

6.4 Data association refinement

When bundle adjustment has converged and no new keyfraraes ar
needed - i.e. when the camera is in well-explored portionthef
map - the mapping thread has free time which can be used to im-
prove the map. This is primarily done by making hew measure-
ments in old key-frames; either to measure newly createdfep
tures in older keyframes, or to re-measure outlier measentsn

When a new feature is added by epipolar search, measurements
for it initially exist only in two keyframes. However it is gsible
that this feature is visible in other keyframes as well. Itis the
case then measurements are made and if they are succesigd| ad
to the map.



Likewise, measurements made by the tracking system may beare two apparent exceptions: tracking is lost around fraB20;1

incorrect. This frequently happens in regions of the worddtain-
ing repeated patterns. Such measurements are given lovatsdig
the M-estimator used in bundle adjustment. If they lie inzbeo-
weight region of the Tukey estimator, they are flagged aserstl
Each outlier measurement is given a ‘second chance’ befaee d
tion: itis re-measured in the keyframe using the featuressljcted
position and a far tighter search region than used for tragkif a
new measurement is found, this is re-inserted into the mhpul@
such a measurement still be considered an outlier, it is aeemtly
removed from the map.

These data association refinements are given a low prioritys
mapping thread, and are only performed if there is no othetemo
pressing task at hand. Like bundle adjustment, they arerinted
as soon as a new keyframe arrives.

6.5 General implementation notes

The system described above was implemented on a desktoptRC wi
an Intel Core 2 Duo 2.66 GHz processor running Linux. Sofewar
was written in C++ using the libCVD and TooN libraries. It has
not been highly optimised, although we have found it berggfici
to implement two tweaks: A row look-up table is used to speed
up access to the array of FAST corners at each pyramid lendl, a
the tracker only re-calculates full nonlinear point prdjess and
jacobians every fourth M-estimator iteration (this islgtilultiple
times per single frame.)

Some aspects of the current implementation of the mappisg sy
tem are rather low-tech: we use a simple set of heuristicsrwre
outliers from the map; further, patches are initialisedhwat nor-
mal vector parallel to the imaging plane of the first frameytivere
observed in, and the normal vector is currently not optichise

Like any method attempting to increase a tracking systeoys r
bustness to rapid motion, the two-stage approach descsiewn
can lead to increased tracking jitter. We mitigate thiththe
simple method of turning off the coarse tracking stage when t
motion model believes the camera to be nearly stationarg ddn
be observed in the results video by a colour change in theerede
grid.

7 RESULTS

Evaluation was mostly performed during live operation gsa
hand-held camera, however we also include comparativétses:
ing a synthetic sequence read from disk. All results weraiakt
with identical tunable parameters.

7.1 Tracking performance on live video

An example of the system’s operation is provided in the accom
panying video fill. The camera explores a cluttered desk and its
immediate surroundings over 1656 frames of live video infite
camera performs various panning motions to produce an @mwerv

of the scene, and then zooms closer to some areas to increase d

tail in the map. The camera then moves rapidly around the ethpp
scene. Tracking is purposefully broken by shaking the canserd
the system recovers from this. This video represents tredia
typical working volume which the system can handle withaetd
difficulty. Figure[3 illustrates the map generated duriracking.

At the end of the sequence the map consists of 57 keyframes an

4997 point features: from finest level to coarsest level feagure
distributions are 51%, 33%, 9% and 7% respectively.

The sequence can mostly be tracked in real-time. Fldurewsho
the evolution of tracking time with frame number. Also pégitis
the size of the map. For most of the sequence, tracking caebe p
formed in around 20ms despite the map increasing in sizereThe

1This video file can also be obtained frdim t p: / / WWwv. T 0DOT S.
0X. ac. uk/ ~gk/ vi deos/ Kl el n_O7_pt ami snar . avl

and the system attempts to relocalise for several frameshwh
takes up to 90ms per frame. Also, around frame 1530, tracking
takes around 30ms per frame during normal operation; thigien

the camera moves far away from the desk at the end of the segjuen
and a very large number of features appear in the frame. Hteze,
time taken to decide which features to measure becomedisagti

Keyframe preparation 2.2 ms
Feature projection 3.5ms
Patch search 9.8 ms
Iterative pose update 3.7ms
Total 19.2 ms

Table 1: Tracking timings for a map of sizg=4000.

Table[d shows a break-down of the time required to track a typi
cal frame. Keyframe preparation includes frame capturey¥1L
to greyscale conversion, building the image pyramid aneéatet
ing FAST corners. Feature projection is the time taken tbaty
project all features in to the frame, decide which are vesibhd de-
cide which features to measure. This step scales lineatty mwap
size, but is also influenced by the number of features cuyrémt
the camera’s field-of-view, as the determinant of the waypira-
trix is calculated for these points. The bulk of a frame’s ¢eidis
spent on the 1000 image searches for patch corresponderzes,
the time spent for this is influenced by corner density in thage,
and the distribution of features over pyramid levels.

7.2 Mapping scalability

While the tracking system scales fairly well with increasimap
size, this is not the case for the mapping thread. The largagt
we have produced is a full 36map of a single office containing
11000 map points and 280 keyframes. This is beyond our “small
workspace” design goal and at this map size the systemyatail
add new keyframes and map points is impaired (but trackiilg st
runs at frame-rate). A more practical limit at which the syst
remains well usable is around 6000 points and 150 keyframes.

Timings of individual mapping steps are difficult to obtaiiney
vary wildly not only with map size but also scene structuretib
global and local); further, the asynchronous nature of oethmod
does not facilitate obtaining repeatable results from disfuences.
Nevertheless, ‘typical’ timings for bundle adjustment presented
in Table[2.

Keyframes 2-49 50-99 100-149
Local Bundle Adjustment | 170ms 270ms  440ms
Global Bundle Adjustment 380ms 1.7s 6.9s

Table 2: Bundle adjustment timings with various map sizes.

The above timings are mean quantities. As the map grows be-
yond 100 keyframes, global bundle adjustment cannot keeyithp
exploration and is almost always aborted, converging oriigmthe
camera remains stationary (or returns to a well-mapped) doea

Jsome time. Global convergence for maps larger than 150 &mds

can require tens of seconds.

Compared with bundle adjustment, the processing time redui
for epipolar search and occasional data association reéineim
small. Typically all other operations needed to insert afteaye
require less than 40ms.

7.3 Synthetic comparison with EKF-SLAM

To evaluate the system’s accuracy, we compare it to an ingoitan
tion [30] of EKF-SLAM based on Davison’s SceneLib librarythvi


http://www.robots.ox.ac.uk/~gk/videos/klein_07_ptam_ismar.avi
http://www.robots.ox.ac.uk/~gk/videos/klein_07_ptam_ismar.avi

Figure 3:The map and keyframes produced in the desk video. Top: twesvid the map with point features and keyframes drawn. Gertai
parts of the scene are clearly distinguishable, e.g. thbday and the frisbee. Bottom: the 57 keyframes used to gentre map.
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Figure 4: Map size (right axis) and tracking timings (lefigfor the desk video included in the video attachment. Timéng spike occurs
when tracking is lost and is attempting relocalisation.
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Figure 5: Comparison with EKF-SLAM on a synthetic sequentke left image shows the map produced by the system desdnibrexl
the centre image shows the map produced by an up-to-datenmepitation of EKF-SLAMII30]. Trajectories compared to grduruth are
shown on the right. NB. the different scale of the z-axis, @&igd truth lies on z=3.

up-to-date enhancements such as JCBB [19]. We use a syntheti tolerance to rapid motions and associated motion blur. heuyit

scene produced in a 3D rendering package. The scene coofsists
two textured walls at right angles, plus the initialisati@nget for

the SLAM system. The camera moves sideways along one wall to-

ward the corner, then along the next wall, for a total of 6G0rfes
at 600x 480 resolution.

The synthetic scenario tested here (continual exploratiith
no re-visiting of old features, pauses or ‘slam wiggles'h&ther
system’s strong point, and not typical usage in an AR conteéat/-
ertheless it effectively demonstrates some of the diffegsrin the
systems’ behaviours. Figuié 5 illustrates the maps output the
two systems. The method proposed here produces a relatierbe
map of 6600 features, of which several are clearly outliByscon-
trast, EKF-SLAM produces a sparse map of 114 features wily fu
accessible covariance information (our system also irtlglien-
codes the full covariance, but it is not trivial to accessyvbich all
appear to be inliers.

To compare the calculated trajectories, these are firstedigo
as to minimise their sum-squared error to ground truth. This
necessary because our system uses an (almost) arbitradircte
frame and scale. Both trajectories are aligned by minirgigirror
over a 6-DOF rigid body transformation and 1-DOF scale ckang
The resulting trajectories are shown in the right panel afirigd.
For both trajectories, the error is predominantly in theirection
(whose scale is exaggerated in the plot) although EKF-SLAEd a
fractionally underestimates the angle between the wallsméti-
cally, the standard deviation from ground truth is 135mmE#&i-
SLAM and 6mm for our system (the camera travels 18.2m through
the virtual sequence). Frames are tracked in a relativehstemt

20ms by our system, whereas EKF-SLAM scales quadratically

allows mapped points to be useful across a wide range ofdista
In practice, this means that our system allows a user to ‘zmdm
much closer (and more rapidly) to objects in the environm&hts
is illustrated in Figur€l6 and also in the accompanying viiileo At
the same time, the use of a larger number of features redisibkev
tracking jitter and improves performance when some featare
occluded or otherwise corrupted.

The system scales with map size in a different way. In EKF-
SLAM, the frame-rate will start to drop; in our system, tharfre-
rate is not as affected, but the rate at which new parts of ke e
ronment can be explored slows down.

7.5 AR with a hand-held camera

To investigate the suitability of the proposed system for t&Bks,
we have developed two simple table-top applications. Bstuae
a flat operating surface, and use the hand-held camera akfartoo
interaction. AR applications are usable as soon as the n=pdsn
initialised from stereo; mapping proceeds in the backgdoima
manner transparent to the user, unless particularly ragtbeation
causes tracking failure.

The first application is “Ewok Rampage”, which gives the jglay
control over Darth Vader, who is assaulted by a horde of ewdhks
player can control Darth Vader's movements using the keythoa
while a laser pistol can be aimed with the camera: The priogjecf
the camera’s optical axis onto the playing surface formptager’s
cross-hairs. This game demonstrates the system’s alilippe
with fast camera translations as the user rapidly changes ai

The second application simulates the effects of a virtuajnira

from 3ms when the map is empty to 40ms at the end of the sequencding glass and sun. A virtual convex lens is placed at theezam

(although of course this includes mapping as well as tragkin

7.4 Subjective comparison with EKF-SLAM

When used on live video with a hand-held camera, our system ha
dles quite differently than iterative SLAM implementatiyrand
this affects the way in which an operator will use the system t
achieve effective mapping and tracking.

This system does not require the ‘SLAM wiggle’: incremental
systems often need continual smooth camera motion to m#égct
initialise new features at their correct depth. If the camniersta-
tionary, tracking jitter can initialise features at the wgodepth. By
contrast, our system works best if the camera is focused aina p
of interest, the user then pauses briefly, and then proceedséc-
essarily smoothly) to the next point of interest, or a difetrview
of the same point.

The use of multiple pyramid levels greatly increases theesy's

centre and simple ray-tracing used to render the caustitstbe
playing surface. When the light converges onto a small enalag
—i.e., when user has the camera at the correct height and ang|
virtual burn-marks (along with smoke) are added to the serfdn
this way the user can annotate the environment using justaime
era. This game demonstrates tracking accuracy.

These applications are illustrated in Figlle 7 and are adsooh-
strated in the accompanying video file.

8 LIMITATIONS AND FUTURE WORK

This section describes some of the known issues with thersyst
presented. This system requires fairly powerful computiagd-
ware and this has so far limited live experiments to a sinffieen

we expect that with some optimisations we will be able to run a
frame-rate on mobile platforms and perform experimentsvinder
range of environments. Despite current experimental #tiahs



Figure 6: The system can easily track across multiple scilese,
the map is initialised at the top-right scale; the user maleser in
and places a label, which is still accurately registerednwhewed
from far away.

initially extracting the dominant plane as an AR surface, thap
becomes purely a tool for camera tracking. This is not ideaiual

entities should be able to interact with features in the nmagnime
way. For example, out-of-plane real objects should bloak ac+
clude virtual characters running into or behind them. Thia very
complex and important area for future research.

Several aspects of mapping could be improved to aid tracking
performance: the system currently has no notion of selfusign
by the map. While the tracking system is robust enough tctrac
a map despite self-occlusion, the unexplained absenceabfrées
it expects to be able to measure impacts tracking qualitynases,
and may unnecessarily remove features as outliers. Fuahexfi-
cient on-line estimation of patch normals would likely bebehefit
(our initial attempts at this have been too slow.)

Finally, the system is not designed to close large loops én th
SLAM sense. While the mapping module is statistically alole t
handle loop closure (and loops can indeed be closed by udici
placement of the camera near the boundary), the problerinltes
fact that the tracker’'s M-Estimator is not informed of faatumap
uncertainties. In practical AR use, this is not an issue.

9 CONCLUSION

This paper has presented an alternative to the SLAM appesach
previously employed to track and map unknown environments.

some failure modes — and some avenues for further work — have Rather then being limited by the frame-to-frame scalgbiit in-

become evident.

8.1 Failure modes

There are various ways in which tracking can fail. Some of¢he
are due to the system’s dependence on corner features: qapie
era motions produce large levels of motion blur which carirdate
most corners features in the image, and this will cause itngdil-
ure. In general, tracking can only proceed when the FASTearorn
detector fires, and this limits the types of textures andrenments
supported. Future work might aim to include other types afdees

— for example, image intensity edges are not as affected lipmo
blur, and often conveniently delineate geometric entitidhe map.

The system is somewhat robust to repeated structure arntd ligh
ing changes (as illustrated by figures showing a keyboardCind
ROM disc being tracked) but such this is purely the happyltesu
the system using many features with a robust estimator. &ege
structure in particular still produces large numbers ofiets in the
map (due to the epipolar search making incorrect correspures)
and can make the whole system fragile: if tracking falls mtocal
minimum and a keyframe is then inserted, the whole map coeild b
corrupted.

We experience three types of mapping failure: the first isla fa
ure of the initial stereo algorithm. This is merely a nuisanas it
is immediately noticed by the user, who then just repeatptbe
cedure; nevertheless it is an obstacle to a fully automaiii@iisa-
tion of the whole system. The second is the insertion of iremr
information into the map. This happens if tracking has thi{er
reached an incorrect local minimum as described above)Haut t
tracking quality heuristics have not detected this failufe more
robust tracking quality assessment might prevent suchrést al-
ternatively, a method of automatically removing outlieykames
from the map might be viable. Finally, while the system isyver
tolerant of temporary partial occlusions, it will fail if &real-world
scene is substantially and permanently changed.

8.2 Mapping inadequacies

Currently, the system’s map consists only of a point clouchil&/
the statistics of feature points are linked through commbseo
vations in the bundle adjustment, the system currently méike
effort to extract any geometric understanding from the medper

cremental mapping approaches which mandate “a sparse map of
high quality features”5], we implement the alternativeoegach,
using a far denser map of lower-quality features.

Results show that on modern hardware, the system is capgble o
providing tracking quality adequate for small-workspade &ppli-
cations - provided the scene tracked is reasonably textueta-
tively static, and not substantially self-occluding. Naéopmodel
of the scene is required, and the system imposes only a nlimima
tialisation burden on the user (the procedure takes threensis.)

We believe the level of tracking robustness and accuracychiege
significantly advances the state-of-the art.

Nevertheless, performance is not yet good enough for any un-
trained user to simply pick up and use in an arbitrary envirent.
Future work will attempt to address some of the shortcominigs
the system and expand its potential applications.
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