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ABSTRACT

This paper presents a method of estimating camera pose in an un-
known scene. While this has previously been attempted by adapting
SLAM algorithms developed for robotic exploration, we propose a
system specifically designed to track a hand-held camera in asmall
AR workspace. We propose to split tracking and mapping into two
separate tasks, processed in parallel threads on a dual-core com-
puter: one thread deals with the task of robustly tracking erratic
hand-held motion, while the other produces a 3D map of point fea-
tures from previously observed video frames. This allows the use of
computationally expensive batch optimisation techniquesnot usu-
ally associated with real-time operation: The result is a system that
produces detailed maps with thousands of landmarks which can be
tracked at frame-rate, with an accuracy and robustness rivalling that
of state-of-the-art model-based systems.

1 INTRODUCTION

The majority of Augmented Reality (AR) systems operate with
prior knowledge of the user’s environment - i.e, some form ofmap.
This could be a map of a city, CAD model of a component requiring
maintenance, or even a sparse map of fiducials known to be present
in the scene. The application then allows the user to interact with
this environment based on prior information on salient parts of this
model (e.g. “This location is of interest” or “remove this nut from
this component”). If the map or model provided is comprehensive,
registration can be performed directly from it, and this is the com-
mon approach to camera-based AR tracking.

Unfortunately, a comprehensive map is often not available,often
a small map of only an object of interest is available - for exam-
ple, a single physical object in a room or a single fiducial marker.
Tracking is then limited to the times when this known featurecan be
measured by some sensor, and this limits range and quality ofreg-
istration. This has led to the development of a class of techniques
known (in the AR context) asextensible tracking[21, 14, 4, 28, 2]
in which the system attempts to add previously unknown sceneel-
ements to its initial map, and these then provide registration even
when the original map is out of sensing range. In [4], the initial
map is minimal, consisting only of a template which providesmet-
ric scale; later versions of this monocular SLAM algorithm can now
operate without this initialisation template.

The logical extension of extensible tracking is to track in scenes
without any prior map, and this is the focus of this paper. Specifi-
cally, we aim to track a calibrated hand-held camera in a previously
unknown scene without any known objects or initialisation target,
while building a map of this environment. Once a rudimentarymap
has been built, it is used to insert virtual objects into the scene, and
these should be accurately registered to real objects in theenviron-
ment.

Since we do not use a prior map, the system has no deep under-
standing of the user’s environment and this precludes many task-
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Figure 1: Typical operation of the system: Here, a desktop is
tracked. The on-line generated map contains close to 3000 point
features, of which the system attempted to find 1000 in the current
frame. The 660 successful observations are shown as dots. Also
shown is the map’s dominant plane, drawn as a grid, on which vir-
tual characters can interact. This frame was tracked in 18ms.

based AR applications. One approach for providing the user with
meaningful augmentations is to employ aremote expert[4, 16] who
can annotate the generated map. In this paper we take a different
approach: we treat the generated map as a sandbox in which virtual
simulations can be created. In particular, we estimate a dominant
plane (a virtual ground plane) from the mapped points - an example
of this is shown in Figure 1 - and allow this to be populated with
virtual characters. In essence, we would like to transform any flat
(and reasonably textured) surface into a playing field for VRsim-
ulations (at this stage, we have developed a simple but fast-paced
action game). The hand-held camera then becomes both a viewing
device and a user interface component.

To further provide the user with the freedom to interact withthe
simulation, we require fast, accurate and robust camera tracking, all
while refining the map and expanding it if new regions are explored.
This is a challenging problem, and to simplify the task somewhat
we have imposed some constraints on the scene to be tracked: it
should be mostlystatic, i.e. not deformable, and it should besmall.
By small we mean that the user will spend most of his or her time
in the same place: for example, at a desk, in one corner of a room,
or in front of a single building. We consider this to be compatible
with a large number of workspace-related AR applications, where
the user is anyway often tethered to a computer. Exploratorytasks
such as running around a city are not supported.

The next section outlines the proposed method and contrasts
this to previous methods. Subsequent sections describe in detail
the method used, present results and evaluate the method’s perfor-
mance.



2 METHOD OVERVIEW IN THE CONTEXT OF SLAM
Our method can be summarised by the following points:

• Tracking and Mapping are separated, and run in two parallel
threads.

• Mapping is based on keyframes, which are processed using
batch techniques (Bundle Adjustment).

• The map is densely intialised from a stereo pair (5-Point Al-
gorithm)

• New points are initialised with an epipolar search.

• Large numbers (thousands) of points are mapped.

To put the above in perspective, it is helpful to compare this
approach to the current state-of-the-art. To our knowledge, the
two most convincing systems for tracking-while-mapping a sin-
gle hand-held camera are those of Davison et al [5] and Eade and
Drummond [8, 7]. Both systems can be seen as adaptations of al-
gorithms developed for SLAM in the robotics domain (respectively,
these are EKF-SLAM [26] and FastSLAM 2.0 [17]) and both are in-
cremental mapping methods: tracking and mapping are intimately
linked, so current camera pose and the position of every landmark
are updated together at every single video frame.

Here, we argue that tracking a hand-held camera is more difficult
than tracking a moving robot: firstly, a robot usually receives some
form of odometry; secondly a robot can be driven at arbitrarily slow
speeds. By contrast, this is not the case for hand-held monocu-
lar SLAM and so data-association errors become a problem, and
can irretrievably corrupt the maps generated by incremental sys-
tems. For this reason, both monocular SLAM methods mentioned
go to great lengths to avoid data association errors. Starting with
covariance-driven gating (“active search”), they must further per-
form binary inlier/outlier rejection with Joint Compatibility Branch
and Bound (JCBB) [19] (in the case of [5]) or Random Sample Con-
sensus (RANSAC) [10] (in the case of [7]). Despite these efforts,
neither system provides the robustness we would like for AR use.

This motivates a split between tracking and mapping. If these
two processes are separated, tracking is no longer probabilisti-
cally slaved to the map-making procedure, and any robust tracking
method desired can be used (here, we use a coarse-to-fine approach
with a robust estimator.) Indeed, data association betweentracking
and mapping need not even be shared. Also, since modern comput-
ers now typically come with more than one processing core, wecan
split tracking and mapping into two separately-scheduled threads.
Freed from the computational burden of updating a map at every
frame, the tracking thread can perform more thorough image pro-
cessing, further increasing performance.

Next, if mapping is not tied to tracking, it is not necessary to
use every single video frame for mapping. Many video frames
contain redundant information, particularly when the camera is not
moving. While most incremental systems will waste their time re-
filtering the same data frame after frame, we can concentrateon
processing some smaller number of more useful keyframes. These
new keyframes then need not be processed within strict real-time
limits (although processing should be finished by the time the next
keyframe is added) and this allows operation with a larger numer-
ical map size. Finally, we can replace incremental mapping with
a computationally expensive but highly accurate batch method, i.e.
bundle adjustment.

While bundle adjustment has long been a proven method for off-
line Structure-from-Motion (SfM), we are more directly inspired
by its recent successful applications to real-time visual odometry
and tracking [20, 18, 9]. These methods build an initial map from
five-point stereo [27] and then track a camera using local bundle ad-
justment over theN most recent camera poses (whereN is selected

to maintain real-time performance), achieving exceptional accuracy
over long distances. While we adopt the stereo initialisation, and
occasionally make use of local bundle updates, our method isdif-
ferent in that we attempt to build a long-term map in which features
are constantly re-visited, and we can afford expensive full-map op-
timisations. Finally, in our hand-held camera scenario, wecannot
rely on long 2D feature tracks being available to initialisefeatures
and we replace this with an epipolar feature search.

3 FURTHER RELATED WORK

Efforts to improve the robustness of monocular SLAM have re-
cently been made by [22] and [3]. [22] replace the EKF typical
of many SLAM problems with a particle filter which is resilient to
rapid camera motions; however, the mapping procedure does not
in any way consider feature-to-feature or camera-to-feature cor-
relations. An alternative approach is taken by [3] who replace
correlation-based search with a more robust image descriptor which
greatly reduces the probabilities of outlier measurements. This al-
lows the system to operate with large feature search regionswithout
compromising robustness. The system is based on the unscented
Kalman filter which scales poorly (O(N3)) with map size and hence
no more than a few dozen points can be mapped. However the re-
placement of intensity-patch descriptors with a more robust alter-
native appears to have merit.

Extensible tracking using batch techniques has previouslybeen
attempted by [11, 28]. An external tracking system or fiducial
markers are used in a learning stage to triangulate new feature
points, which can later be used for tracking. [11] employs clas-
sic bundle adjustment in the training stage and achieve respectable
tracking performance when later tracking the learned features, but
no attempt is made to extend the map after the learning stage.[28]
introduces a different estimator which is claimed to be morerobust
and accurate, however this comes at a severe performance penalty,
slowing the system to unusable levels. It is not clear if the latter
system continues to grow the map after the initial training phase.

Most recently, [2] triangulate new patch features on-line while
tracking a previously known CAD model. The system is most no-
table for the evident high-quality patch tracking, which uses a high-
DOF minimisation technique across multiple scales, yielding con-
vincingly better patch tracking results than the NCC searchoften
used in SLAM. However, it is also computationally expensive, so
the authors simplify map-building by discarding feature-feature co-
variances – effectively an attempt at FastSLAM 2.0 with onlya
single particle.

We notice that [15] have recently described a system which also
employs SfM techniques to map and track an unknown environ-
ment - indeed, it also employs two processors, but in a different
way: the authors decouple 2D feature tracking from 3D pose esti-
mation. Robustness to motion is obtained through the use of inertial
sensors and a fish-eye lens. Finally, our implementation of an AR
application which takes place on a planar playing field may invite
a comparison with [25] in which the authors specifically choose to
track and augment a planar structure: It should be noted thatwhile
the AR game described in this system uses a plane, the focus lies
on the tracking and mapping strategy, which makes no fundamental
assumption of planarity.

4 THE MAP

This section describes the system’s representation of the user’s en-
vironment. Section 5 will describe how this map is tracked, and
Section 6 will describe how the map is built and updated.

The map consists of a collection ofM point features located in a
world coordinate frameW. Each point feature represents a locally
planar textured patch in the world. Thejth point in the map (pj )
has coordinatespjW = (xjW yjW zjW 1)T in coordinate frame



W. Each point also has a unit patch normalnj and a reference to
the patch source pixels.

The map also containsN keyframes: These are snapshots taken
by the handheld camera at various points in time. Each keyframe
has an associated camera-centred coordinate frame, denoted Ki for
theith keyframe. The transformation between this coordinate frame
and the world is thenEKiW . Each keyframe also stores a four-
level pyramid of greyscale 8bpp images; level zero stores the full
640×480 pixel camera snapshot, and this is sub-sampled down to
level three at 80×60 pixels.

The pixels which make up each patch feature are not stored indi-
vidually, rather each point feature has a source keyframe - typically
the first keyframe in which this point was observed. Thus eachmap
point stores a reference to a single source keyframe, a single source
pyramid level within this keyframe, and pixel location within this
level. In the source pyramid level, patches correspond to 8×8 pixel
squares; in the world, the size and shape of a patch depends onthe
pyramid level, distance from source keyframe camera centre, and
orientation of the patch normal.

In the examples shown later the map might contain some
M=2000 to 6000 points andN=40 to 120 keyframes.

5 TRACKING

This section describes the operation of the point-based tracking sys-
tem, with the assumption that a map of 3D points has already been
created. The tracking system receives images from the hand-held
video camera and maintains a real-time estimate of the camera pose
relative to the built map. Using this estimate, augmented graphics
can then be drawn on top of the video frame. At every frame, the
system performs the following two-stage tracking procedure:

1. A new frame is acquired from the camera, and a prior pose
estimate is generated from a motion model.

2. Map points are projected into the image according to the
frame’s prior pose estimate.

3. A small number (50) of the coarsest-scale features are
searched for in the image.

4. The camera pose is updated from these coarse matches.

5. A larger number (1000) of points is re-projected and searched
for in the image.

6. A final pose estimate for the frame is computed from all the
matches found.

5.1 Image acquisition
Images are captured from a Unibrain Fire-i video camera equipped
with a 2.1mm wide-angle lens. The camera delivers 640×480 pixel
YUV411 frames at 30Hz. These frames are converted to 8bpp
greyscale for tracking and an RGB image for augmented display.

The tracking system constructs a four-level image pyramid as
described in section 4. Further, we run the FAST-10 [23] corner
detector on each pyramid level. This is done without non-maximal
suppression, resulting in a blob-like clusters of corner regions.

A prior for the frame’s camera pose is estimated. We use a decay-
ing velocity model; this is similar to a simple alpha-beta constant
velocity model, but lacking any new measurements, the estimated
camera slows and eventually stops.

5.2 Camera pose and projection
To project map points into the image plane, they are first trans-
formed from the world coordinate frame to the camera-centred co-
ordinate frameC. This is done by left-multiplication with a 4×4
matrix denotedECW , which represents camera pose.

pjC = ECWpjW (1)

The subscriptCW may be read as “frameC from frameW”. The
matrixECW contains a rotation and a translation component and is
a member of the Lie group SE(3), the set of 3D rigid-body transfor-
mations.

To project points in the camera frame into image, a calibrated
camera projection model CamProj() is used:
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We employ a pin-hole camera projection function which supports
lenses exhibiting barrel radial distortion. The radial distortion
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A fundamental requirement of the tracking (and also the map-
ping) system is the ability to differentiate Eq. 2 with respect to
changes in camera poseECW . Changes to camera pose are rep-
resented by left-multiplication with a 4×4 camera motionM :

E′
CW = MECW = exp(µ)ECW (6)

where the camera motion is also a member of SE(3) and can be
minimally parametrised with a six-vectorµ using the exponential
map. Typically the first three elements ofµ represent a translation
and the latter three elements represent a rotation axis and magni-
tude. This representation of camera state and motion allowsfor
trivial differentiation of Eq. 6, and from this, partial differentials of
Eq. 2 of the form ∂u

∂µi

, ∂v
∂µi

are readily obtained in closed form. De-
tails of the Lie group SE(3) and its representation may be found in
[29].

5.3 Patch Search
To find a single map pointp in the current frame, we perform a
fixed-range image search around the point’s predicted imageloca-
tion. To perform this search, the corresponding patch must first be
warped to take account of viewpoint changes between the patch’s
first observation and the current camera position. We perform an
affine warp characterised by a warping matrixA, where

A =
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(7)

and{us, vs} correspond to horizontal and vertical pixel displace-
ments in the patch’s source pyramid level, and{uc, vc} correspond
to pixel displacements in the current camera frame’s zeroth(full-
size) pyramid level. This matrix is found by back-projecting unit
pixel displacements in the source keyframe pyramid level onto the
patch’s plane, and then projecting these into the current (target)
frame. Performing these projections ensures that the warping ma-
trix compensates (to first order) not only changes in perspective and
scale but also the variations in lens distortion across the image.

The determinant of matrixA is used to decide at which pyramid
level of the current frame the patch should be searched. The de-
terminant ofA corresponds to the area, in square pixels, a single



source pixel would occupy in the full-resolution image;det(A)/4
is the corresponding area in pyramid level one, and so on. Thetar-
get pyramid levell is chosen so thatdet(A)/4l is closest to unity,
i.e. we attempt to find the patch in the pyramid level which most
closely matches its scale.

An 8×8-pixel patch search template is generated from the source
level using the warpA/2l and bilinear interpolation. The mean
pixel intensity is subtracted from individual pixel valuesto provide
some resilience to lighting changes. Next, the best match for this
template within a fixed radius around its predicted positionis found
in the target pyramid level. This is done by evaluating zero-mean
SSD scores at all FAST corner locations within the circular search
region and selecting the location with the smallest difference score.
If this is beneath a preset threshold, the patch is considered found.

In some cases, particularly at high pyramid levels, an integer
pixel location is not sufficiently accurate to produce smooth track-
ing results. The located patch position can be refined by performing
an iterative error minimisation. We use the inverse compositional
approach of [1], minimising over translation and mean patchinten-
sity difference. However, this is too computationally expensive to
perform for every patch tracked.

5.4 Pose update
Given a setS of successful patch observations, a camera pose up-
date can be computed. Each observation yields a found patch po-
sition (û v̂)T (referred to level zero pixel units) and is assumed to
have measurement noise ofσ2 = 22l times the 2×2 identity matrix
(again in level zero pixel units). The pose update is computed itera-
tively by minimising a robust objective function of the reprojection
error:

µ
′ = argmin

µ
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whereej is the reprojection error vector:

ej =
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− CamProj (exp (µ) ECWpj) . (9)

Obj(·, σT ) is the Tukey biweight objective function [13] andσT a
robust (median-based) estimate of the distribution’s standard de-
viation derived from all the residuals. We use ten iterations of
reweighted least squares to allow the M-estimator to converge from
any one set of measurements.

5.5 Two-stage coarse-to-fine tracking

To increase the tracking system’s resilience to rapid camera accel-
erations, patch search and pose update are done twice. An initial
coarse search searches only for 50 map points which appear atthe
highest levels of the current frame’s image pyramid, and this search
is performed (with subpixel refinement) over a large search radius.
A new pose is then calculated from these measurements. Afterthis,
up to 1000 of the remaining potentially visible image patches are
re-projected into the image, and now the patch search is performed
over a far tighter search region. Subpixel refinement is performed
only on a high-level subset of patches. The final frame pose iscal-
culated from both coarse and fine sets of image measurements to-
gether.

5.6 Tracking quality and failure recovery

Despite efforts to make tracking as robust as possible, eventual
tracking failure can be considered inevitable. For this reason, the
tracking system estimates the quality of tracking at every frame,
using the fraction of feature observations which have been success-
ful.

If this fraction falls below a certain threshold, tracking quality
is considered poor. Tracking continues as normal, but the system

is not allowed to send new keyframes to the map. Such frames
would likely be of poor quality, i.e. compromised by motion blur,
occlusion, or an incorrect position estimate.

If the fraction falls below an even lower threshold for more than
a few frames (during which the motion model might successfully
bridge untrackable frames) then tracking is considered lost, and a
tracking recovery procedure is initiated. We implement therecov-
ery method of [30]. After this method has produced a pose estimate,
tracking proceeds as normal.

6 MAPPING

This section describes the process by which the 3D point map is
built. Map-building occurs in two distinct stages: First, an initial
map is built using a stereo technique. After this, the map is continu-
ally refined and expanded by the mapping thread as new keyframes
are added by the tracking systems. The operation of the mapping
thread is illustrated in Figure 2. The map-making steps are now
individually described in detail.

Figure 2: The asynchronous mapping thread. After initialisation,
this thread runs in an endless loop, occasionally receivingnew
frames from the tracker.

6.1 Map initialisation

When the system is first started, we employ the five-point stereo
algorithm of [27] to initialise the map in a manner similar to
[20, 18, 9]. User cooperation is required: the user first places the
camera above the workspace to be tracked and presses a key. Atthis
stage, they system’s first keyframe is stored in the map, and 1000
2D patch-tracks are initialised in the lowest pyramid levelat salient
image locations (maximal FAST corners.) The user then smoothly
translates (and possibly rotates) the camera to a slightly offset posi-
tion makes a further key-press. The 2D patches are tracked through
the smooth motion, and the second key-press thus provides a second
keyframe and feature correspondences from which the five-point al-
gorithm and RANSAC can estimate an essential matrix and trian-
gulate the base map. The resulting map is refined through bundle
adjustment.



This initial map has an arbitrary scale and is aligned with one
camera at the origin. To enable augmentations in a meaningful
place and scale, the map is first scaled to metric units. This is done
by assuming that the camera translated 10cm between the stereo
pair. Next, the map is rotated and translated so that the dominant
detected plane lies atz=0 in the world. This is done by RANSAC:
many sets of three points are randomly selected to hypothesise a
plane while the remaining points are tested for consensus. The
winning hypothesis is refined by evaluating the spatial meanand
variance of the consensus set, and the smallest eigenvectorof the
covariance matrix forms the detected plane normal.

Including user interaction, map initialisation takes around three
seconds.

6.2 Keyframe insertion and epipolar search

The map initially contains only two keyframes and describesa rel-
atively small volume of space. As the camera moves away from
its initial pose, new keyframes and map features are added tothe
system, to allow the map to grow.

Keyframes are added whenever the following conditions are met:
Tracking quality must be good; time since the last keyframe was
added must exceed twenty frames; and the camera must be a min-
imum distance away from the nearest keypoint already in the map.
The minimum distance requirement avoids the common monocular
SLAM problem of a stationary camera corrupting the map, and en-
sures a stereo baseline for new feature triangulation. The minimum
distance used depends on the mean depth of observed features, so
that keyframes are spaced closer together when the camera isvery
near a surface, and further apart when observing distant walls.

Each keyframe initially assumes the tracking system’s camera
pose estimate, and all feature measurements made by the tracking
system. Owing to real-time constraints, the tracking system may
only have measured a subset of the potentially visible features in
the frame; the mapping thread therefore re-projects and measures
the remaining map features, and adds successful observations to its
list of measurements.

The tracking system has already calculated a set of FAST cor-
ners for each pyramid level of the keyframe. Non-maximal sup-
pression and thresholding based on Shi-Tomasi [24] score are now
used to narrow this set to the most salient points in each pyramid
level. Next, salient points near successful observations of existing
features are discarded. Each remaining salient point is a candidate
to be a new map point.

New map points require depth information. This is not available
from a single keyframe, and triangulation with another viewis re-
quired. We select the closest (in terms of camera position) keyframe
already existing in the map as the second view. Correspondences
between the two views are established using epipolar search: pixel
patches around corners points which lie along the epipolar line in
the second view are compared to the candidate map points using
zero-mean SSD. No template warping is performed, and matches
are searched in equal pyramid levels only. Further, we do notsearch
an infinite epipolar line, but use a prior hypothesis on the likely
depth of new candidate points (which depends on the depth distri-
bution of existing points in the new keyframe). If a match hasbeen
found, the new map point is triangulated and inserted into the map.

6.3 Bundle adjustment

Associated with the theith keyframe in the map is a setSi of
image measurements. For example, thejth map point measured
in keyframe i would have been found at(ûji v̂ji)

T with stan-
dard deviation ofσji pixels. Writing the current state of the map
as{EK1W , ...EKNW} and{p1, ...pM}, each image measurement
also has an associated reprojection erroreji calculated as for equa-
tion (9). Bundle adjustment iteratively adjusts the map so as to

minimise the robust objective function:

˘

{µ2..µN}, {p′
1..p

′
M}

¯

= argmin
{{µ},{p}}

N
X

i=1

X

j∈Si

Obj

„

|eji|

σji

, σT

«

(10)
Apart from the inclusion of the Tukey M-estimator, we use an al-
most textbook implementation of Levenberg-Marquardt bundle ad-
justment (as described in Appendix 6.6 of [12]).

Full bundle adjustment as described above adjusts the pose for
all keyframes (apart from the first, which is a fixed datum) and
all map point positions. It exploits the sparseness inherent in the
structure-from-motion problem to reduce the complexity ofcubic-
cost matrix factorisations from O((N +M)3) to O(N3), and so the
system ultimately scales with the cube of keyframes; in practice,
for the map sizes used here, computation is in most cases domi-
nated by O(N2M ) camera-point-camera outer products. One way
or the other, it becomes an increasingly expensive computation as
map size increases: For example, tens of seconds are required for a
map with more than 150 keyframes to converge. This is acceptable
if the camera is not exploring (i.e. the tracking system can work
with the existing map) but becomes quickly limiting during explo-
ration, when many new keyframes and map features are initialised
(and should be bundle adjusted) in quick succession.

For this reason we also allow the mapping thread to performlo-
cal bundle adjustment; here only a subset of keyframe poses are
adjusted. Writing the set of keyframes to adjust asX, a further set
of fixed keyframesY and subset of map pointsZ, the minimisation
(abbreviating the objective function) becomes

˘

{µx∈X}, {p′
z∈Z}

¯

= argmin
{{µ},{p}}

X

i∈X∪Y

X

j∈Z∩Si

Obj(i, j).

(11)
This is similar to the operation of constantly-exploring visual
odometry implementations [18] which optimise over the last(say)
3 frames using measurements from the last7 before that. How-
ever there is an important difference in the selection of parameters
which are optimised, and the selection of measurements usedfor
constraints.

The setX of keyframes to optimise consists of five keyframes:
the newest keyframe and the four other keyframes nearest to it in
the map. All of the map points visible in any of these keyframes
forms the setZ. Finally, Y contains any keyframe for which a
measurement of any point inZ has been made. That is, local bundle
adjustment optimises the pose of the most recent keyframe and its
closest neighbours, and all of the map points seen by these, using
all of the measurements ever made of these points.

The complexity of local bundle adjustment still scales withmap
size, but does so at approximately O(NM ) in the worst case, and
this allows a reasonable rate of exploration. Should a keyframe be
added to the map while bundle adjustment is in progress, adjust-
ment is interrupted so that the new keyframe can be integrated in
the shortest possible time.

6.4 Data association refinement

When bundle adjustment has converged and no new keyframes are
needed - i.e. when the camera is in well-explored portions ofthe
map - the mapping thread has free time which can be used to im-
prove the map. This is primarily done by making new measure-
ments in old key-frames; either to measure newly created mapfea-
tures in older keyframes, or to re-measure outlier measurements.

When a new feature is added by epipolar search, measurements
for it initially exist only in two keyframes. However it is possible
that this feature is visible in other keyframes as well. If this is the
case then measurements are made and if they are successful added
to the map.



Likewise, measurements made by the tracking system may be
incorrect. This frequently happens in regions of the world contain-
ing repeated patterns. Such measurements are given low weights by
the M-estimator used in bundle adjustment. If they lie in thezero-
weight region of the Tukey estimator, they are flagged as outliers.
Each outlier measurement is given a ‘second chance’ before dele-
tion: it is re-measured in the keyframe using the feature’s predicted
position and a far tighter search region than used for tracking. If a
new measurement is found, this is re-inserted into the map. Should
such a measurement still be considered an outlier, it is permanently
removed from the map.

These data association refinements are given a low priority in the
mapping thread, and are only performed if there is no other more
pressing task at hand. Like bundle adjustment, they are interrupted
as soon as a new keyframe arrives.

6.5 General implementation notes
The system described above was implemented on a desktop PC with
an Intel Core 2 Duo 2.66 GHz processor running Linux. Software
was written in C++ using the libCVD and TooN libraries. It has
not been highly optimised, although we have found it beneficial
to implement two tweaks: A row look-up table is used to speed
up access to the array of FAST corners at each pyramid level, and
the tracker only re-calculates full nonlinear point projections and
jacobians every fourth M-estimator iteration (this is still multiple
times per single frame.)

Some aspects of the current implementation of the mapping sys-
tem are rather low-tech: we use a simple set of heuristics to remove
outliers from the map; further, patches are initialised with a nor-
mal vector parallel to the imaging plane of the first frame they were
observed in, and the normal vector is currently not optimised.

Like any method attempting to increase a tracking system’s ro-
bustness to rapid motion, the two-stage approach describedsection
5.5 can lead to increased tracking jitter. We mitigate this with the
simple method of turning off the coarse tracking stage when the
motion model believes the camera to be nearly stationary. This can
be observed in the results video by a colour change in the reference
grid.

7 RESULTS

Evaluation was mostly performed during live operation using a
hand-held camera, however we also include comparative results us-
ing a synthetic sequence read from disk. All results were obtained
with identical tunable parameters.

7.1 Tracking performance on live video
An example of the system’s operation is provided in the accom-
panying video file1. The camera explores a cluttered desk and its
immediate surroundings over 1656 frames of live video input. The
camera performs various panning motions to produce an overview
of the scene, and then zooms closer to some areas to increase de-
tail in the map. The camera then moves rapidly around the mapped
scene. Tracking is purposefully broken by shaking the camera, and
the system recovers from this. This video represents the size of a
typical working volume which the system can handle without great
difficulty. Figure 3 illustrates the map generated during tracking.
At the end of the sequence the map consists of 57 keyframes and
4997 point features: from finest level to coarsest level, thefeature
distributions are 51%, 33%, 9% and 7% respectively.

The sequence can mostly be tracked in real-time. Figure 4 shows
the evolution of tracking time with frame number. Also plotted is
the size of the map. For most of the sequence, tracking can be per-
formed in around 20ms despite the map increasing in size. There

1This video file can also be obtained fromhttp://www.robots.
ox.ac.uk/∼gk/videos/klein 07 ptam ismar.avi

are two apparent exceptions: tracking is lost around frame 1320,
and the system attempts to relocalise for several frames, which
takes up to 90ms per frame. Also, around frame 1530, tracking
takes around 30ms per frame during normal operation; this iswhen
the camera moves far away from the desk at the end of the sequence,
and a very large number of features appear in the frame. Here,the
time taken to decide which features to measure becomes significant.

Keyframe preparation 2.2 ms
Feature projection 3.5 ms
Patch search 9.8 ms
Iterative pose update 3.7 ms
Total 19.2 ms

Table 1: Tracking timings for a map of sizeM=4000.

Table 1 shows a break-down of the time required to track a typi-
cal frame. Keyframe preparation includes frame capture, YUV411
to greyscale conversion, building the image pyramid and detect-
ing FAST corners. Feature projection is the time taken to initially
project all features in to the frame, decide which are visible, and de-
cide which features to measure. This step scales linearly with map
size, but is also influenced by the number of features currently in
the camera’s field-of-view, as the determinant of the warping ma-
trix is calculated for these points. The bulk of a frame’s budget is
spent on the 1000 image searches for patch correspondences,and
the time spent for this is influenced by corner density in the image,
and the distribution of features over pyramid levels.

7.2 Mapping scalability

While the tracking system scales fairly well with increasing map
size, this is not the case for the mapping thread. The largestmap
we have produced is a full 360◦ map of a single office containing
11000 map points and 280 keyframes. This is beyond our “small
workspace” design goal and at this map size the system’s ability to
add new keyframes and map points is impaired (but tracking still
runs at frame-rate). A more practical limit at which the system
remains well usable is around 6000 points and 150 keyframes.

Timings of individual mapping steps are difficult to obtain,they
vary wildly not only with map size but also scene structure (both
global and local); further, the asynchronous nature of our method
does not facilitate obtaining repeatable results from disksequences.
Nevertheless, ‘typical’ timings for bundle adjustment arepresented
in Table 2.

Keyframes 2-49 50-99 100-149
Local Bundle Adjustment 170ms 270ms 440ms
Global Bundle Adjustment 380ms 1.7s 6.9s

Table 2: Bundle adjustment timings with various map sizes.

The above timings are mean quantities. As the map grows be-
yond 100 keyframes, global bundle adjustment cannot keep upwith
exploration and is almost always aborted, converging only when the
camera remains stationary (or returns to a well-mapped area) for
some time. Global convergence for maps larger than 150 keyframes
can require tens of seconds.

Compared with bundle adjustment, the processing time required
for epipolar search and occasional data association refinement is
small. Typically all other operations needed to insert a keyframe
require less than 40ms.

7.3 Synthetic comparison with EKF-SLAM

To evaluate the system’s accuracy, we compare it to an implementa-
tion [30] of EKF-SLAM based on Davison’s SceneLib library with

http://www.robots.ox.ac.uk/~gk/videos/klein_07_ptam_ismar.avi
http://www.robots.ox.ac.uk/~gk/videos/klein_07_ptam_ismar.avi


Figure 3:The map and keyframes produced in the desk video. Top: two views of the map with point features and keyframes drawn. Certain
parts of the scene are clearly distinguishable, e.g. the keyboard and the frisbee. Bottom: the 57 keyframes used to generate the map.
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Figure 4: Map size (right axis) and tracking timings (left axis) for the desk video included in the video attachment. The timing spike occurs
when tracking is lost and is attempting relocalisation.
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the centre image shows the map produced by an up-to-date implementation of EKF-SLAM [30]. Trajectories compared to ground truth are
shown on the right. NB. the different scale of the z-axis, as ground truth lies on z=3.

up-to-date enhancements such as JCBB [19]. We use a synthetic
scene produced in a 3D rendering package. The scene consistsof
two textured walls at right angles, plus the initialisationtarget for
the SLAM system. The camera moves sideways along one wall to-
ward the corner, then along the next wall, for a total of 600 frames
at 600×480 resolution.

The synthetic scenario tested here (continual explorationwith
no re-visiting of old features, pauses or ‘slam wiggles’) isneither
system’s strong point, and not typical usage in an AR context. Nev-
ertheless it effectively demonstrates some of the differences in the
systems’ behaviours. Figure 5 illustrates the maps output from the
two systems. The method proposed here produces a relativelydense
map of 6600 features, of which several are clearly outliers.By con-
trast, EKF-SLAM produces a sparse map of 114 features with fully
accessible covariance information (our system also implicitly en-
codes the full covariance, but it is not trivial to access) ofwhich all
appear to be inliers.

To compare the calculated trajectories, these are first aligned so
as to minimise their sum-squared error to ground truth. Thisis
necessary because our system uses an (almost) arbitrary coordinate
frame and scale. Both trajectories are aligned by minimising error
over a 6-DOF rigid body transformation and 1-DOF scale change.
The resulting trajectories are shown in the right panel of figure 5.
For both trajectories, the error is predominantly in the z-direction
(whose scale is exaggerated in the plot) although EKF-SLAM also
fractionally underestimates the angle between the walls. Numeri-
cally, the standard deviation from ground truth is 135mm forEKF-
SLAM and 6mm for our system (the camera travels 18.2m through
the virtual sequence). Frames are tracked in a relatively constant
20ms by our system, whereas EKF-SLAM scales quadratically
from 3ms when the map is empty to 40ms at the end of the sequence
(although of course this includes mapping as well as tracking.)

7.4 Subjective comparison with EKF-SLAM

When used on live video with a hand-held camera, our system han-
dles quite differently than iterative SLAM implementations, and
this affects the way in which an operator will use the system to
achieve effective mapping and tracking.

This system does not require the ‘SLAM wiggle’: incremental
systems often need continual smooth camera motion to effectively
initialise new features at their correct depth. If the camera is sta-
tionary, tracking jitter can initialise features at the wrong depth. By
contrast, our system works best if the camera is focused on a point
of interest, the user then pauses briefly, and then proceeds (not nec-
essarily smoothly) to the next point of interest, or a different view
of the same point.

The use of multiple pyramid levels greatly increases the system’s

tolerance to rapid motions and associated motion blur. Further, it
allows mapped points to be useful across a wide range of distances.
In practice, this means that our system allows a user to ‘zoomin’
much closer (and more rapidly) to objects in the environment. This
is illustrated in Figure 6 and also in the accompanying videofile. At
the same time, the use of a larger number of features reduces visible
tracking jitter and improves performance when some features are
occluded or otherwise corrupted.

The system scales with map size in a different way. In EKF-
SLAM, the frame-rate will start to drop; in our system, the frame-
rate is not as affected, but the rate at which new parts of the envi-
ronment can be explored slows down.

7.5 AR with a hand-held camera

To investigate the suitability of the proposed system for ARtasks,
we have developed two simple table-top applications. Both assume
a flat operating surface, and use the hand-held camera as a tool for
interaction. AR applications are usable as soon as the map has been
initialised from stereo; mapping proceeds in the background in a
manner transparent to the user, unless particularly rapid exploration
causes tracking failure.

The first application is “Ewok Rampage”, which gives the player
control over Darth Vader, who is assaulted by a horde of ewoks. The
player can control Darth Vader’s movements using the keyboard,
while a laser pistol can be aimed with the camera: The projection of
the camera’s optical axis onto the playing surface forms theplayer’s
cross-hairs. This game demonstrates the system’s ability to cope
with fast camera translations as the user rapidly changes aim.

The second application simulates the effects of a virtual magni-
fying glass and sun. A virtual convex lens is placed at the camera
centre and simple ray-tracing used to render the caustics onto the
playing surface. When the light converges onto a small enough dot
– i.e., when user has the camera at the correct height and angle –
virtual burn-marks (along with smoke) are added to the surface. In
this way the user can annotate the environment using just thecam-
era. This game demonstrates tracking accuracy.

These applications are illustrated in Figure 7 and are also demon-
strated in the accompanying video file.

8 L IMITATIONS AND FUTURE WORK

This section describes some of the known issues with the system
presented. This system requires fairly powerful computinghard-
ware and this has so far limited live experiments to a single office;
we expect that with some optimisations we will be able to run at
frame-rate on mobile platforms and perform experiments in awider
range of environments. Despite current experimental limitations



Figure 6: The system can easily track across multiple scales. Here,
the map is initialised at the top-right scale; the user movescloser in
and places a label, which is still accurately registered when viewed
from far away.

some failure modes – and some avenues for further work – have
become evident.

8.1 Failure modes

There are various ways in which tracking can fail. Some of these
are due to the system’s dependence on corner features: rapidcam-
era motions produce large levels of motion blur which can decimate
most corners features in the image, and this will cause tracking fail-
ure. In general, tracking can only proceed when the FAST corner
detector fires, and this limits the types of textures and environments
supported. Future work might aim to include other types of features
– for example, image intensity edges are not as affected by motion
blur, and often conveniently delineate geometric entitiesin the map.

The system is somewhat robust to repeated structure and light-
ing changes (as illustrated by figures showing a keyboard andCD-
ROM disc being tracked) but such this is purely the happy result of
the system using many features with a robust estimator. Repeated
structure in particular still produces large numbers of outliers in the
map (due to the epipolar search making incorrect correspondences)
and can make the whole system fragile: if tracking falls intoa local
minimum and a keyframe is then inserted, the whole map could be
corrupted.

We experience three types of mapping failure: the first is a fail-
ure of the initial stereo algorithm. This is merely a nuisance, as it
is immediately noticed by the user, who then just repeats thepro-
cedure; nevertheless it is an obstacle to a fully automatic initialisa-
tion of the whole system. The second is the insertion of incorrect
information into the map. This happens if tracking has failed (or
reached an incorrect local minimum as described above) but the
tracking quality heuristics have not detected this failure. A more
robust tracking quality assessment might prevent such failures; al-
ternatively, a method of automatically removing outlier keyframes
from the map might be viable. Finally, while the system is very
tolerant of temporary partial occlusions, it will fail if the real-world
scene is substantially and permanently changed.

8.2 Mapping inadequacies

Currently, the system’s map consists only of a point cloud. While
the statistics of feature points are linked through common obser-
vations in the bundle adjustment, the system currently makes little
effort to extract any geometric understanding from the map:after

initially extracting the dominant plane as an AR surface, the map
becomes purely a tool for camera tracking. This is not ideal:virtual
entities should be able to interact with features in the map in some
way. For example, out-of-plane real objects should block and oc-
clude virtual characters running into or behind them. This is a very
complex and important area for future research.

Several aspects of mapping could be improved to aid tracking
performance: the system currently has no notion of self-occlusion
by the map. While the tracking system is robust enough to track
a map despite self-occlusion, the unexplained absence of features
it expects to be able to measure impacts tracking quality estimates,
and may unnecessarily remove features as outliers. Further, an effi-
cient on-line estimation of patch normals would likely be ofbenefit
(our initial attempts at this have been too slow.)

Finally, the system is not designed to close large loops in the
SLAM sense. While the mapping module is statistically able to
handle loop closure (and loops can indeed be closed by judicious
placement of the camera near the boundary), the problem liesin the
fact that the tracker’s M-Estimator is not informed of feature-map
uncertainties. In practical AR use, this is not an issue.

9 CONCLUSION

This paper has presented an alternative to the SLAM approaches
previously employed to track and map unknown environments.
Rather then being limited by the frame-to-frame scalability of in-
cremental mapping approaches which mandate “a sparse map of
high quality features” [5], we implement the alternative approach,
using a far denser map of lower-quality features.

Results show that on modern hardware, the system is capable of
providing tracking quality adequate for small-workspace AR appli-
cations - provided the scene tracked is reasonably textured, rela-
tively static, and not substantially self-occluding. No prior model
of the scene is required, and the system imposes only a minimal ini-
tialisation burden on the user (the procedure takes three seconds.)
We believe the level of tracking robustness and accuracy we achieve
significantly advances the state-of-the art.

Nevertheless, performance is not yet good enough for any un-
trained user to simply pick up and use in an arbitrary environment.
Future work will attempt to address some of the shortcomingsof
the system and expand its potential applications.
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