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ABSTRACT

In this paper, we present a unified approach for a drift-free and
jitter-reduced vision-aided navigation system. This approach is
based on an error-state Kalman filter algorithm using both relative
(local) measurements obtained from image based motion estima-
tion through visual odometry, and global measurements as a result
of landmark matching through a pre-built visual landmark database.
To improve the accuracy in pose estimation for augmented reality
applications, we capture the 3D local reconstruction uncertainty of
each landmark point as a covariance matrix and implicity rely more
on closer points in the filter. We conduct a number of experiments
aimed at evaluating different aspects of our Kalman filter frame-
work, and show our approach can provide highly-accurate and sta-
ble pose both indoors and outdoors over large areas. The results
demonstrate both the long term stability and the overall accuracy
of our algorithm as intended to provide a solution to the camera
tracking problem in augmented reality applications.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, Augmented, and Vir-
tual Reality; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Sensor Fusion

1 INTRODUCTION

Navigation for augmented reality systems using head mounted dis-
plays (HMDs) has very demanding requirements: It must estimate
highly accurate 3D location and 3D orientation of the user’s head in
real time. This is required by the system to know where to insert the
synthetic actors and objects in the HMD. In addition, the inserted
objects must appear stable. The presence of drift or jitter on in-
serted objects will disturb the illusion of mixture between rendered
and real world for the user.

In this paper, we present our work on the real-time navigation
component of an augmented reality training and gaming system,
which can be used both indoors and outdoors over large areas. The
system uses computer graphics and see-through head mounted dis-
plays to insert virtual actors, objects and sound effects into the
scene as viewed by each user. The virtual actors respond in real-
istic ways to actions of the user, taking cover, or firing back, or
milling as crowds etc. In this system, there is no need to instrument
the training/gaming facility; the individual users wear the primary
hardware. The augmented reality interface subsystem worn by each
individual user consists of a helmet mounted sensor platform (Fig-
ure 1) with front and back facing stereo cameras, inertial measure-
ment unit (IMU), a compact computer mounted on his backpack
and a see through HMD.

We introduce a new Kalman filter framework to fuse IMU data,
the local measurements from the distributed aperture visual odom-
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Figure 1: Our helmet mounted sensor platform.

etry algorithm with front and back facing stereo cameras [10], and
the global measurements from the visual landmark matching mod-
ule [18]. Our Kalman filter eliminates the constant velocity process
model used in [10], and is able to incorporate the global measure-
ments which are 3D to 2D feature point correspondences between
the pre-built landmark database and given query image. As shown
in Figure 2, the final estimated global pose is generated from the
filter instead of the landmark matcher as was done in [18].

This unified approach to fuse all the measurement data allows for
better handling of the uncertainty propagation through the whole
system. It is not possible in the framework of [18] in which the
Kalman filter output was used to locally propagate the navigation
solution from one landmark match instance to another with the pose
solution based on landmark matching effectively resetting the filter
output. By fusing both inertial and vision measurements, our sys-
tem is also more robust under challenging conditions where there
are insufficient visual clues to rely on.

The other advantage of our work is to eliminate a trade-off prob-
lem in [18]: landmark matching between the pre-built database and
the current query frame provides global fixes to prevent the esti-
mated poses from drifting during online tracking, but often lacks
precision which results in jitter. We found that the accuracy of pose
estimation from the landmark matcher decreases if there are fewer
landmark point matches closer to the camera where the depth es-
timation is more accurate. To reduce the jitter, we capture the 3D
local reconstruction uncertainty of each landmark point as a co-
variance matrix and implicity rely more on closer points as global
measurements in the Kalman filter. This provides more accurate
and stable pose estimation to fulfill the demanding requirements
for augmented reality systems.

2 PREVIOUS WORK

Prototype augmented-reality training/gaming systems require sig-
nificant infrastructure. For example, a few systems use video pro-
jectors to project images of virtual actors on walls of rooms within
a facility. Existing systems also have a limited ability to track users,
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Figure 2: System block diagram.

and to adapt virtual actions or their projection to the movements of
the users. GPS-based systems may be used for providing location
outdoors. However, the performance of these outdoor-only systems
decreases in challenging situations. Overall, providing high accu-
racy tracking over large indoor and outdoor areas (multiple square
miles) is a very challenging problem.

Real-time tracking by fusing visual and inertial sensors has been
studied for many years with numerous applications in robotics, ve-
hicle navigation and augmented reality. However, it is still unclear
how to best combine the information from these sensors. Since
inertial sensors are suited for handling no vision situations due
to fast motion or occlusion, many researchers use inertial data as
backup [1] or take only partial information (gyroscopes) from IMU
[17, 12, 5] to support vision-based tracking systems.

To better exploit inertial data, several researchers use an ex-
tended Kalman filter to fuse all measurements uniformly to a pose
estimate. They combine the filter with vision-tracking techniques
based on artificial markers [3], feature points, or lines. These sys-
tems show that the vision measurements effectively reduce the er-
rors accumulated from IMU. However, most of them conduct ex-
periments on either synthetic data [11] or simulated vision mea-
surements [4]. Some systems provide results on realistic data, but
within simple test environments [15] or small rooms [2]. Moreover,
they cannot eliminate the problem of long term drift over large areas
inherent in inertial-based navigation platform.

Due to recent advances in the image searching techniques, real-
time landmark matching with a large landmark database has be-
come possible [9, 16]. Zhu et al. [18] integrated visual landmark
matching to a pre-built landmark database in a visual-inertial navi-
gation system. The continuously updating landmark matching cor-
rects the long term drift in the system, and thus improves the overall
performance. However, they only used IMU data for transition be-
tween views where visual features are lost due to fast motion or
bad illumination. Moreover, landmark matching often lacks high-
precision in pose estimation, which is required for augmented real-
ity applications.

There are two major differences between our work and other
visual-inertial navigation systems. First, we adopt the so called
”error-state” formulation [14] in the extended Kalman filter. Un-
der this representation, there is no need to specify an explicit dy-
namic motion model which was used in [10] for a given sensor plat-
form. The filter dynamics follow from the IMU error propagation
equations which evolve slowly over time and therefore are more
amenable to linearization. The measurements to the filter consist
of the differences between the inertial navigation solution as ob-

Figure 3: Error-state Extended Kalman Filter block diagram with local
and global external measurements.

tained by solving the IMU mechanization equations and the exter-
nal source data, which in our case is the relative pose information
provided by visual odometry algorithm and global measurements
provided by the visual landmark matching process (Figure 3).

Second, our Kalman filter framework incorporates two comple-
mentary vision measurements based on state-of-the-art vision track-
ing techniques. Relative pose measurements based on feature track-
ing between adjacent frames are usually located very precisely.
Therefore, they do not jitter but suffer from drift or loss of track.
Landmark matching [18] provides correspondences between fixed
3D features in a pre-built database and 2D points on the query
frame. These measurements avoid drift but cause jitter. To make
the outputted pose not only accurate but also stable, we fuse both
local and global information in the filter.

3 EXTENDED KALMAN FILTER PROCESS MODEL

In our extended Kalman filter, we denote the ground (global coordi-
nate frame) to camera pose as PGC = [RGC TGC] such that a point
XG expressed in the ground frame can be transferred to the cam-
era coordinates by XC = RGCXG +TGC. Accordingly, TGC repre-
sents the ground origin expressed in the camera coordinate frame,
whereas TCG =−RT

GCTGC is the camera location in the ground co-
ordinate frame.

In this paper, without loss of generality and to keep the notation
simple, we will assume that the camera and IMU coordinate sys-
tems coincide so that PGI = PGC. In reality we use an extrinsic
calibration procedure to determine the camera to IMU pose PCI ,
(front left stereo camera is chosen as the master) as developed in
[8] and distinguish between PGI = PCIPGC and PGC.

The total (full) states of the filter consist of the camera location
TCG, the gyroscope bias vector bg, velocity vector v in global co-
ordinate frame, accelerometer bias vector ba and ground to camera
orientation qGC, expressed in terms of the quaternion representa-
tion for rotation, such that RGC = (|q0|2 −‖−→q ‖2)I3×3 +2−→q −→q T −
2q0

[−→q ]
×, with qGC = [q0

−→q T ]T and
[−→q ]

× denoting the skew-

symmetric matrix formed by −→q . For quaternion algebra, we follow
the notation and use the frame rotation perspective as described in
[6]. Hence, the total (full) state vector is given by

s = [qT
GC bT

g vT bT
a TT

CG]T . (1)



We use the corresponding system model for the state time evolution

q̇GC(t) =
1
2
(qGC(t)⊗ω(t)), ḃg(t) = nwg(t)

v̇(t) = a(t), ḃa(t) = nwa(t), ṪCG(t) = v(t)

where nwg and nwa are modeled as white Gaussian noise, and a(t)
is camera acceleration in global coordinate frame, and ω(t) is the
rotational velocity in camera coordinate frame. Gyroscope and ac-
celerometer measurements of these two vectors are modeled as:

ωm(t) = ω(t)+bg(t)+ng(t) (2)

am(t) = RGC(t)(a(t)−g)+ba(t)+na(t) (3)

where ng and na are modeled as white Gaussian noise and g is the
gravitational acceleration expressed in the global coordinate frame.

State estimate propagation is obtained by the IMU mechaniza-
tion equations

˙̂qGC(t) =
1
2
(q̂GC(t)⊗ ω̂(t)) (4)

˙̂v(t) = R̂T
GC(t)α̂(t)+g, (5)

˙̂x(t) = v̂(t), ˙̂bg(t) = 0, ˙̂ba(t) = 0 (6)

with ω̂(t) = ωm(t)− b̂a(t), and α̂(t) = am(t)− b̂a(t).
We solve the above system by fourth-order Runge-Kutta numer-

ical integration method. The Kalman filter error state consists of

δ s = [δΘT δbT
g δvT δbT

a δTT
CG]T (7)

according to the following relation between the total state and its
inertial estimate

qGC = q̂GC ⊗δqGC, with δqGC � [1 δΘT /2]T

bg(t) = b̂g(t)+δbg(t), ba(t) = b̂a(t)+δba(t)

v(t) = v̂(t)+δv(t), TCG(t) = T̂CG(t)+δTCG(t)

based on which we obtain (after some algebra) the following dy-
namic process model for the error state:

δ̇ s = Fδ s+Gn (8)

where

F =

⎡
⎢⎢⎢⎣

− [ω̂]× −I3 03x3 03x3 03x3
03x3 03x3 03x3 03x3 03x3

−R̂T
GC [α̂]× 03x3 03x3 −R̂T

GC 03x3
03x3 03x3 03x3 03x3 03x3
03x3 03x3 I3 03x3 03x3

⎤
⎥⎥⎥⎦ ,

n =

⎡
⎢⎣

ng
nwg
na
nwa

⎤
⎥⎦ , and G =

⎡
⎢⎢⎢⎣
−I3 03x3 03x3 03x3
03x3 I3 03x3 03x3
03x3 03x3 −R̂T

GC 03x3
03x3 03x3 03x3 I3
03x3 03x3 03x3 03x3

⎤
⎥⎥⎥⎦

4 VISUAL ODOMETRY AND LANDMARK MATCHING MEA-
SUREMENT MODEL

To incorporate visual odometry poses that are relative in nature,
we apply the same stochastic cloning approach developed in [13]
for our measurement model. In particular, we denote P1,2 as the
visual odometry pose estimate between two time instances 1 and 2,
and let the corresponding pose components of the state be denoted
by PG,1 and PG,2. Then defining T2,1 = RG,1(T2,G −T1,G), and

q1,2 = q−1
G,1 qG,2, and after lengthy algebra as similar to [13], we

obtain the following measurement equations

δzT =
[
R̂G,1(T̂2,G − T̂1,G)

]
× δΘG,1 + R̂G,1δT2,G (9)

− R̂G,1δT1,G +νT (10)

and
δzq = 1/2R̂T

1,2δΘG,2 −1/2δΘG,1 +νq (11)

where νT and νq are the Gaussian noise in translation and rota-
tion associated with the visual odometry pose solution. These mea-
surements are a function of the propagated error-state δ s2 and the
cloned error-state δ s1 from previous time instance, which require
modifications to the Kalman filter update equations (cf. [13]).

As for landmark matching, given a query image, landmark
matching returns the found landmark shot from the database es-
tablishing the 2D to 3D point correspondences between the query
image features and the 3D local point cloud, as well as the camera
pose PGL belonging to that shot. First, every 3D local landmark
point X is transferred to the global coordinate system via

Y = RLGX+TLG (12)

which can be written under small error assumption as

Ŷ+δY � (I− [ρ]×)R̂LG(X̂+δX)+ T̂LG +δTLG

where ρ is a small rotation vector. Neglecting second order terms
results in the following linearization

δY � R̂LGδX+
[
R̂LGX̂

]
× ρ +δTLG (13)

and letting X̃ = R̂LGX̂, the local 3D point covariance, ΣY , can be
represented in the global coordinate frame in terms of the local re-
construction uncertainty, ΣX and landmark pose uncertainty in ro-
tation and translation, ΣRLG and ΣTLG , as

ΣY � R̂LGΣX R̂T
LG +[X̃]×ΣRLG [X̃]T× +ΣTLG

After this transformation, the projective camera measurement
model is employed such that for each 3D point Y obtained above
and expressed in the current camera coordinate system as Z =
[Z1 Z2 Z3]T , the projection onto the normalized image plane is given
by

z = f (Z)+ν with f (Z) = [Z1/Z3 Z2/Z3]T (14)

where ν is the feature measurement noise with covariance Σν and

Z = RGCY+TGC = RGC(Y−TCG) . (15)

Under small error assumption

Ẑ+δZ � (I− [δΘ]×)R̂GC(Ŷ+δY− T̂CG −δTCG) .

Hence,

δZ � [
R̂GC(Ŷ− T̂CG)

]
× δΘ+ R̂GC(δY−δTCG)+ν .

Accordingly, the measurement equation in the error-states is given
by

δzL � HLδ s+η (16)

where the measurement Jacobian

HL = J f [JΘ 03×3 03×3 03×3 JδTCG
] (17)

with

J f =
[

1/Ẑ3 0 −Ẑ1/Ẑ2
3

0 1/Ẑ3 −Ẑ2/Ẑ2
3

]
(18)

JΘ =
[
R̂GC(Ŷ− T̂CG)

]
× , and JδTCG

= −R̂GC

and
Ση = J f [R̂GCΣY R̂T

GC]JT
f +Σν (19)

The above is applied to all the point correspondences returned as a
result of landmark matching, and all the matrices and vectors are
stacked to form the final measurement model equation.



Figure 4: 3D landmark points with associated covariance matrices
represented by ellipsoids. The red point (origin) denotes the camera
position.

5 3D LOCAL RECONSTRUCTION UNCERTAINTY MODEL

For our augmented reality training/gaming system, the landmark
database of the area where the exercise will take place is created
before-hand. Mainly, a pan-tilt unit captures both Lidar and stereo
imagery while panning full 360 degrees at regularly spaced inter-
vals. All the data is processed offline in a semi-automated manner
to produce high fidelity camera poses for each landmark shot stored
in the database that includes the image feature coordinates together
with their locally triangulated 3D coordinates (expressed in the left
camera frame), the 3D local reconstruction uncertainty captured as
a covariance matrix, and the associated camera pose for that shot.
Also feature descriptors are entered into a vocabulary tree to allow
fast indexing during online exercise.

To rely more on closer landmark point measurements in the fil-
ter to improve the accuracy in pose estimation, we model the 3D
reconstruction uncertainty ΣX of each 3D local landmark point
P = [Px Py Pz]T based on methods derived from [7]. The projection
from P to stereo image coordinates is

pl = [plx ply]T +n = [Px/Pz Px/Pz]T +n (20)

pr = [prx pry]T +n (21)

prx =
R1Px +R2Py +R3Pz +T1

R7Px +R8Py +R9Pz +T3

pry =
R4Px +R5Py +R6Pz +T2

R7Px +R8Py +R9Pz +T3

R =

⎡
⎣R1 R2 R3

R4 R5 R6
R7 R8 R9

⎤
⎦ , T = [T1 T2 T3]T

where pl and pr are 2D image coordinates for left image and
right image, R and T denote the stereo extrinsic transformation (ro-
tation matrix and translation vector) from the left camera to the right
camera, and n is the zero-mean Gaussian noise.

Given the above measurement model of equations (20) and (21),
the estimate of the 3D coordinates of P can be computed as

P̂x = plxP̂z

P̂y = plyP̂z (22)

P̂z =
T1 −T3 prx

prx(R7 plx +R8 ply +R9)− (R1 plx +R2 ply +R3)

Then the covariance matrix of P is

Figure 5: The timing of all the events in our system.

ΣX = J
[

I2 02x2
02x2 I2

]
JT (23)

where J is the matrix of first partial derivatives of (22) which
respect to plx, ply, prx, pry, or the Jacobian.

Figure 4 shows an example of 3D landmark points with their
associated covariance matrices as the reconstruction uncertainty in
the real-world coordinate system. We use an 3D ellipsoid around
the point’s centroid to represent its covariance matrix. The origin
of the system is the position of the camera. For points closer to
the camera, the ellipsoids are smaller because the 3D reconstructed
coordinates are more accurate.

6 HEAD PREDICTION FOR REAL-TIME IMPLEMENTATION

Even though our unified Kalman filter framework provides very ac-
curate camera poses, in a real-time mixed reality system, one of
the most important factors for virtual object insertion is the capa-
bility to rapidly compute the camera pose to avoid jitter caused by
the time lag between the most recently available camera pose in the
system and the rendering time instant.

Figure 5 demonstrates the timing of all the important events in
our system. Typically, video frames arrive at a rate much slower
than the imu data rate (15Hz versus 100Hz in our system). Af-
ter each video frame, visual odometry and Kalman filter require a
certain processing time (less than frame period) at which point the
camera pose corresponding to that frame is available. However, this
pose needs to be further corrected by additional processing in order
to avoid any problems due to the lag at insertion epochs. For this
purpose we use the IMU data that has been buffered in the system
between the latest frame time and the current render time. Prop-
agating the most recent pose by integrating all the IMU readings
till the current time instant provides the most accurate no-latency
camera pose which is sent to the renderer.

If the camera poses are lagged by a single frame period (66 mil-
liseconds at 15Hz frame rate), one can notice that without the head
prediction process the virtual object bounces around significantly
rather than stay still in place. However, with head prediction, all
the jitter arising from pose latency is eliminated (see supplemen-
tary videos).

7 EXPERIMENTAL RESULTS

In this section, we report a number of experiments aimed at eval-
uating different aspects of the performance of our Kalman filter
framework. We also demonstrate that our framework can provide
highly-accurate real-time tracking both indoors and outdoors over
large areas. Compared to [10, 18], we show our navigation system
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Figure 6: The estimated 3D trajectory by [10] (top) and our Kalman
filter (bottom) on the indoor sequence. The total traveled distance is
around 157.5 meters.

can provide more stable pose estimation to fulfill the demanding
requirements for augmented reality applications.

7.1 Performance of fusing visual odometry and inertial
data

We first compare the performance between our extended Kalman
filter and the method in [10] on the integration of visual odometry
and IMU data without landmark matching. For this experiment, we
collected two video sequences which demonstrate the exploitation
of IMU and visual odometry data.

In the first sequence, the user wearing our hardware system trav-
eled along a predefined closure route inside a building. There are
many places in the building where the visual odometry fails to work
properly due to poor illuminations or non-textured scenes. For ex-
ample, there are cases that all the cameras see mostly white walls
so that visual odometry cannot estimate pose accurately due to in-
sufficient features.

The user started from a fixed position at the second floor. He
walked through the corridor and took the stairs (along Z-axis) to
the first floor. Then he went through the corridor on the first floor,
took the stair at the other side of the building back to the second
floor, and went back to the start position. The whole video sequence
is around three and half minutes, and the total traveled distance is
around 157.5 meters.

The estimated 3D trajectory by our filter (Figure 6(bottom)) cor-
rectly depicts the structure of the two-floor building and the 3D loop
closure error is only 0.4639 meters ([10]: 0.6760 meters). Com-
pared to the results by [10], it shows our filter better combines the
information from IMU and visual odometry.

For the second sequence, the user walked on the planar ground
outdoors and traveled along a closure route. The total traveled dis-
tance is around 129 meters. The estimated trajectory by [10] is
shown in Figure 7(a). From the side view shown in Figure 7(a),
it is clear that there are distance deviations. The 3D loop closure
distance is 1.2020 meters. Our Kalman filter (Figure 7(b)), which
eliminates the constant velocity process model used in [10], gener-
ates a more flat trajectory. The 3D loop closure error by our filter is
only 0.3916 meters.
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Figure 7: The top and side views of the estimated trajectory by [10]
(a) and our Kalman filter (b) on the outdoor sequence. The total
traveled distance is around 129 meters.
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Figure 8: The top view of the estimated trajectories. Blue line shows
the estimated 3D trajectory by fusing IMU data and local measure-
ments (relative pose by visual odometry). Red line shows the esti-
mated 3D trajectory by fusing IMU data, local measurements, and
global measurements from landmark matching. The total traveled
distance is around 256 meters.



7.2 Performance of fusing local and global measure-
ments

Our Kalman filter allows for better handling of the uncertainty prop-
agation through the whole system, and is able to incorporate the
global measurements which are 3D to 2D feature point correspon-
dences from landmark matching [18]. To demonstrate the influence
to our filter by incorporating these global measurements, we col-
lected an outdoor sequence while the user wearing our system trav-
eled along a predefined path. We constructed the landmark database
of the area where the user would travel before-hand. The user trav-
eled around 256 meters (3 minutes and 40 seconds long) and went
back to the starting position. The result (Figure 8) shows that fusing
global measurements reduces the 3D loop closure error estimated
by our filter from 2.4873 meters to 0.5712 meters.

7.3 Real-time tracking over large areas

To demonstrate that our system can be used both indoors and out-
doors over large areas, Figure 9 shows the automatically generated
real-time camera trajectory corresponding to an 810 meter course
within our campus completed by a user wearing our helmet, back-
pack system, and a video-see-through HMD. This user walked in-
doors and outdoors in several loops. The entire area shown in the
map is within the pre-built landmark database capture range. The
landmark database is loaded in the beginning before the exercise
takes place and landmark matches occur whenever a query image is
within close proximity to a stored landmark shot in the database.

Figure 10 shows several screen shots corresponding to locations
towards the beginning, middle and end of this exercise obtained
from our visualization tool which we use to verify the accuracy of
the camera pose outputs. This visualization tool uses the camera
poses output by our system to render views from a 3D graphical
model built upon the same visual data as the landmark database
which also forms the global coordinate system. We compare the
render views to the actual video images. It is observed that these
views are in very good agreement which indicate how precisely the
camera is tracked throughout the entire duration of the course.

7.4 Pose estimation for augmented reality

During the same 810 meter course, we inserted virtual actors at par-
ticular locations based on the estimated pose and recorded the inser-
tion video which was seen by the user from the video-see-through
HMD. For example, we inserted one virtual actor right outside the
stone steps of our building. This video can verify whether the vir-
tual actors are correctly aligned to the real scene based on real-time
tracking. The pose estimation from our system needs to be very
accurate and stable during the whole course, otherwise it will brake
the illusion of mixture between rendered and real world for the user.

Figure 11 shows 8 snapshots of the video when the user went
through the entrance of our building at different loops during the
16.4-minute course. The positions of the inserted actor are very
consistent in these 8 snapshots. This result demonstrates that our
system is able to provide drift-free pose estimation for a long pe-
riod.

Compared to [18], the major improvement using our unified ap-
proach is to provide more stable pose estimation. Figure 12 shows
the frame-to-frame pose translation estimated by [18] and our filter
respectively. To save the space, we only show the translation over a
450-frame period taken from the whole 16.4 minutes video. Since
the walking speed of the user doesn’t change much in a very short
period (such as one frame, 0.0677 seconds), the translation between
frames should be very smooth.

However, in [18], landmark matching disturbs the consistency of
pose estimation due to the lack of high-precision. The peaks of the
green curve in Figure 12 correspond to the jitter of inserted virtual
actors viewed by the user. By capturing the 3D reconstruction un-
certainty of landmark points and thus relying more on closer points

Figure 9: Real-time computed camera trajectory corresponding to a
810 meter long course completed in 16.4 minutes during an online
exercise.

Figure 10: The views rendered from the model using the real-time
camera pose estimates by our system for various locations through-
out the exercise, together with the real scene views captured by the
camera.
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Figure 11: 8 snapshots taken from the video when the user went through the entrance of our building at different loops.
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Figure 12: The frame-to-frame estimated translation computed by [18] (green) and our system (blue).

as global measurements in the Kalman filter, our navigation sys-
tem can reduce the jitter in pose estimation for augmented reality
applications (see our supplementary videos).

8 CONCLUSION

We presented a unified Kalman filter framework using local and
global sensor data fusion for vision aided navigation related to aug-
mented reality applications. We showed results to demonstrate the
accuracy and robustness of our system both indoors and outdoors
over long duration and distance. Using a pre-built landmark data-
base of the entire exercise area provides precise tracking and elim-
inates the problem of long term drift inherent in any inertial based
navigation platform. Capturing the 3D reconstruction uncertainty
of landmark points improves the stability of pose estimation, which
is an essential requirement for an augmented reality system.
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