3D User Interface Techniques for Selection and Manipulation

Lecture #8: Selection and Manipulation
Spring 2011
Joseph J. LaViola Jr.

Interaction Workflow
Universal 3D Interaction Tasks

- Navigation
 - Travel - motor component
 - Wayfinding - cognitive component
- Selection
- Manipulation
- System control
- Symbolic input

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult
Lecture Outline

- What is 3D selection and manipulation?
- Relationship between IT and input device
- Manipulation technique classification
- Techniques
 - selection
 - manipulation
 - hybrid
- Isomorphism vs. Non-isomorphism

Selection & Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (position, orientation, scale, shape, color, texture, behavior, etc.)
Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

- Variables affecting user performance
 - object distance from user
 - object size
 - density of objects in area
 - occluders
Canonical Parameters

- Selection
 - distance and direction to target
 - target size
 - density of objects around the target
 - number of targets to be selected
 - target occlusion.

- Positioning
 - distance/direction to initial position
 - distance/direction to target position
 - translation distance
 - required precision of positioning

- Rotation
 - distance to target
 - initial orientation
 - final orientation
 - amount of rotation

3D Interaction Techniques and the Input Device

- Number of control dimensions
- Control Integration
- Force vs. Position control
- Device placement
- Form Factor
Technique Classification by Metaphor

VE manipulation techniques

- Exocentric metaphor
 - World-In-Miniature
 - Scaled-world grab

- Egocentric metaphor
 - Virtual Hand metaphor
 - "Classical" virtual hand
 - Go-Go
 - Indirect, stretch Go-Go
 - Virtual Pointer metaphor
 - Ray-casting
 - Aperture
 - Flashlight
 - Image plane

Technique Classification by Components

Manipulation

- Object Attachment
 - attach to hand
 - attach to gaze
 - hand moves to object
 - object moves to hand
 - user/object scaling
 - no control

- Object Position
 - 1-to-N hand to object motion
 - maintain body-hand relation
 - other hand mappings
 - indirect control

- Object Orientation
 - no control
 - 1-to-N hand to object rotation
 - other hand mappings
 - indirect control

Feedback

- graphical
- force/tactile
- audio
3D Selection and Manipulation

Techniques

- Pointing
 - ray-casting
 - two-handed pointing
 - flashlight & aperture
 - image plane
- Direct manipulation
 - simple virtual hand
 - Go-Go
 - WIM
- Hybrids
 - Homer
 - Scaled-World Grab
 - Voodoo Dolls

Pointing – Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction

\[p(\alpha) = h + \alpha \cdot \hat{p} \]

where \(0 < \alpha < \infty \)

\(h \) = 3D position of virtual hand
\(\hat{p} \) = ray attached to \(h \)
Pointing – Two-Handed Pointing

- Ray casting with 2 hands
- More control
 - distance between hands controls length
 - twisting curves pointer

\[p(\alpha) = h_l + \alpha \cdot (h_r - h_l) \]
where \(0 < \alpha < \infty \)

\[h_l = \text{3D position of left hand} \]
\[h_r = \text{3D position of right hand} \]

Pointing – Flashlight and Aperture

- Flashlight – soft selection technique
 - does not need precision
 - conic volume constant
- Aperture – extension to Flashlight
 - adjustable volume

\[p(\alpha) = e + \alpha \cdot (h - e) \]
where \(0 < \alpha < \infty \)

\[h = \text{3D position of hand} \]
\[e = \text{3D coordinates of viewport} \]
Pointing – Image Plane Family

- Requires only 2 DOF
 - selection based on 2D projections
 - virtual image plane in front of user

Direct Manipulation – Virtual Hand

- Select and manipulate directly with hands
- Hand represented as 3D cursor
- Intersection between cursor and object indicates selection

\[p_v = \alpha \cdot p_r, R_v = R_r \]

- \(p_r, R_r \) = position and orientation of real hand
- \(p_v, R_v \) = position and orientation of hand in VE
- \(\alpha \) = a scaling factor
Direction Manipulation – Go-Go

- Arm-extension technique
- Like simple v. hand, touch objects to select them
- Non-linear mapping between physical and virtual hand position
- Local and distant regions

\[r_i = F(r_i) = \begin{cases} r_i & \text{if } r_i \leq D \\ r_i + \alpha(r_i - D) & \text{otherwise} \end{cases} \]

where \(r_i \) = length of \(\mathbf{R}_r \)
\(r_c \) = length of \(\mathbf{R}_c \)
\(D, \alpha \) are constants

Direct Manipulation – WIM

- “Dollhouse” world held in user’s hand
- Miniature objects can be manipulated directly
- Moving miniature objects affects full-scale objects
- Can also be used for navigation
Hybrids - HOMER

- Hand-Centered
- Object
- Manipulation
- Extending
- Ray-Casting
 - Select: ray-casting
 - Manipulate: hand

HOMER Implementation

- Requires torso position t
- Upon selection, detach virtual hand from tracker, move v. hand to object position in world CS, and attach object to v. hand (w/out moving object)
- Get physical hand position h and distance $d_h = \text{dist}(h, t)$
- Get object position o and distance $d_o = \text{dist}(o, t)$
HOMER Implementation (cont.)

- Each frame:
 - Copy hand tracker matrix to v. hand matrix (to set orientation)
 - Get physical hand position h_{curr} and distance:
 $$d_{h-curr} = \text{dist}(h_{curr}, t)$$
 - V. hand distance
 $$d_v = d_{h-curr} \times \left(\frac{d_u}{d_h} \right)$$
 - Normalize torso-hand vector
 $$t_{h-curr} = \frac{h_{curr} - t}{\|h_{curr} - t\|}$$
 - V. hand position
 $$v_h = t + d_v \times (t_{h-curr})$$

Hybrids – Scaled-World Grab Technique

- Often used w/ occlusion
- At selection, scale user up (or world down) so that v. hand is actually touching selected object
- User doesn’t notice a change in the image until he moves
Scaled-World Grab Implementation

At selection:
- Get world CS distance from eye to hand d_{eh}
- Get world CS distance from eye to object d_{eo}
- Scale user (entire user subtree) uniformly by d_{eo} / d_{eh}
- Ensure that eye remains in same position
- Attach selected object to v. hand (w/out moving object)

At release:
- Re-attach object to world (w/out moving object)
- Scale user uniformly by d_{eh} / d_{eo}
- Ensure that eye remains in same position

Hybrids – Voodoo Dolls

- Two handed technique
- Builds upon image plane and WIM techniques
- Creates copies of objects (dolls) for manipulation
- Non-dominant hand – stationary frame of reference
- Dominant hand – defines position and orientation
Isomorphic vs. Non-Isomorphic Philosophies

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Isomorphic – one-to-one mapping
- Non-isomorphic – scaled linear/non-linear mapping

Non-Isomorphic 3D Spatial Rotation

- Important advantages
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e. vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Questions
 - faster?
 - more accurate?
Rotational Space

- Rotations in 3D space are a little tricky
 - do not follow laws of Euclidean geometry
- Space of rotations is not a vector space
- Represented as a closed and curved surface
 - 4D sphere or manifold
- Quaternions provide a tool for describing this surface

Quaternions

- Four-dimensional vector \((\mathbf{v}, w)\) where \(\mathbf{v}\) is a 3D vector and \(w\) is a real number
- A quaternion of unit length can be used to represent a single rotation about a unit axis \(\hat{u}\) and angle \(\theta\) as
 \[
 q = (\sin(\frac{\theta}{2}) \hat{u}, \cos(\frac{\theta}{2})) = e^{\frac{\theta}{2} \hat{u}}
 \]
Linear 0th Order 3D Rotation

- Let q_c be the orientation of the input device and q_d be the displayed orientation then

 \begin{align*}
 (1) \quad q_c &= (\sin(\frac{\theta}{2}) \hat{u}_c),\cos(\frac{\theta}{2})) = e^{i\frac{\theta}{2}}

 (2) \quad q_d &= (\sin(\frac{k\theta}{2}) \hat{u}_c),\cos(\frac{k\theta}{2})) = e^{k\frac{\theta}{2}} = q_c^k

 \end{align*}

- Final equations w.r.t. identity or reference orientation q_o are

 \begin{align*}
 (3) \quad q_q &= q_c^k \\
 (4) \quad q_d &= (q, q_o^{-1})^k q_o, \quad k = \text{CD gain coefficient}

 \end{align*}

Non-Linear 0th Order 3D Rotation

- Consider

 \begin{align*}
 (3) \quad q_d &= q_c^k \\
 (4) \quad q_d &= (q, q_o^{-1})^k q_o

 \end{align*}

- Let k be a non-linear function as in

 $\omega = 2\arccos(q_c \cdot q_o)$ or $\omega = 2\arccos(w)$

 $k = F(\omega) = \begin{cases}
 1 & \text{if } \omega < \omega_o \\
 f(\omega) = 1 + c(\omega - \omega_o)^2 & \text{otherwise}
 \end{cases}$

 where c is a coefficient and ω_o is the threshold angle
Design Considerations

- Absolute mapping – taken on i-th cycle of the simulation loop
 \[q_{d_i} = q_{c_i}^k \]

- Relative mapping – taken between the i-th and $i-1$th cycle of the simulation loop
 \[q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}} \]

Absolute Non-Isomorphic Mapping

- Generally do not preserve directional compliance
- Strictly preserves nulling compliance
Relative Non-Isomorphic Mapping

- Always maintain directional compliance
- Do not generally preserve nulling compliance

Amplified Non-Linear Rotation for VE Navigation (1)

- Users expect the virtual world to exist in any direction
 - 3-walled Cave does not allow this
 - adapt expected UI to work in restricted environment
- Amplified rotation allows users to see a full 360 degrees in a 3-walled display
- A number of approaches were tested
 - important to take cybersickness into account
Amplified Non-Linear Rotation for VE Navigation (2)

- Apply a non-linear mapping function to the user’s waist orientation θ and his or her distance d from the back of the Cave
- Calculate the rotation factor using a scaled 2D Gaussian function

$$ \phi = f(\theta, d) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(|\theta| - \pi (1 - d / L))^2}{2\sigma_2^2}} $$

- The new viewing angle is $\theta_{new} = \theta (1 - \phi)$

Amplified Non-Linear Rotation for VE Navigation (3)

$$ \sigma_1 = 0.57 $$
$$ \sigma_2 = 0.85 $$
$$ L = 30 $$
$$ \mu = \pi $$
Non-Linear Translation for VE Navigation (1)

- Users lean about the waist to move small to medium distances
 - Users can lean and look in different directions
- Users can also lean to translate a floor-based interactive world in miniature (WIM)
 - Step WIM must be active
 - User’s gaze must be 25 degrees below horizontal

Non-Linear Translation for VE Navigation (2)

- Leaning vector \vec{L}_R is the projection of the vector between the waist and the head onto the floor
 - Gives direction and raw magnitude components
- Navigation speed is dependent on the user’s physical location
 - Leaning sensitivity increases close to a boundary
- Linear function $L_T = a \cdot D_{\text{min}} + b$
- Mapped velocity $v = \| \vec{L}_R \| - L_T$
Non-Linear Translation for VE Navigation (3)

- Navigation speed is also dependent on the user’s head orientation with respect to the vertical axis
 - especially useful when translating the floor-based WIM
- Mapping is done with a scaled exponential function
 \[F = \alpha \cdot e^{-\beta|\vec{H} \cdot \vec{v}_{up}|} \]
- Final leaning velocity is \[v_{final} = F \cdot v \]

Next Class

- Navigation – Travel
- Readings
 - 3DUI Book – Chapter 5