
Statistical Visual Language Models for Ink Parsing
Michael Shilman, Hanna Pasula, Stuart Russell, Richard Newton

Department of Computer Science
University of California at Berkeley

Berkeley, CA 94720
{michaels, pasula, russell, newton}@eecs.berkeley.edu

Abstract1
In this paper we motivate a new technique for automatic
recognition of hand-sketched digital ink. By viewing sketched
drawings as utterances in a visual language, sketch
recognition can be posed as an ambiguous parsing problem.
On this premise we have developed an algorithm for ink
parsing that uses a statistical model to disambiguate. Under
this formulation, writing a new recognizer for a visual
language is as simple as writing a declarative grammar for the
language, generating a model from the grammar, and training
the model on drawing examples. We evaluate the speed and
accuracy of this approach for the sample domain of the SILK
visual language and report positive initial results.

Introduction
Since Ivan Sutherland pioneered pen-based computing with
his SketchPad system over three decades ago (Sutherland
1963), there has been a widely-held vision of unencumbered
tablet computers that present the feel of interactive, smart
paper. Over years, we have seen numerous prototype
systems that allow users express themselves directly in an
appropriate syntax for different application domains,
ranging from as flow-charts (Gross 1994) to mathematics
(Matsakis 1999) to music notation (Blostein and Haken
1999). Even less structured domains like user interface and
web page design can have their own domain-specific visual
notation (Lin et al. 2000). Researchers have shown that such
sketch-based applications can combine many of the benefits
of paper-based sketching with current electronic tools to
enable important new creative and collaborative usage
scenarios (Landay and Myers 1995).

Unfortunately, while we are on the verge of having suitable
mass-market hardware devices to support the pen computing
vision, we lack the software technology to adequately
implement many of the most useful software applications
that will run on these devices. This is not to say that
researchers haven’t built a variety of toolkits to support

sketch-based application prototyping. Existing toolkits
support digital ink capture and storage, facilities for
interpreting and beautifying sketched ink (Hong and
Landay 00), and even sophisticated reusable schemes for
user correction of incorrect interpretations (Mankoff,
Hudson, and Abowd 2000). However, we believe that the
problem of robust sketch recognition has been largely
ignored and is crucial to the ultimate success of sketch-
based user interfaces in the real world. The goal of this
research is to move beyond prototyping and push
recognition accuracies to a point where these systems are
useful and predictable to end users.

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Our work is based on the intuition that considering
multiple ambiguous interpretations in a well-characterized
syntactic context will result in far more accurate
interpretations. We formalize this intuition in a visual
language parsing framework, and describe an initial
solution based on a new statistical disambiguation
technique. In our implementation of this approach, a user
specifies a visual language syntax in a declarative grammar,
automatically generates a parser from the specification, and
trains the parser on a collection of drawing examples. For
a representative visual language we compare a standard
ambiguous parsing algorithm to our statistically-
augmented version and begin to quantify the performance
and accuracy benefits that come with a formal statistical
model. In addition to basic improvements in recognition
accuracy, the approach provides a simple way to trade-off
accuracy for speed.

Application Dialog box Web page

Figure 1. Hand-sketched SILK diagrams.

To demonstrate our technique, we have implemented a
recognizer for the SILK sketched visual language (Landay
and Myers 1995). SILK is a tool that allows users to sketch,
annotate, and evaluate graphical user interfaces in digital ink,
combining digital interactivity with the ease and flexibility
of paper. We use SILK examples throughout the paper to
illustrate points of our approach.

Previous Work
We suggest that current approaches to sketch recognition all
suffer from fundamental limitations in the accuracy they can
achieve due to their naïve treatment of the inherent
ambiguity in sketched drawings. Popular recognition
algorithms such as Rubine’s (Rubine 1991) recognize
shapes from individual strokes and are crippled by their lack
of contextual information. Recognition systems that
consider multiple strokes often employ some variant of a
parsing algorithm, in which a series of pattern matching
rules are fired hierarchically based on recognition of single
strokes (Helm, Marriot, and Odersky 1991, Gross 1996,
Landay 1996). In fact, most existing ink parsing approaches
are adapted from algorithms originally designed to operate
on unambiguous tokens, such as text typed in at the
keyboard or symbols dragged from a palette. However,
sketched ink is inherently ambiguous: a user-drawn square
might easily be misinterpreted as a circle if it is drawn with
rounded corners, or a circle might be misinterpreted as a
sloppily-drawn square. Without intelligent treatment of this
and other forms of drawing ambiguity, accurate sketch
recognition is not possible.

To deal with the inherent ambiguity in sketched drawings, a
recognizer must use context. Visual languages (Marriot and
Mayer 1997) provide such a context. In this view, a drawing
is a message communicated in sketched ink, and the
recognizer is a decoder for that message. Formal language
theory provides a well-understood and accepted language
for describing such messages (Aho and Ullman 1972). In
fact, the sketch recognition systems described in (Helm,
Marriot, and Odersky 1991, Gross 1996, Landay 1996) were
all based on variants of visual language grammars. However,
although these prior efforts provide a context for resolving
ambiguity, their use of grammars was primarily as a concise
way to specify valid visual structures, and did not focus on
ambiguity.

In contrast, there are plenty of other fields that have dealt
with ambiguity in various levels of formality. For instance,
ambiguity is a staple of linguists and formal language
theorists. As a simple example, in the sentence “He saw the
teacher with the glasses,” the phrase “with the glasses”
could modify either the noun “teacher” or the verb “to see.”
Similarly, visual languages have their own set of common
ambiguities. In his work on diagram parsing for scientific
document analysis, Futrelle enumerates numerous forms of

ambiguity in typeset diagrams, categorizing them as lexical
or structural (Futrelle 1999).

Lexical ambiguities are ambiguities at the level of the
terminal symbol. For instance, in the context of a drawing,
an arrow can be a vector (with position, orientation, and
magnitude), a transition (as in a finite-state diagram), or a
designator (pointing to an object).

(a)

(b)

(c)

(d)

Figure 2. A sketched diagram containing several
examples of ambiguity.

Structural ambiguities occur at non-terminal symbols and
involve spatial relationships between objects:

• Attachment ambiguity is typified by multiple
interpretations of what a text element is labeling (Figure
2a)

• Gap ambiguities occur when gaps in the diagram
imply omitted values for which the reader will choose
the correct filler (Figure 2b).

• Role ambiguities occur when the structure of part of
the picture is clear, but its role is not. For instance, in
Figure 2c, the legend could easily be mistaken for more
data.

• Segmentation ambiguities occur when single terminal
symbols are used to represent multiple syntactic entities.
For instance in Figure 2d, the tick marks at the origin
could simply be continuations of the axis line, rather
than distinct marks on their own.

• Occlusion ambiguities occur when visual occlusion
gives rise to multiple interpretations of the scene.

Sketched visual languages add at least two new forms of
ambiguity that must be considered when parsing:

• Label ambiguity, in which the labeling of basic shapes
is ambiguous, as in the square-circle case mentioned
earlier.

• Attribute ambiguity, in which there is uncertainty
about any attributes of the shapes. For example, the
point that defines the tip of an arrow-head is not given
explicitly by the user, and must be derived by the low-
level recognizer.

An explicit treatment of ambiguity in visual languages
enables the application of existing disambiguation
techniques. For instance, many of the documented
disambiguation techniques for string languages generalize to
attribute grammars (Maddox 1997), which are a flexible
way to carry context in a parsing operation. Statistical
models are another common disambiguation technique for
string languages. With this approach, ambiguity is
represented as probability distributions over variables that
affect parsing results. These models are particularly useful
for domains with continuous components, such as speech
and handwriting recognition. For example, Hidden Markov
Models (Rabiner and Juang 1996) and N-grams have been
used successfully in both domains.

Our Approach
In the previous section, we established ambiguity as a key
problem in sketch recognition and outlined the ways
ambiguity has been handled in the past. Our work combines
a visual language formalism reminiscent of (Helm, Marriott,
and Odersky 1991) with a novel statistical model for
disambiguation. In this section, we describe our approach in
detail. We start with an overview of the system, including
our visual language specification language and examples.
Next, we describe our statistical model and relate this to the
visual language. Finally, we describe the parsing algorithm
which performs inference on the statistical model.

Overview
In our system, the process of constructing a new recognizer
for a visual language consists of writing a declarative
grammar for the language, generating a model from the
grammar, and training the model on example drawings. The
resulting recognizer is a software component that accepts
raw ink strokes as input, and returns parse trees as its output
(Figure 3). The recognizer can operate on a set of strokes
(in batch), or incrementally on individual strokes as they are
added, although the details of these two modes are outside
the scope of this paper.

Statistical
Parser

Statistical
Parser

Visual
Language
Grammar

Strokes Parse Tree

Parser
Generator
Parser

Generator

Statistical
Grammar

Statistical
Grammar
Labeled

Data

Compile-Time

Run-Time

Figure 3. High-level system schematic.

As in (Helm, Marriott, and Odersky 1991), our visual
language specification is a declarative context-free
grammar. Each rule in the grammar consists of a left-hand
side, which is a label, and a right hand side which is a set
of <name, label> pairs representing entities on the page
and a set of spatial constraints amongst these entities. For
example, the “scrollbar” rule from the SILK language is
represented in the following way:

vscroll ::= border:vrect handle:square
upArrow:upTri downArrow:downTri {
 // top and equal width
 dist(upArrow.NORTH,border.NORTH).
 range(0,20);
 widthRatio(upArrow,border).range(.4,1.1);

 // bottom side and equal width
 dist(downArrow.SOUTH,border.SOUTH).
 range(0,20);
 widthRatio(downArrow,border).
 range(.4,1.1);

 // center and equal width
 deltaX(handle.CENTER,border.CENTER).
 range(-20,20);
 deltaY(handle.CENTER,border.CENTER).
 range(-30,30);
 widthRatio(handle,border).range(.4,1.1);
}

In this example, the constraints between variables are
represented as hand-coded thresholds. These thresholds are
analogous to those used in existing systems, such as
(Landay 1996). They are used initially to help generate
ground truth data for training the model, but the primary
purpose of constraints is to indicate which spatial
relationships are significant for the statistical model, which
will override these initial values.

The full set of relations that are expressible in the grammar
is:

• Distance, DeltaX, DeltaY – Distance measures
between sites on an entity

• Angle – Angles between sites on an entity

• WidthRatio, HeightRatio – Size ratios between entities

• Overlap – Degree of overlap between entities

While these relations are not expressive enough to capture
all visual languages, we believe that it is sufficient to
demonstrate our approach on meaningful examples.

Statistical Model
No previous work has applied a statistical language model
approach to contextual disambiguation of sketched
drawings. Yet such an approach seems to be a natural fit
for the ambiguity characteristics of sketched drawings (i.e.
noise on continuous variables). Thus, given a visual
language grammar, the primary contribution of this work is
to synthesize a statistical model for disambiguation.

Statistical parsing algorithms work by calculating the
maximum likelihood parse of its inputs. That is, given a
grammar annotated with probability distributions and an
observed page of ink, the parser determines the highest-
confidence invocation of rules to generate that ink. For
string parsing, the Viterbi algorithm is a standard method of
calculating this parse (Rabiner and Juang 1996). However,
to our knowledge there are no documented analogs for
statistical visual language parsing.

Inspired by statistical string parsing techniques, our model
is based on Bayesian statistics. In other words, the model is
generative, meaning roughly that it encodes p(ink | label)
and p(label) and uses this to derive p(label | ink) for
observed ink. The application of this concept is seen clearly
in the naïve Bayesian classifier, which is a common
technique for statistical classification, and a precursor for
our own model (Jordan and Bishop 2000). The classifier
determines a label from a series of observed features. In the
case of basic shape recognition, the label is a value such as
“square” or “circle”, and the features are scalar values
measured from the ink such as aspect ratio, number of
corners, total curvature, etc. The model encodes each
p(label) and p(featurei | label), which are distributions
learned from a training set. Visually, the relationship
between the label and each of the features can be
represented in the following way, using the “graphical
model” notation of (Jordan and Bishop 2000):

…

feature 1

feature 2

feature n

label

Figure 4. Graphical model for a naïve Bayesian classifier.

In this representation, filled nodes are observed variables,
empty nodes are unobserved, and edges represent
dependence relationships. The figure shows that the features
are only related to one another through the label, and are not
directly dependent on one another. In general, this may not
be the case, but practically this assumption does not cost too
much in final accuracy. Given this assumption, p(label |
features) can be calculated through a simple application of
Bayes rule:

∑ ∏
∏

=
∧

=

l f
i

f
i

i

i
i

i

i

lfplp

lfplp

fp
flpflp

}{

}{

)|()(

)|()(

})({
}){(}){|(

In this derivation, l is the class label and fi is the i’th feature.
The values p(l) and p(fi | l) are obtained by some form of
parameter estimation, such as training or guess. The first
step of the derivation is a direct application of Bayes rule.

To get from the first step to the second, the structure of the
graphical model is used to separate the numerator into a
product of simpler conditionals, and we normalize over all
possible class labels to derive the denominator.

Our extension of this concept to visual language parsing
encodes features for basic shape recognition, borrowed
from (Rubine 1991), as well as the spatial relations from
the grammar. In our model, the spatial relations given by
the grammar are converted from hand-coded ranges into
learned Gaussian probability distributions:

0

1

0

1

constraints

distributions

Figure 5. Variables such as distance typically
represented in parsers as thresholded ranges can also

be viewed as statistical distributions.

For example, a statistical representation of the scrollbar
rule from above would be:

vscroll ::= border:vrect handle:square upArrow:upTri
dnArrow:downTri {
 // top and equal width

dist(upArrow.NORTH,border.NORTH).gaussian(11.3,5.0);
 widthRatio(upArrow,border).gaussian(.6,.4);

 // bottom side and equal width
 dist(dnArrow.SOU,border.SOU).gaussian(18.7,10.1);
 widthRatio(downArrow,border).gaussian(.8,1.1);

 // center and equal width
 deltaX(handle.CENTER,border.CENTER).gaussian(-
5.3,21.5);

deltaY(handle.CENTER,border.CENTER).gaussian(5.5,30.1);
 widthRatio(handle,border).gaussian(.7,.9);
}

Using the graphical model notation above, our model is
represented as:

Basic
Labels Basic

Features

Composite
Features

Composite
Label

N

M

P

Figure 6. Graphical model for our composite statistical
representation of a visual language.

To simplify the diagram, we have added “plates” as
syntactic sugar for multiplicity. In other words, the sub-tree
containing the basic labels and features is equivalent to the
Naïve Bayesian Classifier. Basic features are those of
(Rubine 1991). Basic labels are shapes, such as square,
circle, etc. Composite features are our spatial relations
encoded in the grammar, such as distance, overlap, etc.
Composite labels are the right-hand sides in the grammar,
such as vscroll. This model can be extended hierarchically
upward to capture the full visual language. To perform
inference on the model, an analogous derivation to that of
the naïve Bayesian classifier yields:

∑ ∏∏

∏∏
=

∧

∧∧
=∧

L f
j

l
i

f
j

l
i

ji

ji
ji

ji

ji

LfpLlpLp

LfpLlpLp

flp
flLp

flLp

}{}{

}{}{

)|()|()(

)|()|()(

}){}({
}){}{(

}){}{|(

where L is the composite label, li is the i’th basic label, and
Fj is the j’th composite feature.

Parsing Algorithm
As introduced in the previous section, the purpose of the
statistical model is to relate observed pen strokes to
probabilities on parse tree nodes. However, to evaluate the
model on a particular page of ink, we need some an
approximation technique to tractably search through the
different possibilities. We accomplish this through a simple
parsing algorithm.

Our parsing algorithm is implemented in a somewhat naïve
way. Rather than focusing on reducing the two-dimensional
parsing algorithm to a standard LR parsing algorithm or
making use of spatial locality to prune the search, we
focused on a simple incremental approach. Each time a
symbol is added to the scene, only parses that are relevant to
that new symbol are added to the parse tree (Figure 7).

Figure 7. An incremental parse only computes the

necessary new nodes in the tree.

This algorithm is implemented by the following piece of
pseudocode.

NodeList parse(Node n) {
 NodeList out = new NodeList();
 foreach Rule r with n’s label in right hand side {
 foreach NodeSet s containing n whose
 labels match r’s right hand side {
 Node n2 = r.match(s);
 if(n2 != null && n2.getConfidence() >
 THRESHOLD_CONFIDENCE) {
 out.concat(parse(n2));
 }
 }
 }
 return out;
}

In this code, the only “black box” is the rule’s match
method. The match method takes as its argument a set of
parse tree nodes, and returns a new parse tree node that has
been added to the tree if the given set matches the rule’s
criteria. Otherwise it returns null to denote that no match
has been made. Typically match methods are synthesized
from the model, although in our implementation it is also
possible to hand-code them for more fine-grained control
of what constitutes a match.

Each node also has a confidence attached, computed using
the statistical model as described in the previous section.
This confidence is compared to a parameter which prunes
low-confidence nodes. The experimental part of this
project, described below, measures the effects of varying
this parameter on the speed and accuracy of the parsing
algorithm.

Initial Evaluation
Our evaluation was conducted on a grammar for a larger
set of SILK widgets. The grammar included rules for
some common widgets, including buttons, scrollbars,
check boxes, radio buttons, menus, and panels, as well as
logical layouts in which to combine them. A small set of
slightly over 600 user files was collected from a handful of
users and manually labeled. We used 80% of the files to
train the statistical model and the rest of the files to test our
approach.

The speed and accuracy of the system was evaluated
relative to a thresholded parsing algorithm, reminiscent of
numerous existing approaches such as (Helm, Marriott,
and Odersky 1991). As described in the previous section,
our algorithm can be tuned with a pruning parameter. We
found that for a wide range of parameter values it
outperforms existing work in both recognition accuracy
and execution speed. These results are summarized below:

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

1/Speed

St
ro

ke
-L

ev
el

 A
cc

ur
ac

y

Top1

Top3

Top3'

Top1'

This figure depicts the accuracy of our recognizer versus
1/speed. The accuracy is measured as percentage correct
stroke labeling (Top1) and also whether the correct labeling
was in the top three choices, for ease of correction (Top3).
1/Speed is measured as number of nodes visited. We
measured it this way rather than in user time to normalize
out implementation details. The curves represent different
thresholds, and the stars represent the unassisted Rubine’s
recognizer with a thresholded parser. Because the stars
occur below the curves, we conclude that for many values of
the threshold parameter our statistical approach is a
substantial improvement over its thresholded equivalent.

Subjectively, we found that nearly all of the errors
committed by this algorithm ultimately resulted from
nonsensical classification results returned by the basic shape
classification from Rubine’s feature set. These typically
occurred in situations where the user sketched very quickly
and the basic shape was significantly distorted. In these
cases, the algorithm either pruned those choices early on, or
couldn’t compensate for this error with context due to some
ambiguity in the spatially-defined choices.

As for real execution speed, the algorithm runs in real-time
for the small drawings (< 100 strokes) that we tested it with.
In our limited experience with unconstrained freeform notes
containing both writing and drawings, the number of strokes
is anywhere from 400 average to 5000 maximum. It is
unclear whether the current algorithm would scale to larger
files such as this, though we are aware of other
approximation algorithms from the Machine Learning
community, such as MCMC (Neal 1993), which might be
preferable alternatives for our simple parsing algorithm.

Conclusions and Future Work
In this paper, we pose sketch understanding as a visual
language parsing problem. We formalize the ambiguity of
sketched visual languages in a new way and motivate the
use of statistical disambiguation techniques to resolve it. We
then present a practical methodology for building statistical
models of context-free visual languages, as well as a parsing
algorithm that can trade off speed and accuracy. We have

used this approach to build a parser for the SILK visual
language. According to initial experimental results, the
approach appears to be both faster and more accurate than
previous grammar-based recognition techniques when
applied to this domain.

We plan to expand the evaluation of work through the use
of more sophisticated metrics and with more data over a
broader range of visual languages. Most statistical methods
require a significant amount of training data to start
performing really well, and our training set was sparse.

In addition, this work raises the following open questions:

• Are there better statistical models for visual language
disambiguation?

• Can stroke sequence help disambiguate further? Is it
appropriate to encode this in the model?

• Are there better ways to evaluate the model than the
simple parsing algorithm presented here?

Acknowledgments
This work was supported in part by the MARCO/DARPA
Gigascale Silicon Research Center and Synopsys. We also
thank Joern Janneck, John Reekie, Heloise Hse, and Andy
Begel for valuable discussions and feedback.

References
M. Gross 1996. The Electronic Cocktail Napkin – A
computational environment for working with design
diagrams. Design Studies, 17(1):53--69.

J. Landay and B. Myers 1995. Interactive Sketching for the
Early Stages of User Interface Design. Proceedings of CHI
'95, Denver, CO, pp. 43-50.

A. Aho and J. Ullman 1972. The Theory of Parsing,
Translation and Compiling, Vol. I: Parsing. Prentice-Hall,
Englewood Cliffs, N.J.

R. Futrelle 1999. Ambiguity in Visual Language Theory
and its Role in Diagram Parsing. IEEE Symposium on
Visual Languages 1999, Tokyo, JP. pp. 172-175.

D. Rubine 1991. Specifying gestures by example.
SIGGRAPH 91, Las Vegas, NV. July 1991, p.329-37.

M. Jordan and C. Bishop 2002. Graphical Models for
Statistical Learning. Forthcoming.

R. Helm, K. Marriott, and M. Odersky 1991. Building
visual language parsers. CHI '91. New Orleans, LA, April
1991. pp.105-112.

J. Lin, M. Newman, J. Hong, and J. Landay 2000, DENIM:
Finding a Tighter Fit Between Tools and Practice for Web
Site Design. In CHI Letters: Human Factors in Computing
Systems, CHI 2000. 2(1): pp. 510-517.

J. Hong and J. Landay 2000. SATIN: A Toolkit for Informal
Ink-based Applications. Proceedings of User Interfaces and
Software Technology: UIST 2000, San Diego, CA.,
November 2000.

I. Sutherland 1963, SketchPad: A Man-Machine Graphical
Communication System, in AFIPS Spring Joint Computer
Conference. 23. pp. 329-346.

M.D. Gross 1994. Stretch-A-Sketch: a dynamic diagrammer.
Proceedings. IEEE Symposium on Visual Languages. Los
Alamitos, CA, USA: IEEE Comput. Soc. Press.

D. Blostein and L. Haken 1999. Using Diagram Generation
Software to Improve Diagram Recognition: A Case Study of
Music Notation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 21, No. 11

J. Mankoff, S. Hudson, and G. Abowd 2000. Providing
Integrated Toolkit-Level Support for Ambiguity in
Recognition-Based Interfaces. In Proceedings of CHI 2000.
April, 2000.

N. Matsakis 1999. Recognition of Handwritten
Mathematical Expressions. Master’s Report, Massachusetts
Institute of Technology.

J. Landay 1996. Interactive Sketching for the Early Stages
of User Interface Design. Ph.D. dissertation, Report #CMU-
CS-96-201, Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA.

K. Marriott and B. Mayer 1997. On the classification of
visual languages by grammar hierarchies. Journal of Visual
Languages and Computing, vol.8, (no.4), Academic Press,
Aug. 1997. p.375-402.

W. Maddox 1997. Incremental Static Semantic Analysis.
Ph.D. dissertation TR-UCB-CSD-97-948. Computer
Science Division (EECS), University of California,
Berkeley.

L. R. Rabiner and B. H. Juang 1986. An Introduction to
Hidden Markov Models. IEEE ASSP Magazine, pp. 4-16.

R. Neal 1993. Probabilistic Inference using Markov Chain
Monte Carlo Methods. Dept. of Computer Science,
University of Toronto. Technical Report CRG-TR-93-1.

	Introduction
	Previous Work
	Our Approach
	Overview
	Statistical Model
	Parsing Algorithm

	Initial Evaluation
	Conclusions and Future Work
	Acknowledgments
	References

