
GRAPHICAL INPUT THROUGH MACHINE RECOGNITION OF SKETCHES

Christopher F. Herot
Architecture Machine Group, Department of Architecture

Massachusetts Institute of Technology, Cambridge, Massachusetts

A family of programs has been developed to allow graphical input through continuous digitizing. Drawing data, sampled at a high and constant
rate, is compressed and mapped into lines and splines, in two and three dimensions. This is achieved by inferring a particular user's intentions
from measures of speed and pressure.

Recent experiments have shown that even the most basic inference making cannot rely solely upon knowledge of the user's drawing style, but
needs additional knowledge of the subject being drawn, the protocols of its domain, and the stage of development of the user's design. This
requirement implies a higher level of machine intelligence than currently exists. An alternate approach is to increase the user's involvement in
the recognition process.

Contrary to previous efforts to move from sketch to mechanical drawing without human intervention, this paper reports on an interactive
system for graphical input in which the user overtly partakes in training the machine and massaging the data at all levels of interpretation. The
initial routines for data compression employ parallel functions for extracting such features as bentness, straightness, and endness. These are
planned for implementation in microprocessors.

Results offer a system for rapid (and enjoyable) graphical input with real-time interpretation, the beginnings of an intelligent tablet.

1. INTRODUCTION

There are many areas of human endeavor which could benefit from the use
of computer aids if there existed an effective means of communicating
about these tasks with a machine. While the field of computer graphics arose
to fill that need, it has too often added a new level of complexity. In
computer-aided design, for instance, the process of "digitizing" is suffi-
ciently cumbersome to delay its application until a relatively complete
design has been produced by the human designer. The result is usually more
akin to computer-aided evaluation or manipulation than to computer-aided
design. The research described here is motivated by the desire to involve the
computer in the early stages of the design process, where the feedback
generated by the machine can be most useful. The medium chosen is free-
hand sketching, as done with pencil and paper, as could be done at a data
tablet. A machine is postulated to be looking on while the user is sketching.
It could make inferences not only about the meaning of the sketch but also
about the user's attitudes toward, and uncertainties about, his design.

This approach offers its own unique set of problems and solutions, since the
data available to the machine are at once plentiful and incomplete. While
the ultimate implementation assumes a near-human intelligence on the part
of the machine, far off in time, there are many interesting things to be
learned along the way.

Our previous experiments[1, 2, 3, 4] have been directed toward the
creation of a "passive" input system which would make fairly complete
inferences about a sketch while requiring a minimum of intervention from
the user. The programs we used in these projects involved many levels of
interpretation. From the 100 pen positions sampled each second, the
machine would have to find lines, curves, and corners, building a description
of a two-dimensional object. This description could be interpreted further,
possibly as a three-dimensional description.

The following sections depict three experiments in computer processing of
sketches. HUNCH, described in the next section, was directed toward
answering the following question: Does there exist a syntax of sketching,
something which could be processed independently of the embedding

semantics? Could a machine make useful interpretations of a sketch without
employing a knowledge of the subject domain? The mixed results of that
experiment led to the investigation described in section 3, a rather ambi-
tious effort to make use of architectural knowledge in recognizing a sketch.
Finally, section 4 reports on current work which places more emphasis on
user involvement in the input process.

2. THE HUNCH SYSTEM

HUNCH is a name given to a set of FORTRAN programs which were de-
signed to process freehand sketches drawn with a data tablet or light pen.
Each program performs a different level of interpretation, storing its output
in a file where it can be used as input by the other programs. Facilities exist
to display and manipulate various stages of interpretation. The relationships
among the programs are illustrated below.

97

IDTC
Fig. 1 - The HUNCH System

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.Siggraph ’76, July 14-16 Philadelphia, Pennsylvania

The sys tem cur ren t ly runs under the MAGIC[5] opera t ing system on a 64K
b y t e I n t e r d a t a m i n i c o m p u t e r . T h e M A G I C s y s t e m a l l o w s a p r o g r a m t o u s e
a n y g r a p h i c a l i n p u t o r o u t p u t d e v i c e i n a d e v i c e - i n d e p e n d e n t m a n n e r , i n -
cluding a refresh display with light pen, a storage tube, a raster scan display,
a large digitizer-plotter, and several varieties of data tablets.

The user of the system typically sits down at a table and draws with a
b a l l p o i n t p e n o n a p i e c e o f p a p e r t a p e d t o t h e s u r f a c e o f a d a t a t a b l e t .
C o n s i d e r a b l e e f f o r t was e x p e n d e d t o p r o v i d e a n e n v i r o n m e n t a s c l o s e t o
ske tch ing as poss ib le . One o f the tab le ts p rov ided measures th ree fee t by

F i g . 2 - Large Da ta Tab le t

f o u r f e e t s o a s t o a l l o w l a r g e d r a w i n g s . A s p e c i a l p e n c i l was constructed so
t h a t t h e u s e r c o u l d w o r k w i t h t h e m o r e c u s t o m a r y g r a p h i t e r a t h e r t h a n a
b a l l p o i n t pen.[6] T h e p e n c i l w a s d e s i g n e d w i t h t h e a d d i t i o n a l i n t e n t i o n o f

Fig. 3 - Pencil

m a k i n g t h e r e c o r d o n p a p e r c o r r e s p o n d t o t h e r e c o r d i n t h e m a c h i n e . T h i s i s
ach ieved by an e raser on the penc i l wh ich has i t s own sense co i l , so tha t
e rasures on the paper can be recorded by the mach ine , in some sense, such
as negat ive l ine .

I n t h e c u r r e n t c o n f i g u r a t i o n t h e c o m p u t e r s a m p l e s t h e p o s i t i o n o f t h e p e n
a t c o n s t a n t i n t e r v a l s , v a r i a b l e u n d e r p r o g r a m c o n t r o l f r o m 1 6 t o 2 0 0 p o i n t s
per second . The da ta (100 p o i n t s p e r i n c h i n X a n d Y a n d 3 l e v e l s o f Z) i s
stored in a disk file or on magnetic tape. Since the sample rate is constant, it

i s p o s s i b l e t o d e t e r m i n e t h e s p e e d a s w e l l a s p o s i t i o n a t a n y p o i n t i n t h e
sketch.

F i n d i n g C u r v e s , C o r n e r s , e n d L i n e s

The original HUNCH system was conceived around a program called
STRAIT, which found corners in a sketch as a function of speed, com-
p r e s s i n g t h e 1 0 0 p o i n t s p e r s e c o n d f r o m t h e t a b l e t i n t o a m u c h s m a l l e r l i s t
o f e n d p o i n t s o f l i n e s . T h e c e n t r a l a s s u m p t i o n w a s t h a t s p e e d c o u l d b e
in te rp re ted as a measure o f in ten t -a qu ick ly d rawn l ine was in tended l ess
l i t e r a l l y t h a n a s l o w l y d r a w n o n e . A s a h a p p y c o i n c i d e n c e , i t a l s o t u r n e d o u t
that as a result of the finite mass of the pen and hand, the speed necessarily
decreased a t corners . A l l tha t was necessary to f ind corners was to look fo r
m i n i m a i n t h e s p e e d f u n c t i o n . (N o t i c e t h e b u n c h i n g o f r a w d a t a p o i n t s a t
t h e c o r n e r s i n t h e p r e v i o u s f i g u r e .)

F i g . 5 - S p e e d F u n c t i o n f o r F i g u r e 4

Curves were cons idered to be a spec ia l case o f corners . Wi th the ass is tance
of Dr. Richard Riesenfeld we decided to fit them to B-splines[7]. When
the curva ture o f a corner was too g radua l , o r the speed ind ica ted tha t i t was
d r a w n t o o c a r e f u l l y , t h e o u t p u t o f t h e s t r a i g h t e n i n g p r o g r a m w a s f l a g g e d t o
c a u s e s u b s e q u e n t i n v o c a t i o n o f t h e c u r v e - f i t t i n g p r o g r a m . CURVIT w o u l d
make one or more passes over the raw da ta a t p laces po in ted to by the
o u t p u t o f S T R A I T , p r o d u c i n g i t s o w n o u t p u t f i l e .

Fig. 6 -Output of STRAIN for Figure 4

Xerox IDTC

Xerox IDTC
98

When demonstrating STRAIT and CURVIT to visitors, it was somewhat
disconcerting to find that it did not always make the same interpretation as
the human observers. What was still more alarming, however, was that the
program worked better for some people's sketches than for others. It
appeared that the programmer had embedded a particular model of human
sketching behavior that fit some users more closely than others. The ques-
tion that arose was whether this model could be changed simply by varying
parameters, and if so, how the correct values of those parameters could be
determined.

Latching

A cursory examination of the above figure will reveal that it contains per
force five endpoints. It would be convenient for programs using this data,
such as editors or "square-finders" if there were only four endpoints. The
first version of STRAIT used a simple latching algorithm which joined to-
gether any pair of endpoints falling within a fixed radius of each other. This
simple "rote latching" often produced bizarre results where changes of scale
were involved, as illustrated below.

With the realization that the latching problem was more complex than
originally expected, STRAIT was rewritten without latching, hence
STRAIN.'

Obviously some intelligent means of computing the latching radius is
needed. In the next experiment, the latching radius is computed as a func-
tion of speed, under the assumption that the speed provided by STRAIN for
each line is also a measure of the user's certainty in positioning that line's
endpoint.

Fig. 8 - Latched Cube

As can be seen from the above, speed is not always well correlated with
intent. In part this is because the speed figure used is the average for the line
and does not accurately reflect conditions at the endpoints. But there is a
more serious difficulty at work here-one which illustrates the inter-
dependence of the different levels of interpretation. The program errone-
ously latched the front and back corners of the cube, since their two-
dimensional projections happened to coincide.

99

The only sure solution to this problem is to compare candidates for latching
in three space instead of the (often ambiguous) two-dimensional projection.
Paradoxically our current GUESS program requires latched data as input in
order to determine the z-coordinates.

The solution will require that some latching decisions be made, perhaps on
such syntactical considerations as the number of bodies or the sequence of
construction, with the provision to modify decisions if they prove untenable
in the later stages of interpretation. Several approaches to this problem will
be discussed in subsequent sections of this paper.

Overtracing

Although not handled at all by the original HUNCH system, overtracings
present many of the same problems as latching. Once again the process is
one of reducing the quantity of data by making inferences about the user's

intentions, turning several lines into one line. The program must distinguish
between two carefully drawn parallel lines and one wide, overtraced line.
The amount and style of overtracing may serve as a measure of a particular
user's attitude toward the design, with heavy overtracing indicating em-
phasis or reinforcement of selected areas.

Other Levels of Inference

In addition to the processes already mentioned, there are many other pos-
sible directions of interpretation. One of them involves inferring the third
dimension of axonometric or perspective drawings. The currently imple-
mented program makes use of some simple rules of projective geometry to
map two-dimensional networks of lines into three-dimensional data
structures.

IDTC
Fig. 7 - Rote Latching

IDTC
Fig. 8 - Latched Cube

IDTC
Fig. 9 - Overtracing

IDTC
Fig. 10 - Three Dimensional Description

While easily confused by lines drawn in other than the three primary axes,
the algorithm has enabled experimentation with manipulation of three-
dimensional structures and cast some light on the interdependencies of
latching and finding the third dimension.

Another type of interpretation is illustrated by a program which finds
rooms and their connections in a floor plan. This program maps the raw
data onto a two dimensional grid. Any point having a line pass through it is
set to one. By mapping cells into an array at a suitable scale, any degree of
detail may be chosen. The room-finding algorithm simply looks for areas of
zeros completely surrounded by ones. Needless to say, the program works
well for simple floor plans that conform to the programmer's original expec-
tations. It works less well with odd-shaped rooms and doorways which

might not be doorways, as in the upper right room in the above figure. In
this case, the choice of the "correct" interpretation is not so easy. In fact, it
probably varies not only with different users, but also with different
contexts. In architectural applications, the concept of "room" is usually less
important than the ways in which the space is perceived and used-a level of
inference perhaps above or perhaps equivalent to that of finding rooms.

A human observer resolves these ambiguities through the application of
personal knowledge and years of learning how to look at pictures. Each line
takes on meaning only in the context of the drawing and its subject matter.
Before a machine can effectively communicate with a human user about a
sketch it must possess a similar body of knowledge and experience.

3. USE OF CONTEXT

As suggested by the preceding descriptions, sketch recognition requires
more than a simple hierarchical interpretation of the data. Although the
programs described are usually run in sequence, the interpretations to be
made are not independent. The bottom-up approach is hindered by the lack
of any contextual information. In contrast to human vision, for example,
where knowledge of what to expect in a sketch is involved in seeing things
as detailed as individual lines, the HUNCH system operates solely on the
basis of syntactic evidence. Its success can be attributed to its use of data
not available to the human observer, such as speed and sequence.

The answer to the question posed at the beginning-is there a syntax of
sketching independent of the semantics?-is still unresolved. While there is
room for considerable improvement in the low-level inference-making
routines, latchers that look for closure, overtracing routines that consider
sequence, etc., it seems that a truly successful system would have to make
use of context at the lowest levels. Such a context would have to include
not only what the person is sketching but also the stage of completion of
the sketch and the design, the idiosyncracies of the person, and his or her
attitudes toward the design.

The knowledge of the sketching domain has to be structured in such a way
that it can be used to direct the machine's analysis of the sketch, supplying
goals to direct the low-level routines in their search for lines, curves, and
corners and supplying enough information about what is plausible in the
sketch to resolve ambiguities and fill in missing information. This knowledge
also must be in a form that can be easily understood and modified by the
machine so that a sketch-recognition system could be constructed which
lends itself to diverse applications simply by changing the knowledge base.

A scheme employing these principles was explored in [9] and is synopsized
in the following paragraphs.

The act of recognizing a sketch thus involves drawing a sketch for the
machine and specifying the "context" to avoid the more difficult problem

100

of "context recognition". This context specification might be as specific as
"suburban homes" or "machine screws," or it might be as general as "built
form" or "tools." The context description is structured as a network con-
taining general case descriptions, for example:

This structure is matched against the context-free data structure generated
by the low-level HUNCH routines to generate a composite structure where
all of the syntactic entities of the sketch are assigned a meaning. The match-

Fig. 14 - Instantiated Structure

ing operation takes place in a top-down fashion. That is, the machine
attempts to find an instance of the top-level general case node in the specific
data structure. In the example structures, a search would be performed for a
room. Since there is nothing labeled "ROOM" in the data structure, the
program searches for components of a room, specifically walls, which find
their match in the lines of the data structure.

The process is, of course, more complicated than a simple recursive depth-
first matcher, since the general case description will not match exactly, but
only in part. If a required line does not exist in the data base, it may be
necessary to reinvoke the line finder, which may have thrown away a line
the first time. A yet more difficult problem is posed by erroneous or pre-
mature matches: the system is only as good as the matching machinery.
Either some method must be provided for withdrawing incorrect matches,
necessitating a control structure employing backup, or the matching process
must be made more breadth-oriented, requiring a sophisticated pattern
matcher which can look around and size up the situation before making a
match. A preliminary system using the first approach was implemented in
the CONNIVER[10] language, an artificial intelligence (Al) language which
allows construction of complex control structures and provides facilities for
maintaining and searching a data base. Unfortunately, the CONNIVER pro-

IDTC
Fig. 11 - Room Finding

IDTC
Fig. 12 - General Case Description

IDTC
Fig. 13 - Context-Free Structure

gram, while small in capability, consumed enormous amounts of computer
time and memory. Any attempt to expand the capabilities of this modest
program led directly into the same (vast) problems encountered by Al re-
searchers working on machine vision or natural language. It appeared that
the knowledge-based approach would require a rather large, permanent
detour away from the initial problem of providing a graphical input facility.

4. TOWARD AN INTERACTIVE SYSTEM

The most promising approach seems to be a much more interactive system,
one involving the user to make decisions of which the machine is not
capable, but still affording the unobtrusive input method of sketching. The
program must take into consideration the interdependence of different
levels of interpretation. The bottom-up flow of information operates as in
the HUNCH system, except that the data base is more integrated than the
disparate disk files of HUNCH. The top-down flow, which is one of the
strong points of the context-based system, comes from the corrections and
manipulations of the user, as well as from higher-level programs. These
capabilities require a much more integrated and interactive facility than is
provided by HUNCH. Such a system forms the basis of our current work
and is described in this section.

The new system consists of a data base and a set of programs to manipulate
it. The data base is stored as PL/1-based structures, capable of being paged
from a disk. Each time a new level of interpretation is encountered, a
corresponding level is added to the data base. Pointers are maintained to
show relationships between elements at different levels. For example, when

101

Speed measures the length of the interval divided by the number of points
in that interval. Bentness measures the maximum of the distances from the
points to the chord connecting the endpoints of the interval. By varying the
number of points in an interval, the number of peaks in the output can be
controlled. A large interval filters out peaks resulting from local, high-
frequency variations, while a small interval will show up every tiny variation
in the sketch. This interval length is one parameter which can be varied to
get the closest fit between the machine's interpretation and the user's in-
tentions. For example, if the program were told that the user has drawn a

two points are latched together, pointers are stored at the latched level to
show which two STRAIN points make up the new single latched point.

As in the HUNCH system, there are three kinds of programs which use the
data base:

Inference programs are improved versions of STRAIN, LATCH, OVER-
TRACE, and GUESS. Each one employs tests of reasonableness to its
output and can be controlled by means of a well-defined set of param-
eters.

Display programs allow displaying any (or all) levels of the data base on
selected output devices.

Manipulation programs have been combined into a graphical editor which
permits the user to modify the data base directly.

Finding Lines and Curves

If the new sketching system is to be truly interactive, STRAIN must operate
in real time, finding lines and curves on the fly, while the user is drawing,
instead of after the fact. The program must lend itself to "tuning" to the
hand of the individual user.

Accordingly, the new program is based on a set of functions, each of which
measures some characteristic of the sketch over an inverval of variable but
specified size and position. Two of the most useful functions are speed and
"bentness," which are shown below for a square composed of 95 sample
points.

IDTC
Fig. 15 - Data Base Organization

IDTC
Fig. 16 - Speed and Bentness

IDTC
Fig. 17 - Bentness

square, it could vary the size of the interval until the two functions pro-
duced exactly five peaks (remember that one corner, per force unlatched, is
both a beginning point and an endpoint).

Given these two functions, they can be combined so as to indicate intended
lines and curves. The contributions of the different functions are deter-
mined by a set of coefficients which can be varied for individual users.
Bentness is used to find the actual corners in a sketch, while speed is used to
indicate whether they are really intended as corners. These functions will
eventually be computed by microprocessors, so that the main program will
see a tablet which produces not only X, Y and Z but also speed, bentness,
corners, and curves. The raw data will still be saved, along with the function
values, so that other programs can examine the data.

The line/curve finder will be tunable both explicitly and implicitly. Explicit
tuning is accomplished through a command which enables the user to
modify the program's parameters to produce the most satisfactory result. It
is envisioned that implicit tuning will be performed by means of the editor.
If the user inserts points, creating corners in the data base, the system can
change its parameters to generate more points. If the user deletes points,
that serves as an indication that the corner-finding program is generating too
many corners.

153 Words About Control Structure

Unlike HUNCH, where the user explicitly invoked programs such as
STRAIN and LATCH, the new sketching system runs its inference-making
procedures in the background, so that they will not cause interruptions in
the sketching and thinking processes of the user. Placing the pen on the
tablet immediately starts the line/curve finder, adding the new lines and
curves to the data base. Whenever the user is not drawing, the higher-level
programs, such as OVERTRACE and LATCH, are run. These programs look
for any changes or additions to the data base, such as would result from
drawing, editing, or running other inference making programs. A program
which modifies the input level of another program causes that program to
be run. Conversely, any program may decide that its input data level is
unsatisfactory and request the program which created that level to regene-
rate it, perhaps using new parameters.

Latching Revisited

In view of the new data base and control structure, it may be useful to
examine the metamorphosis of the latcher from a stand-alone program to
part of an integrated system. Latching is an interesting problem from many
viewpoints. While its ultimate solution requires a knowledge-based system,
there are many clues available to the program which are independent of the
subject matter being drawn. These include closure, changes in size or angle,
and the number of lines latched to a point.

The latcher can attach a certainty factor to each of its local decisions, based
on parameters such as speed and line length. These decisions can then be
examined more globally in the light of the criteria mentioned above. Since
those criteria tend to bias the interpretation in certain directions, their use
will have to be controlled by a profile of the user created from a history of
corrections he makes to the output of the latcher. On a more local level,
these corrections can be used to control parameters such as the latching
radius. By allowing profiles to be generated on an individual person/subject
basis, some of the benefits of subject-area-based systems can be acquired.

Another problem in latching is the determination of the scale at which the
designer was working. This problem is exemplified by the drawing in Figure
7 where the windows were drawn at a smaller scale than the house. The
program, assuming one scale, used two large a latching radius on the
windows, latching too many points together. Scale will have to be deter-
mined by use of various clues, such as the "busy-ness" of a part of a sketch,
as measured by the density of lines drawn nearby in soace and in time.

The sequence of line input can be another useful clue since, for example,
the two faces of a cube will probably form two separate clusters if divided
by sequence. Once again this is a user-dependent property.

CONCLUSION

Progress in sketch recognition has in a sense come full circle from an insis-
tence on machine recognition with no demands on the user, through
knowledge-based systems, and back to a more modest interactive approach.
It is our intention to involve the user in the way most meaningful to his
design, through editing the machine's interpretation of his drawing to bring
it into agreement with his own intentions. Our experiments have shown
sketching to be a viable medium through which a person can communicate
to a machine. The next question to be answered is. What balance can be
struck between an intelligent but unwieldy system, and a tiresome but
practical one?

REFERENCES

[1] Negroponte, Nicholas, and James Taggart, "HUNCH-An Experiment
in Sketch Recognition," in Computer Graphics, edited by W. Giloi,
Berlin, 1971.

[2] Negroponte, Nicholas, "Recent Advances in Sketch Recognition,"
Proceedings of the AFIPS, New York, 1973.

[3] Taggart, James, "Sketching, an Informal Dialogue between Designer
and Computer," in Computer Aids to Design and Architecture, edited
by Nicholas Negroponte, Petrocelli/Charter, New York 1975.

[4] Negroponte, Nicholas, "A Computational Paradigm for Personalized
Searching," in

[5] "MAGIC Reference Manual," Architecture Machine Group, MIT,
Cambridge, 1976.

[6] McIntosh, John F., "The Michigan Pencil," unpublished paper, Archi-
tectural Research Laboratory, University of Michigan, Ann Arbor,
September 1975.

[7] Riesenfeld, Richard, "Applications of B-spline Approximation to
Geometric Problems of Computer-Aided Design," Ph.D. thesis, Uni-
versity of Utah, Salt Lake City, 1973.

[8] Herot, Christopher, "PLAN," in Machine Recognition and Inference
Making in Computer Aids to Architecture, proposal to the National
Science Foundation, Architecture Machine Group, MIT, 1973.

[9] Herot, Christopher, Using Context in Sketch Recognition, Master's
thesis, M.I.T., Cambridge, Massachusetts, 1974.

[10] Sussman, Gerald, and Drew McDermott, The Conniver Reference
Manual, M.I.T. Artificial Intelligence Laboratory, M.I.T., Cambridge,
Massachusetts, 1973.

102

IDTC
Fig. 18 - Latching Criteria

