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ABSTRACT

We present an experimental study that evaluates four different tech-
niques for visualizing the machine interpretation of handwritten
mathematics. Typeset in Place puts a printed form of the recog-
nized expression in the same location as the handwritten mathe-
matics. Adjusted Ink replaces what was written with scaled-to-fit,
cleaned up handwritten characters using an ink font. The Large
Offset technique scales a recognized printed form to be just as wide
as the handwritten input, and places it below the handwritten math-
ematical expression. The Small Offset technique is similar to Large
Offset but the printed form is set to be a fixed size which is gener-
ally small compared to the written expression.

Our experiment explores how effective each technique is with
assisting users in identifying and correcting recognition mistakes
with different types and quantities of mathematical expressions.
Our evaluation is based on task completion time and a comprehen-
sive post-questionnaire used to solicit reactions on each technique.
The results of our study indicate that, although each technique has
advantages and disadvantages depending on the complexity of the
handwritten mathematics, subjects took significantly longer to com-
plete the recognition task with Typeset in Place and generally pre-
ferred Adjusted Ink or Small Offset.

Keywords: pen-based user interfaces, mathematical expression
recognition results, usability evaluation, typeset, adjusted ink

Index Terms: H.5.2 [Information Interfaces and Presentation]:
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1 INTRODUCTION

Computer recognition of handwritten mathematics is an old [1]
and important [7] field, and many advances have been made in
the decades of research on it. However, we posit that, since some
handwritten math is ambiguous even to another human, even the
best achievable recognition techniques will at times misinterpret the
writer’s intent. Thus, identifying and correcting recognition errors
can be viewed as a fundamental problem. Nonetheless, compared
to the core algorithmic problem of recognizing handwritten math-
ematics, very little attention has focused on UI techniques which
allow users to cope with recognition errors. In particular, we have
identified two UI tasks which merit investigation: visualization
techniques for depicting the machine interpretation of handwritten
mathematics and thus identifying recognition errors, and interaction
techniques for correcting the machine interpretation.

This paper focuses on evaluating techniques for the initial task of
visualizing the machine interpretation of handwritten mathematics.
The previously developed techniques we chose [14] were intended
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to cover the space of design possibilities and common usage sce-
narios. Our first priority was to present typeset feedback because
of its familiarity and expressiveness. In pilot studies we explored
various options for this feedback and concluded that three of those
options could represent this space. We also included a fourth option
that addressed a specific limitation of typeset feedback when given
in place of the user’s ink. None of the other techniques we consid-
ered seemed to warrant the effort required to expand this evaluation,
although not all those techniques were fully implemented.

For this evaluation, we developed a set of tasks intended to be
representative of a set of common usage scenarios, for example,
transcription vs. problem solving or large open writing spaces vs.
small dialogs. The objective was to address quantitatively the ques-
tion of whether there were significant relative benefits to the dif-
ferent techniques in individual scenarios, and whether there was a
generally acceptable consensus technique. The experimental study
evaluated each technique in terms of speed, readability, use of white
space, distraction, and overall preference. To determine when one
technique might be more appropriate than another, subjects eval-
uated each one under four conditions representing different math-
ematical expression types of varying complexity. To the best of
our knowledge, this is the first study to systematically explore the
usability involved with different approaches for presenting mathe-
matical expression recognition results to the user.

In the next section, we discuss work related to evaluating recog-
nition feedback techniques. We then present a discussion of the
techniques to provide context for our usability study. Next, we
present the details of our experiment and discuss the results. Fi-
nally, we present conclusions.

2 RELATED WORK

Although there has been a significant amount of work on mathemat-
ical expression recognition over the years[2], there has been little on
how to effectively present recognition results to the user. Zanibbi,
et al. [13] experimentally evaluated a version of offset typeset feed-
back and a dynamic morph of the user’s ink to fit a cleaned-up ver-
sion of the input characters’ bounding boxes, based on the recog-
nition and parse results. Our evaluation focuses on real-time feed-
back where theirs used solely batch feedback, and we also compare
somewhat different techniques: we don’t have an animated morph-
ing technique, but the technique that cleans up the user’s ink does
so to a fixed set of ink characters (an “ink font”), thus additionally
providing feedback on the character recognition.

LaViola [6] evaluated an entire math sketching system, includ-
ing a recognition feedback technique that changed the user’s input
to cleaned-up handwritten ink the same way our adjusted technique
does. However, the contribution of the recognition feedback tech-
nique was not isolated, nor were any alternatives compared. In ad-
dition, our adjusted technique additionally shows parse recognition
results by coloring the characters.

Smithies, et al. [10] presented a math recognition system that
provided an interactive display of symbol recognition by shading
the bounding box of each group of strokes corresponding to one
symbol and then locating a typeset display of the recognized sym-



bol in the upper-left corner of the bounding box. Thus, this tech-
nique is loosely related to our small offset technique; however, it
was not a complete interactive recognition display since it could
not depict the parse structure. Instead, the user would invoke the
equation parser explicitly and see the result in a separate window.

CueTIP [8] presents a mixed-initiative interface for correcting
linear handwritten text in which the system continues to assist the
user even as corrections are made. The primary focus of this work is
on the correction interface and not on the visualization mechanism
for identifying a recognition error. The visualization technique used
is similar to our small offset typeset display technique, but they
offer no analysis of it.

Wais, et al. [12] evaluated recognition feedback in the context
of sketch recognition. There feedback consisted of displaying rec-
ognized symbols in different colors and drawing text labels next
to recognized symbols. Although these techniques are similar to
some of the approaches we are testing, this work was focused on
recognition feedback for circuit diagrams instead of mathematics.

Igarashi, et al. [5] and Goldberg and Goodman [3] present tech-
niques for visualizing recognition errors as alternates in situ of the
original drawing context. Thus, in some sense they are equivalent
to our adjusted ink technique, but they additionally display recog-
nition alternates. However, the two problems with applying these
approaches to handwritten mathematics are that they force errors to
be seen and corrected as they occur, and they cannot be easily ex-
tended to clearly depict both symbol and parsing alternates in situ.

3 VISUALIZATION TECHNIQUES

When designing our recognition visualization techniques, we es-
tablished several guiding design criteria. First, we wanted the visu-
alization techniques to require minimal extra space on the display
outside of the handwritten math. Second, we wanted to express un-
ambiguously the complete machine interpretation of the recognized
mathematics. Third, we wanted to present the recognition interpre-
tation to the user as they were writing so they could identify errors
as early as possible. Fourth, we did not want to disrupt or distract
the user from their mathematical task. Last, we wanted it to be
easy for users to locate recognition errors at their convenience (i.e.,
ranging from instantly to even minutes later).

We surveyed a number of techniques with overlapping benefits
and, in pilot testing, narrowed this set to four techniques which we
believe have distinct benefits. We briefly present these four alterna-
tive recognition visualizations, along with their hypothesized trade-
offs (Figure 1). The techniques include: Typeset in Place, which
replaces handwritten ink strokes with typeset mathematics on the
fly; Adjusted Ink, which replaces handwritten ink strokes with char-
acters from a clarified and colorized ink font; Large Offset, which
displays typeset recognition results below and scaled to the same
width as the handwritten ink; and Small Offset, which also displays
typeset results below the handwritten ink but at a constant, rela-
tively small font size. More details on these techniques and their
development can be found in [14].

3.1 Typeset in Place

The Typeset in Place technique provides a clear, unambiguous dis-
play of the full semantics of the machine’s interpretation of the
handwritten mathematics and typically uses no more (often less)
space than the user’s own handwriting. This technique replaces the
user’s ink with appropriately typeset math, at the same approxi-
mate size as the ink, during sufficiently long pauses (.5 secs) in the
writer’s input (see Figure 1(a)). To avoid having to adjust previous
typeset characters, the typeset font size is best-fit only to the ini-
tial handwritten character. This means that subsequent characters
will not match exactly or sometimes even closely to their handwrit-
ten counterparts. Since subsequent ink is interpreted relative to the
displayed typeset notation, the shift in character location and size

(a) Typeset (b) Adjusted

(c) Offset large (d) Offset small

Figure 1: The four techniques for visualizing recognition and parse
results: Typeset in Place (a), Adjusted Ink (b), Large Offset (c), and
Small Offset (d). For those reading this in black and white, in the last
three sub-figures all the ink is black, except that the a is blue, the b

and the 2 in x2 are red, the β is green, and the 2 below it is orange.

can cause parse recognition errors for users who fail to adapt their
writing to the emerging typeset notation. In addition, since the cost
of letting an error go is so high in terms of cascading errors to fu-
ture input, users are essentially forced with this technique to resolve
mistakes as they occur.

3.2 Coloring

To avoid symbol adjustment complexities of the typeset replace-
ment technique, symbol coloring can be used to indicate geometri-
cal parse relationships. This colorized display is initially less clear
than typeset notation since it requires users to understand a novel
mapping between colors and mathematical semantics. In addition,
colorization alone does not indicate which symbols have been rec-
ognized, so it must be paired with some other technique to present
a complete semantic description of the mathematics. We have ex-
plored a set of different mappings between color and mathematical
semantics, but only present the one approach we believe is most
general: we color each character according to the typeset baseline
to which that character belongs. The idea is that the user determines
the parse structure by considering the relative colors of neighboring
characters; characters that have the same color are siblings (i.e. 2x),
and characters that have different colors must have different base-
lines (i.e., 2x). Since relatively few symbol colors can be readily
distinguished for small text, especially on the typical poor Tablet
PC screens, we use a palette of five colors (orange, green, brown,
red, and blue) and only color the five most recently modified base-
lines, leaving the rest black.

3.3 Adjusted Ink

The Adjusted Ink technique pairs the Coloring technique with a
symbol substitution technique that replaces the user’s handwritten
symbols with corresponding ink symbols drawn from a pre-defined,



handwritten, but highly legible font (Figure 1(b)).1 Since the re-
placed ink occupies exactly the same bounding box as the original
ink, this technique requires no more space than the user’s original
handwriting. Compared to the initial Typeset in Place technique,
this technique is less disruptive, just as economical on space, but
unfortunately cannot always display mathematical semantics unam-
biguously.

3.4 Large Offset

The Large Offset technique displays recognition results in a typeset
form that is below and uniformly scaled to the width of the hand-
written ink. This technique also provides a redundant, but in-place,
display of the structural parse by using the Coloring technique on
the user’s own handwritten ink (Figure 1(c)). Since the user’s ink is
not geometrically adjusted, the typeset notation and the ink colors
are updated instantly after each stroke is drawn without causing a
necessary disruption in the user’s input. Since the typeset notation
is fit to the width of the handwritten ink, this technique roughly
doubles the display space requirements over just the user’s hand-
writing. However, by matching the size of the typeset to the ink,
handwritten characters tend to line up closely with their typeset
counterparts, facilitating reasoning about recognition errors. The
relationship between ink and typeset can be further explored by
hovering the pen over a typeset character to see a red outline around
its corresponding ink stroke(s). We chose to put typeset results be-
low rather than above the user’s ink because our experimentation
showed that putting it above tended to overlap with already-written
expressions, making it difficult to refer to previous expressions in a
derivation without requiring extra vertical spacing.

3.5 Small Offset

Small Offset behaves the same as Large Offset except that instead
of matching the typeset display to the width of the handwritten ink,
a fixed, relatively small, font size is used (Figure 1(d)). Small Off-
set is thus quite similar to approaches taken by other math [13]
and plain text (e.g., Microsoft’s Tablet PC text input panel) sys-
tems which draw unscaled typeset notations near the input ink—the
principal difference being that Small Offset is paired with our Col-
oring technique. Small Offset requires relatively little additional
display space, but can be somewhat hard to read for complex ex-
pressions and establishes no structured visual relationship between
corresponding ink and typeset characters.

4 TECHNIQUE CONJECTURES

To understand how these techniques affect a user’s ability to detect
and subsequently correct mathematical expression recognition er-
rors, we first conducted a small pilot study. In the pilot, we asked
three subjects to try out the different techniques when writing sev-
eral polynomial expressions. From this pilot and from our tech-
nique design, we came up with a number of conjectures about each
one.

Typeset in Place. The Typeset in Place technique is expected
to be desirable because it provides a highly readable, and complete
display of the machine interpretation that is effortlessly unified with
the handwritten input and thus displayed directly in the user’s field-
of-view. We believe these advantages would stand out in situations
where recognition accuracy can be expected to be high, such as for
simple expressions with at most one super- or sub-script, and in
situations where display space is at a premium such as when writ-
ing densely-packed expressions. However, in practice, achieving
truly high recognition accuracy in general is so difficult that we

1We considered using an actual typeset font, but found that it produced

an ugly “ransom note” look that, interestingly, does not seem to be generated

by the handwritten font. We also considered letting users create their own

handwriting font, but based on pilot tests found that unnecessary for this

evaluation.

hypothesize that this technique will be the least desirable since it
exacerbates recognition errors as it adjusts symbol locations.

Adjusted Ink. We expect that, compared to Typeset in Place,
Adjusted Ink will not be considered disruptive. However, we also
suspect that users will be less sensitive to detecting certain errors,
both because of the the Coloring technique’s fundamental inability
to express the complete recognition semantics, and because Color-
ing de-emphasizes certain errors, such as when things that are sup-
posed to be on different baselines are recognized to be on the same
baseline (i.e., it’s easy to overlook two things having the same color
when they should have different colors). Nonetheless, because of
its economical use of space and non-disruptive display, we hypothe-
size that Adjusted Ink will be the fastest to use, the least distracting,
and one of the most preferred overall.

Large Offset. The Large Offset technique was designed to pro-
vide a clearly readable display, at the expense of using extra display
space. Thus, we expect that users will find it most effective for sin-
gle complex expressions, and least effective when writing multiple
expressions. We also suspect that people may find the large size of
the typeset display to be distracting. Thus with this technique, we
hypothesize that the user experience will be the most varied across
different types of input, with the technique faring quite well for iso-
lated complex expressions, and perhaps quite poorly when used to
write multiple expressions.

Small Offset. We believe that Small Offset balances trade-offs in
space, legibility, expressiveness and disruptiveness well, such that it
will have the least variance between its worst and best case scenar-
ios. In particular, we suspect that it will perform worst for long or
complex expressions which may be hard to read and associate with
handwritten ink, and that it will perform best when writing multi-
ple expressions. Overall, we hypothesize that this technique will be
rated highly, on par with Adjusted Ink, and perhaps better because
of its ability to completely express the machine interpretation.

5 USABILITY EVALUATION

To explore the effective of our recognition visualization techniques
and the conjectures described in the last section, we conducted a
formal user evaluation to quantify user preferences across the dif-
ferent techniques and mathematical expression complexities.

5.1 Subjects and Apparatus

Twenty-four subjects (15 male, 9 female) were recruited from the
undergraduate population at the University of Central Florida with
ages ranging from 18-28. Of the 24 subjects, 11 had used some
form of a pen-based interface (e.g., Palm Pilot, Tablet PC), but their
interactions with them were minimal. We chose subjects who had
taken mathematics classes with a minimum understanding of Cal-
culus since we wanted our subject population to exemplify students
that could have used our software in their work. We also wanted
to ensure that subjects understood all of the mathematical symbols
used in the experiment. The experiment took each subject approxi-
mately 60 minutes to complete and all subjects were paid 10 dollars
for their time.

The experimental setup (see Figure 2) consisted of a HP TC4400
Tablet PC with 1.83 GHz dual core processor and 2 GB of memory.
The Tablet PC was attached to an LCD monitor so the experimenter
could see what subjects were writing on the screen without having
to look over a subject’s shoulder. A video camera was also used
so we could analyze each experimental session after it was com-
pleted. The software used in the experiment was our custom built
mathematical expression recognition engine [14].

5.2 Experimental Task

The task subjects had to perform in the experiment was to enter
mathematical expressions using the Tablet PC, and, given a recog-
nition visualization technique, determine whether the recognizer



Figure 2: A subject participating in our experiment. He works on a
Tablet PC while the experiment moderator watches an LCD screen.
The screen is also recorded with a video camera for later analysis.

Figure 3: A screen shot of the interface used in our experiment.

correctly interpreted their expression. If an expression had errors,
subjects would correct any mistakes until recognition was correct.
For each trial, subjects would press the “Start” button to begin writ-
ing (starting a timer) and press the “Finished” button (stopping the
timer) when recognition was correct (Figure 3).

Subjects wrote four different types of mathematical expressions
(simple, multiple, compact, long) during the course of the exper-
iment. Expression types varied in complexity so we could better
determine how each recognition visualization technique affected a
subject’s ability to see and correct recognition errors.

The expression

3x
2
− 4y

2 = 7

is an example of a simple expression. These types of expressions
were simple polynomials designed to be fairly easy to recognize
and not take up too much space. They are characteristic of what an
algebra student might be working with.

For multiple expressions, users wrote a series of four equations
with four unknown variables, such as

5x + 3y − 2z + w = 0

3x − 5y + z − 4w = 5

7x − y + 3z − 2w = −6

x − 2y + 7z − 2w = 2.

These expressions were designed so subjects had to write a se-
quence of expressions vertically (as if working with simultaneous

equations), to specifically judge the effectiveness of the “in place”
techniques versus the “offset” techniques.2

For compact expressions, users wrote mathematics that utilized
more complicated structure such as

∫ b

a

x2+t sin x

αq tan(x3) + cx
dx

where superscripts are featured so there would be more symbols
closer together. Division lines are also used in these expressions to
make them more compact. These expressions were designed to help
test user frustration and distraction due to abrupt changes in con-
verting the mathematical symbols into either Typeset or Adjusted
Ink in place.

Finally, long expressions were designed to test user distraction as
they wrote across the screen and had to utilize the horizontal scroll
bar to make room for the entire expression. The expression

3x5 + 4x4
− 7x3 + 5x2

− 6x + 1

9xy
− xp + 2xd

− 2xy + x − 4

is an example of a long expression.
Subjects had three different methods for correcting recognition

errors. First, they could erase parts of the handwritten expression
using a scribble gesture and rewrite the appropriate symbols until a
correct recognition was made. Second, for incorrectly recognized
symbols, subjects could go to the alternate list to find the correct
recognition. Third, subjects could circle a symbol or group of sym-
bols and move them on the screen to correct parsing errors.

5.3 Experimental Design and Procedure

We used a 4 x 4 within-subjects factorial design where the indepen-
dent variables were visualization type and mathematical expression
type. Visualization type varied between Typeset in Place (“Type-
set”), Adjusted Ink in place (“Adjusted”), Large Offset (“Large”),
and Small Offset (“Small”). Mathematical expression type varied
between simple expressions, multiple expressions, compact expres-
sions, and long expressions.

The dependent variable was task completion time, defined as the
time it took for subjects to press the ‘Start’ button, write down a
mathematical expression, have the system recognize it, make any
corrections to the expression (if needed), and press the ‘Finished’
button when the expression was correctly recognized. In addition
to task completion time, we also measured user preferences using
a post-questionnaire which asked a series of questions about each
recognition visualization technique (see the next section on Usabil-
ity Metrics for details).

After an initial analysis of the task completion times for each
condition, we discovered that the time spent on correcting errors
could be a significant confound in the overall task completion time.
Thus, we collected more data on task completion time by examining
the video recordings from each subject. We recorded the amount of
time each subject spent correcting both symbol and parsing errors
for each condition in the experiment. In addition, we also collected
how many symbol and parsing errors subjects corrected and how
many times they used the scribble erase gesture, the alternate list,
or the circle gesture in doing so. Note that we found one of the
video sessions was corrupted and so we could only gather this data
from 23 subjects.

It is important to note that we did not attempt to control for
recognition accuracy in our experimental design other than through
pilot testing a strategic choice of expressions (i.e., expressions that
were not “reasonably” recognizable were avoided) that were likely
to produce a representative set of errors across users. We were not

2Recall that the offset techniques place the recognition result directly

below the handwritten mathematics.



able to devise an experimental procedure that rigorously controlled
for recognition accuracy in a valid way, since arbitrarily inducing
errors would likely have resulted in introducing “unreasonable” er-
rors that were not reflective of how real recognizers work.

The experiments began with a pre-questionnaire asking each
subject their age, gender, and if they had any experience with pen-
based computers. Each subject was assigned a 4-digit randomized
number that was used to label the questionnaires, timing files, and
video files relevant to an individual subject.

Subjects were then given an explanation of how to use the Tablet
PC, the experimental task and procedure, and the techniques in-
volved in accomplishing the task. The experiment moderator also
highlighted important interaction guidelines for using tablets such
as what minimum pressure was needed on the screen for an ink
stroke to be rendered, that subjects could use the pen as if using
pencil and paper, and that it was okay for the them to rest their
hands on the screen.

Subjects then went through a training session. The first part of
the training session was to collect a mathematical expression that is
used by the recognizer to help improve recognition accuracy. This
expression contained symbols such as ‘2’, ‘z’, ‘5’, and ‘s’ which
have a number of different styles in which they can be written. Col-
lecting how the user wrote these symbols ensured that the recog-
nizer would accurately deal with a particular subject’s writing for
those symbols. After this step, the experiment moderator showed
each subject how to use the techniques for correcting recognition
errors, how to switch between different recognition visualization
techniques, and how to start and stop each trial. For the second
part of the training session, subject were instructed to switch to a
technique chosen by the moderator, press the ‘Start’ button on the
screen (starting the timer), write the expression shown by the mod-
erator using an index card, and press ‘Finished’ once the recog-
nition was correct (after making any corrections). For training,
each subject wrote eight expressions, using each recognition vi-
sualization technique twice. The order of the training trials was
pre-determined and fixed for all subjects. Also note that the eight
expressions used in the training session contained all of the sym-
bols that were used in the expressions written in the experiment tri-
als. This approach ensured that if subjects had problems with any
particular symbol they could practice getting the recognizer to rec-
ognize their handwriting correctly before moving on the the actual
trials.

After the training session, subjects were asked if they were com-
fortable with the task they had to perform. In each case, they said
yes, and the experiment was started. For each trial, subjects had to
write down one mathematical expression.3 As in the training ses-
sion, the experiment moderator showed subjects an index card with
the mathematical expression they were supposed to write. There
were four expression types and four recognition visualization tech-
niques for a total of 16 trials. To control for order effects, the order-
ing of the trials was randomized for each of the 24 subjects.

During the trials, if a subject had trouble writing the expression
after several attempts, the experiment moderator provided guidance
on how to get the expression to be recognized correctly, such as how
they might write a particular symbol, and by making suggestions
on using the error correction user interface. Note that if a subject
accidentally clicked on the “Finished” button before an expression
was correctly recognized, the trial was discarded and redone.

Once the trials were finished, subjects were given a post-
questionnaire which asked questions about their use of the four dif-
ferent recognition visualization techniques. Subjects could also go
back to the Tablet PC and revisit the techniques if they wished.

3Even though the multiple expression type has subjects write four ex-

pressions, we treat this as one large expression.

5.4 Usability Metrics

In addition, to the task completion time, we felt it was important
to gather feedback from each subject about their use of the four
recognition visualization techniques in a systematic way. Thus, in
the first part of the post-questionnaire, we had subjects respond to a
total of four sets of eight identical statements (eight statements for
each recognition visualization type). These statements used a seven
point Likert scale (1=strongly agree, 7=strongly disagree) and they
asked subjects to comment on each technique’s

• readability
• ability to detect recognition errors
• ability to avoid and correct recognition errors
• level of frustration
• effective use of screen space
• level of distraction
• overall experience.

In the second part of the post-questionnaire, we asked subjects to
write down which technique they preferred the most and the least as
well as comment on their experiences with each technique. Finally,
we asked subjects to comment on the real-time feedback provided
by the techniques.

5.5 Results

5.5.1 Task Completion Time

A repeated measures two way analysis of variance (ANOVA) was
performed on task completion time (dependent variable) with ex-
pression type (ET) and visualization technique type (VT) as the in-
dependent variables. Table 1 summarizes the main effects of the in-
dependent variables as well as their interaction effect. These results
show there were significant differences in task completion times for
both VT and ET and their interaction.

Effect Task Completion Time

ET
F3,21 = 57.84

p < 0.05

VT
F3,21 = 23.14

p < 0.05

ET × VT
F9,15 = 3.79

p < 0.05

Table 1: The main and interaction effects for expression type (ET)
and recognition visualization type (VT) for task completion time.

To gain a better understanding of how the different conditions af-
fected task completion time, we conducted a post-hoc analysis, per-
forming pairwise comparisons on the four VT (six comparisons),
and on the interaction between ET and VT (24 comparisons). To
control for the chance of Type I errors, we used Holm’s sequential
Bonferroni adjustment [4] with 30 comparisons at α = 0.05.

Typeset Adjusted Large Small

Mean: 151.89 81.42 78.72 81.39

SD: 53.29 28.24 28.06 31.5

Table 2: Mean completion times (in seconds) for the four recognition
visualization techniques when expression type is collapsed.

For VT (see Table 2), there were significant differences between
Typeset and Adjusted (t23 = 5.1, p < 0.00178), Typeset and
Large (t23 = 7.66, p < 0.00167), and Typeset and Small (t23 =
5.23, p < 0.00172). These results indicate that it took subjects
significantly longer to complete the recognition task using Typeset.



 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Simple

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Multiple

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Multiple

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Compact

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Compact

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Long

 0

 50

 100

 150

 200

 250

 300

S
m

a
ll

L
a

rg
e

A
d

ju
s
te

d

T
y
p

e
s
e

t

9
5

%
 C

I 
(T

im
e

 i
n

 S
e

c
o

n
d

s
)

Long

Figure 4: Mean completion times (in seconds) for each condition in
the experiment.

For the interaction between VT and ET (see Figure 4), Table 3
summarizes the pairwise comparisons that are either significant or
close to being significant.4 These results show it took significantly
longer for subjects to complete the recognition task using Typeset
for Compact or Large.

In an effort to isolate any potential confounding effect if differ-
ent expression or visualization types resulted in different propor-
tions of error correction technique usage, we isolated the amount
of time the users spent entering expressions other than when they
were correcting errors. Analysis otherwise identical to the analy-
sis for the total entry time was performed on this “non-error” time.
For VT (see Table 4), there were significant differences between
Typeset and Adjusted (t22 = 3.985, p < 0.00172), and Typeset
and Large (t22 = 4.731, p < 0.00167), and Typeset and Small
(t22 = 3.617, p < 0.00179).

For the interaction between VT and ET (see Figure 5), Table 5
summarizes the pairwise comparisons that were close to significant.
Due to the Bonferroni adjustment, no pairwise comparisons were
significant.

5.5.2 Post-Questionnaire Results

In the first part of the post-questionnaire, we asked each subject
to respond using a Likert scale to eight statements (on readability,
ease of error detection, helpfulness for error avoidance and correc-

4Note that the pairwise comparisons marked with a * in Table 3 are not

significant due to due the Bonferroni adjustment.

Comparison Test Statistic P Value

Simple

Typeset - Small* t23 = 2.62 p = 0.015
Multiple

Typeset - Small* t23 = 3.16 p = 0.0044
Compact

Typeset - Small t23 = 4.04 p < 0.00185
Typeset - Large t23 = 3.78 p < 0.00192

Typeset - Adjusted* t23 = 3.5 p = 0.002
Long

Typeset - Large* t23 = 3.38 p = 0.0025
Typeset - Adjusted* t23 = 2.58 p = 0.0168

Table 3: Relevant interaction effects between VT and ET for task
completion time.

Typeset Adjusted Large Small

Mean: 68.87 54.10 54.09 56.41

SD: 87.72 68.90 69.25 73.32

Table 4: Mean completion times (in seconds) for the four recognition
visualization techniques when expression type is collapsed.

tion, frustration, efficiency of screen space usage, distraction, and
overall experience) for each of the four recognition visualization
techniques. To analyze their responses, we conducted Friedman
tests on each set of statements (eight tests in total), and to further
analyze the data, we ran a post hoc analysis performing pairwise
comparisons using Wilcoxon Signed Rank tests. For the post-hoc
analysis, we also used Holm’s sequential Bonferroni adjustment [4]
with 6 comparisons at α = 0.05 for each test.

Significant differences were found for all eight statements except
for the one on error detection. For all statements where significant
differences were found, the results of post-hoc analysis are summa-
rized in Figure 6.

In the second part of the post-questionnaire, subjects were asked
to choose which technique they preferred the most and the least
(see Figure 7). Subjects preferred either Adjusted or Small the most
and disliked Typeset and Large the most which confirms the results
from subject responses to the Likert scale statements.

Subjects were also asked to give comments on their experiences
with each technique and their responses are in line with their over-
all preferences. For Typeset in Place, approximately 25% of the
comments were positive with particular attention to ease of use and
readability. Of the remaining 75% of the comments, many subjects

Comparison Test Statistic P Value

Simple

Typeset - Small* t22 = 2.352 p = 0.028
Multiple

Typeset - Small* t22 = 2.469 p = 0.022
Compact

Typeset - Large* t22 = 2.672 p = 0.014
Typeset - Adjusted* t22 = 3.090 p = 0.005

Long

Typeset - Large* t22 = 2.914 p = 0.008
Large - Small* t22 = −2.615 p = 0.016

Table 5: Relevant interaction effects between VT and ET for task
completion time, excluding time spent correcting errors.
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Figure 5: Mean completion times (in seconds), excluding error cor-
rection, for each condition in the experiment.

mentioned the real-time feedback was slow compared to their writ-
ing speed. These subjects said they had to slow down their writing
speed to compensate for the delay. Other negative comments in-
cluded a general frustration with the technique, difficulty dealing
with square roots, subscripts, and superscripts, and difficulty in fix-
ing errors when they occurred.

For Adjusted Ink, approximately 75% of the comments were
positive. One of the most significant comments was on Adjusted’s
positive aesthetic value. One subject commented, “This was the
easiest to use, and if you made an error the easiest to correct. This
looked the cleanest and was actually fun.” Subjects also noted that
they liked Adjusted because it looked like their own handwriting.
One subject commented, “I love it. I felt most comfortable writ-
ing fast and reading my handwriting. In other words, I didn’t feel
judged by my bad handwriting.” Subjects also stated that Adjusted
made it easier to fix errors and was less distracting than Typeset.
Of the 25% of the comments that were negative, the majority of
them were about decreased readability with Adjusted and a general
dislike of the ink font. Examining the experiment videos showed
that those subjects who disliked the ink font had handwriting that
differed significantly from the ink font we used.

For Large Offset, 33% of the comments were positive. Subjects
noted that they like the offset nature of the technique and that it
was easy to fix errors when using it. 12% of the comments on this
technique were neutral. Subjects either noted it was “usable” or
“okay” indicating there was no real preference for the technique.
The remaining comments (55%) were negative toward Large. The

Typeset Adjusted

SmallLarge
Overall experience: z = -2.57, p < 0.0125
Lack of distraction: z = -3.04, p < 0.008
Screen usage: z = -2.93, -2.81; p < 0.008, 0.0167

Lack of frustration: z = -2.84, p < 0.01

R
ea

d
ab

il
it

y
: 

z 
=

 -
2

.8
0

, 
p

 <
 0

.0
0

8

E
rr

o
r 

av
o

id
an

ce
 a

n
d

 c
o

rr
ec

ti
o

n
: 

z 
=

 -
2

.9
7

, 
p

 <
 0

.0
0

8

O
verall experience

Lack of distraction

Screen usage

Lack of frustration

Error avoidance and correction

Scr
ee

n 
us

ag
e

Lac
k 

of
 d

is
tra

ct
io

n

Screen usage [long]: z = -2.91, p < 0.01
Lack of frustration: z = -2.78, p < 0.008

Overall experience: z = -3.31, p < 0.008

z = -2.65, p < 0.01

z = -2.82, p < 0.0125

z =
 -2

.8
6,

 -2
.8

1;
 p

 <
 0

.0
1,

 0
.0

12
5

z = -2.58, -3.12; p < 0.0125, 0.008

z =
 -2

.8
8,

 p
 <

 0
.0

1

z = -2.67, p < 0.0125

z = -3.03, p < 0.01

Figure 6: The statistically significant results from post-hoc analysis
of the Likert scale parts of our post questionnaire. Arrows point in
the direction of the technique that was rated more favorably by users
on the labeled statement. The screen usage efficiency attribute was
rated separately for the multiple equations and long equations condi-
tions; in this figure the statistics are reported for the multiple condition
followed by the long condition except in the one case where only one
reached significance (noted in brackets).

majority of these comments focused on the font being too large or
the technique taking up too much space. Subject also commented
that the large font size made the technique distracting.

For Small Offset, 77.5% of the comments were positive. A ma-
jority of the comments noted the efficient use of screen space with
this technique and several subjects liked the small font. A smaller
font for displaying recognition results uses less screen space, so
subjects appear to like the result of having a smaller font rather
than having the smaller font itself. Several subjects also said the
technique was good in general terms. Of the negative comments
(22.5%), there were subjects who did not like the small font, saying
it was legible, but not as easy to read as Large.

Finally, when asked to comment on the real-time feedback from
the techniques, approximately 33% of the subjects felt the feedback
was useful, readable, and not distracting. However, the majority of
the subjects felt that, in many cases, the feedback was distracting at
times and that the real-time approach is useful depending on what
technique is employed. Given the distribution of the results, real-
time feedback seems to have both advantages and disadvantages.

6 DISCUSSION

The results of our experiment suggest that a number of the conjec-
tures made on the effectiveness and tradeoffs of each recognition
visualization technique are correct. For Typeset in Place, the tech-
nique was, indeed, the slowest one to use, and subjects did find
it to be distracting, which caused high levels of frustration. How-
ever, subjects did not find the technique to be any more readable
than Large Offset, for example. In addition, contrary to our origi-
nal conjecture, Typeset in Place was not preferred over Large and
Small Offset when dealing with multiple and long expressions. We
expect this is due to subjects taking so long to complete recognition
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Figure 7: The recognition visualization technique subjects liked and
disliked the most. Subjects preferred Adjusted and Small the most
and disliked Typeset and Large the most.

tasks using Typeset In Place. Despite all of these problems, our in-
tuition is that there is some creative change that can be made that
would lessen the impact of recognition errors.

For Large Offset, the technique was, as expected, ranked as
highly readable and highly distracting to subjects. Even with this
high level of distraction, subjects did find the technique to be more
helpful in avoiding and correcting errors than Typeset in Place. This
indicates that distraction level may have contributed more to sub-
jects overall technique preference.

Although Adjusted Ink shows many benefits over Typeset in
Place and Large Offset in the figures, it shows no benefits over
Small Offset, and is likely to be worse in some cases, due to the
ambiguity of its parse feedback. There may be benefits to its aes-
thetic look and feel, but from a functional perspective we believe
Small Offset is a better choice.

Small Offset performed worse with long expressions, consistent
with our expectations, which can be partly attributed to the need
to scroll those expressions to see the typeset output. However, as
you can see in Figure 6, there are many other benefits to this tech-
nique which outweigh that problem in general. Small Offset can be
improved even further by changing it to always be on the screen,
despite scrolling, and using a larger font size for readability.

The trends visible in our Results section are consistent, with one
exception. Together, they indicate a clear overall trend that ranks
Small Offset and Adjusted Ink as the best techniques and Large
Offset and Typeset in Place as the worst techniques. The one ex-
ception to this trend is that Large Offset seems to perform dispro-
portionately well and Small Offset disproportionately poorly with
Long expressions.

7 FUTURE WORK

Since nearly half the subjects preferred Adjusted Ink the most, and
because we still observed people missing errors using Small Offset,
such as a z substituted for a 2 or a sloppy exponent interpreted as
a sibling, we expect improvements are still possible. For instance,
combining Small Offset with Adjusted Ink , or further improvement
to Adjusted Ink, might result in a consensus best technique.

Rather than just studying the visualization techniques in isola-
tion, we believe it will be valuable to gain a deeper understanding
of the interaction between editing and visualization techniques. For
instance, many people instinctively try to edit the typeset feedback
rather than the ink, even when they already know the system doesn’t
allow that. In addition, there are further opportunities to enhance
visualizations to cover semantic concepts rather than just syntax.
There may be ways to make Typeset in Place work better or find

contexts where it already works better; Thimbleby [11] presents a
calculator using a technique very similar to Typeset in Place but
which to us seems to perform acceptably in the limited context the
calculator provides.

8 CONCLUSION

We have presented an experimental study on four different recogni-
tion visualization techniques, Typeset in Place, Adjusted Ink, Large
Offset, and Small Offset. The goal of this study was to determine
how effective each technique is in assisting users in identifying and
correcting recognition mistakes under different types and quantities
of mathematical expressions. Using task completion time and pref-
erence information from a post-questionnaire, we found that sub-
jects generally prefer Adjusted Ink or the Small Offset technique
and are significantly faster at viewing and correcting errors with
them than with Typeset in Place. However, we believe that there is
opportunity to do even better by further enhancing Adjusted Ink or
combining it with Small Offset.
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