
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Tel.: +81 94

E-mail addr
Computers & Graphics 29 (2005) 931–945

www.elsevier.com/locate/cag
Pen-to-mime: Pen-based interactive control of a human figure

Masaki Oshita�

Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
Abstract

In this paper a pen-based intuitive interface is presented, that controls a virtual human figure interactively. Recent

commercial pen devices can detect not only the pen positions but also the pressure and tilt of the pen. We utilize such

information to make a human figure perform various types of motions in response to the pen movements manipulated

by the user. The figure walks, runs, turns and steps along the trajectory and speed of the pen. The figure also bends,

stretches and tilts in response to the tilt of the pen. Moreover, it ducks and jumps in response to the pen pressure. Using

our interface, the user controls a virtual human figure intuitively as if he or she were holding a virtual puppet and

playing with it.

In addition to the interface design and implementation, this paper describes a motion generation engine to produce

various motion based on varying parameters that are given by the pen interface. We take a motion blending approach

and construct motion blending modules with a set of small number of motion capture data for each type of motions.

Finally, we present the results from user experiments and comparison with a transitional gamepad-based interface.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Pen-based interface; Motion control; Computer animation
1. Introduction

There are many demands for an interactive motion

control of a virtual character on desktop environments.

However, this has been a difficult challenge in the

computer graphics field. Since human figures have a

large number of degrees of freedom (DOF) and their

movements are complicated, it is not easy to control

them through a common device that has only a small

number of DOF such as a mouse or gamepad. Using

motion capture equipment, full body motion of a virtual

character can be directly controlled by mapping the

movements of an actor to the virtual character.

However, motion capture is expensive and needs a large

space. They are not suitable for a desktop application.

Currently most interactive applications such as compu-
e front matter r 2005 Elsevier Ltd. All rights reserve

g.2005.09.010

8 29 7718; fax: +81 948 29 7709.

ess: oshita@ces.kyutech.ac.jp.
ter games employ a traditional input device such as a

mouse, keyboard or gamepad. Therefore, the range of

control is very limited. Although it is possible to control

complex motions by combining multiple gamepads and/

or mouse, the user needs practice to learn such an

interface design since the mapping from the multiple

input devices to the movements of a controlled figure

may not be intuitive.

In this paper we present a pen-based intuitive inter-

face to control a virtual human figure interactively. The

key idea is that we use a pen as an approximation

of a figure and map pen moments to the figure motion

(Fig. 1). Recent commercial pen devices can detect not

only the pen positions but also the pressure and tilt of

the pen. We utilize such information to make a human

figure perform various types of motions in response to

the pen movements manipulated by the user. A figure

walks, runs, turns, steps, and jumps along the trajectory

and speed of the pen. The figure also bends, stretches
d.

www.elsevier.com/locate/cag

ARTICLE IN PRESS

Fig. 1. The pen-based interface. The figure movement is

associated with the pen manipulated by the use. The positions,

pressure, and tilt of the pen are used to make the figure perform

various motions.

M. Oshita / Computers & Graphics 29 (2005) 931–945932
and tilts in response to the tilt of the pen. In addition, it

ducks in response to the pen pressure. Using this pen-

based interface, the user controls a virtual human figure

intuitively as if he or she were holding a virtual puppet

and playing with it.

The main targets of this work are interactive applica-

tions that especially require various types of locomotion

control such as telexistence [1], virtual theaters [2], multi-

user environments, computer games, animation editing,

etc. Current common gamepad devices are enough for a

simple locomotion. However, they mostly do not provide

any way to control the styles of motions and generated

motions are monotonous. Using our interface, the styles

and speed of motions naturally change in response to the

pen movements. The users can express their feelings by

making a virtual figure move in various ways. We think

that our interface is interesting for the users and easy to

use even for kids or novices.

This work is an extension of our previous work [3]. A

major difference between this work and the previous

work is that a position-based motion control scheme is

introduced in this paper. The previous work [3] presented

a velocity-based control which maps the pen velocity to

the locomotion speed of a human figure directory in a

similar way to existing gamepad-based interface. The

interface was intuitive but did not fully exploit the

advantages of the pen device. As a result, the users who

were familiar with existing gamepad-based interfaces

could not find the interface very useful. In this paper we

present a position-based interface that also combines

the benefits of velocity-based methods. Using this inter-

face, the user can control the position of the figure

precisely. In addition, the interface is still interactive and

the controlled figure responds to the pen movements

quickly.
In addition to the interface design and implementa-

tion, in this paper a motion generation engine is

described, which produces various motions based on

the parameters and motion trajectories that are given

through the pen interface. We take a motion blending

approach and construct motion blending modules with a

set of small number of motion capture data for each type

of motions: standing movements, locomotion, turn,

step, and vertical and directional jumps. Spatial and

orientational constraints for the root of a figure are

applied to the blended motions so that the generating

motion follows a given pen trajectory. We also introduce

a motion transition scheme and foot constraints for

generating continuous and natural motions. Finally, we

introduce some experiments and comparison with a

transitional gamepad-based interface. We then discuss

the effectiveness of the interface.

This paper is organized as follows. In Section 2 we

review some related works. In Section 3 the pen-based

interface from the user’s viewpoint is introduced. A

system overview, interface implementation, and motion

generation implementation are given in Sections 4, 5 and

6, respectively. Finally, we discuss our interface based on

some user experiments in Section 7. Section 8 concludes

this paper and shows future work.
2. Related work

In this section, we discuss related works from two

points of view: motion control interface and locomotion

generation.

2.1. Motion control interface

Many researchers have developed locomotion systems

that generate a realistic walking or running motion

along a user specified path [4–7]. On these systems, the

user can draw a path using a mouse or pen device, a

walking or running motion is then planned and executed

based on the given trajectory. However, in most of the

systems, the user can only specify the trajectory of

locomotion. Other parameters such as speed or styles

cannot be controlled. They focus on generating natural

walking motion along a given curved path or/and on a

curved terrain rather than sophisticated user interface or

making various types of motions. Recently, Thorne

et al. [8] developed an animation system that generates

various types of motions based on ‘‘gestures’’ that are

drawn by the user along with a locomotion path. In

these systems, a motion is usually generated after an

entire path is given. Therefore, the user cannot control

the figure during a motion interactively.

Some researches employ input devices that have

multiple DOF for animation. Oore et. al. [9] used two

bamboo tubes in which a 6 DOF magnetic tracker is

ARTICLE IN PRESS
M. Oshita / Computers & Graphics 29 (2005) 931–945 933
embedded for each tube. Dontcheva et al. [10] used

small widgets and a camera-based motion capture

system. In these systems, the movements of a device

are directly mapped to a part of the subject body.

However, virtual figures have more DOF than such

input devices. To solve this problem, they proposed

layered editing techniques. By repeating specifying the

movements for each body parts [9] or from an abstract

motion to detailed motions [10], complex motions are

composed interactively in their systems. These systems

are motion editing tools rather than motion control

interface. Since they need some iteration to generate one

motion, they are not suitable for a motion control

interface on an interactive application.

Laszlo et al. [11] proposed an animation system to

control an articulated figure interactively through a

mouse or keyboard by introducing a physics-based

model. They mapped an input device to the key DOF of

a figure, then the movements of all DOF are simulated

using a physics-based model. As a result, continuous

and natural-looking motions are generated interactively

using a common input device. However, this method is

not suitable for generating complex motions such as

various styles of locomotion since in such motions many

DOF of a figure should be controlled cooperatively

rather than just follow the laws of physics.

While the above methods map acquired data from

some input devices to a particular DOF of a target

articulated figure, our method uses them as an abstract

parameters (speed, angle, tilt, etc.) for motion genera-

tion modules that are constructed in advance. Our

system is aimed at ‘‘motion control’’ rather than

‘‘motion editing’’. There are some devices that have

more DOF than pen device. For example, a magnetic

sensor has 6 DOF (position and rotation of sensor) and

so does the 3D mouse [12]; however, we think that pen

device is more suitable for motion control of biped

figure because pen device gives the user some intuitive

physical feedback. When a pen is pressed on the tablet, it

gives back reactive forces to the user. When it is tilted,

the user feel the moments caused by the vertical axis of

the pen as discussed in [9]. These feedback forces help

the user sense the state of the figure. In addition to those

benefits, pen devices are more convenient and inexpen-

sive than other devices.

There are some techniques which utilize much higher

DOF from a device such as foot pressure sensor pad [13]

or silhouette image of a human figure from camera

vision [7]. These systems use input data to find an

appropriate motion from a database using a similarity

search rather than just use the input to control a figure’s

DOF directly. Therefore, it is difficult to control the

resulting motion subtly. Moreover, such a system needs

a large space as much as a motion capture. Monkey2

[14], an articulated figure device that has the same DOF

with human body, is suitable for a key posture
specification in an off-line animation editing but for

interactive motion control.

Davis et al. [15] proposed a sketching animation

system. This system extracts 3D keyframe postures of

the skeleton from a sequence of 2D images that are

drawn by the user for each desired keyframe. Although

their work and ours have a similarity in that both use a

pen device as interface, we aim at a totally different

technique. Our system uses a pen as an input device and

as a metaphor of a human figure rather than a drawing

tool. Lately many researchers use pen devices as an

intuitive interface for a graphic system [16] and a

research for the effectiveness of the pen pressure in 2D

GUI is also reported [17]. However, to the author’s

knowledge, no previous method utilizes multi-dimen-

sional input that is acquired from a pen device such as

pressure and tilt for interactive motion control.

2.2. Locomotion generation

Locomotion is a complex motion and many motion

generation techniques that are targeted for locomotion

have been developed by researches. However, many

existing methods can change resulting motions through

very few parameters and lack controllability. Most of

them [4–6] generate a walking motion based on just a

given path. Therefore, these methods cannot be used in

our system because we attempt to change motions based

on multi-dimensional parameters that are given from a

pen device (speed, angle, bend, tilt, and duck). In

addition, we expect to generate motions of various

characters (e.g. man, woman, child, elder, fashion

model, soldier, etc.) by replacing the motion data set.

To address these problems, we need to take an

appropriate approach first. Existing locomotion genera-

tion techniques are categorized into four approaches:
(1)
 Procedural motion generation [18]
(2)
 Physics-based motion generation [19,20]
(3)
 Motion database or motion graph [5–7]
(4)
 Motion blending [4,21–24]
First, the procedural approach is to generate walking

motion based on some experimentally designed func-

tions. It is difficult to adapt to various types of

characters because locomotion models are carefully

tuned and designed for a particular character and

difficult to be modified. Second, the physics-based

approach is similar to the procedural method except

that it combines physics-based dynamic simulation. By

controlling joint torques based on walking motion

trajectories and using a dynamic simulation, physically

correct motion is generated. However, this method is

more difficult to adapt to wide range of motions because

the parameters of controllers should be tuned by hand.

ARTICLE IN PRESS

Table 1

Input data available from Intuos 3

Input type Resolutions Main use in our interface

x-position 0.01mm Locomotion, turn, steps

and jumpy-position 0.01mm

Pressure 1024 Duck and jump height

Altitude �90 to 90 (64) Bend, stretch, tilt

Azimuth 0–360 (64)

Buttons 2

altitude

revolution

azimuth

Fig. 2. The pen tilt information from intuos 2. Only altitude

and azimuth are detectable but revolution.

M. Oshita / Computers & Graphics 29 (2005) 931–945934
The third and fourth approach uses a set of motion

capture data. Because they are based on actual human

motion data, resulting motions are expected to be

realistic. In addition, these methods can be adapted to

various characters by changing the data set. The

difference between two approaches is that motion

blending methods use some motion data at the same

time and generate a new motion by blending the

multiple motion data while the other approach selects

an appropriate motion segment from a data set and

adjusts it. Lately, the motion graph approach is

commonly used by many researches [5,6]. This approach

seems to be easy to use since motion data do not have to

be edited, aligned, and parameterized. However, if the

parameter space is large, it is difficult to apply this

approach because many motions are required. More-

over, using this method, it is difficult to satisfy a set of

given parameters correctly. Therefore, we decided to

take the motion blending approach.

The motion blending methods are further categorized

into two methods: local and global blending. A local

blending method [24,4,23] uses only n+1 example

motions that are close to the given parameter in an n-

dimensional parameter space. This method ensures the

resulting motions are close to the original motions.

However, this method needs many example motions

especially when the dimension of the parameter space is

large. A global blending method [22,21] uses the whole

example motions to generate resulting motions.

Although this approach does not need so much

sample data, the sample data should be well scattered

so that they represent the motion well over the

parameter space. The local blending method allows only

interpolation but exploration while the global blending

method allows both. In addition, on the local blending

method, it is difficult to change motion parameters

during a motion since the motion set may be changed.

Based on these features, we decided to use the global

blending approach because we use a higher dimensional

parameter space and smaller numbers of example

motions are desired.
3. User interface

In this section, we describe the user interface design of

our system from the user’s view point. The algorithm for

generating animation based on user input will be

described in the following sections.

3.1. Tablet device

Among some commercial pen and tablet devices

available, we used intuos 2 from Wacom [25]. Intuos 2

is one of the popular products and can detect various

status of a pen as listed in Table 1. The position data are
absolute values at where the pen is pointing in the tablet

coordinates. When the pen touches the tablet, some

positive pressure value is acquired. Otherwise the

pressure value is zero. The altitude and azimuth show

the tilt of pen. Unfortunately only 2 DOF of pen

rotation are available in Intuos 2 (Fig. 2) and the

direction that the figure is facing cannot be controlled by

using the revolution of the pen. Therefore, we introduce

a scheme to determine whether the figure faces the

direction that the pen is moved or keeps its direction

while backward or lateral step as described in Section

3.3.2. Although negative altitude values are acquired

when the pen is inverted, our system only uses positive

values of altitude. The positions, altitude, azimuth and

button values are acquired even when the pen does not

touch the tablet unless the pen moves more than about

1 cm above the tablet. If the pen moves far away from

the tablet, no input data is captured. These input data

from tablet device are easily captured in a user program

using the Wacom tablet library [25].

3.2. Position-based vs. velocity-based control

There are two basic approaches for locomotion

control interface: position-based and velocity-based.

The first one takes absolute position values from an

input device and uses them to control the position of a

figure directory. On the other hand, the second one takes

ARTICLE IN PRESS
M. Oshita / Computers & Graphics 29 (2005) 931–945 935
relative values and uses them to control the motion

velocities of a figure. A gamepad or joystick device is

considered as an input device that gives relative values.

Therefore, it is natural that we use them for a velocity-

based control. In a velocity-based interface, a figure

moves in response to the tilt of the stick. The user cannot

specify a destination of a locomotion directory. Instead,

we interactively control the speed and direction of

locomotion so that the figure heads for the desired

location. On the other hand, a mouse or pen device takes

absolute positions. We can use them for position-based

control. Using a position-based interface the user can

directory specify a destination or a path of locomotion.

A disadvantage of the position-based control was the

lack of controllability and interactivity as described in

Section 2.1.

In the following subsections, we present a position-

based pen interface which also combines benefits of a

velocity-based control. In our interface, the user can

control the speed, direction, or styles of motions

interactively in a position-based interface and the

controlled figure responds to the pen movements very

quickly.

3.3. Interface design

The design concept of our interface is that we use a

pen as an approximation of a human figure and the

figure intuitively responds to the movements of the pen

manipulated by the user. We do not attempt to make the

user input some gestures to specify the types of motions

explicitly. The user just moves the pen in the same way

that the user wants the figure to move around.

Appropriate motions are then automatically generated

in response to the pen trajectories or strokes.

3.3.1. Locomotion

The figure walks and runs along a given pen

trajectory. In our interface, the figure starts walking

after a short path enough for at least one step is given
Fig. 3. Locomotion interface. The right view visualizes the movemen

shows the pan movements. The figure walks and runs along a given pen

at each point on the trajectory.
(Fig. 3(a)). The user does not have to input an entire

trajectory before locomotion starts. The locomotion

speed is controlled based on the velocity of the pen on

each point of the path trajectory. If the pen is moved

slowly, the figure also walks slowly (Fig. 3(b)). If the

user draws a path quickly, the figure runs (Fig. 3(c)).

When the figure catches up to the current pen position, it

slows down in order to wait until further trajectory is

given. There is also a speed limit of figure running in

order to avoid unnatural animation. Therefore, if the

pen is moved very quickly, the difference between the

current pen position and the figure position become

large and the figure takes some time to finish the given

trajectory. Our system displays the pen trajectory on the

screen in order to help the user draw a desired

locomotion path.

The user can start path drawing from any point on the

tablet. The start point on the tablet is mapped to the

figure position in the world coordinates. If the pen is

moved away from the tablet and touched on another

position and started to be moved again, the figure keeps

locomotion from the terminal position of the last

trajectory. Therefore, by changing the pen position

when the pen reaches the edge of the tablet, the user can

make the figure walk far away from the original position

without being limited by the dimension of the tablet.

3.3.2. Step and turn

Since the revolution of the pen is not undetectable as

explained in Section 3.1, we need some rules in order to

determine figure orientation. For example, when the

pen is moved backward against the figure, it is difficult

to decide whether the figure should step back while

facing the front or should turn back and then walk

straight.

Our system determines whether step or turn is

executed based on the length of a pen stroke (Fig. 4).

If the pen is moved shortly and stopped, a step motion is

executed based on the distance and orientation of the

stroke (Fig. 5(a)). If the pen is moved further than the
ts of the pen that is manipulated by the user. The yellow stick

trajectory. The locomotion speed varies based on the pen speed

ARTICLE IN PRESS
M. Oshita / Computers & Graphics 29 (2005) 931–945936
distance of single step, the figure turns toward the

direction and then starts walking (Fig. 5(c)). If the user

keeps repeating short pen strokes, the figure keeps

stepping without turning around. This is also applied to

front step and locomotion. If the pen is moved forward

very briefly, the figure just steps forward instead of

starting to walk.
3.3.3. Jump

A jump motion is executed based on the pen move-

ments as well as locomotion. If the pen is lifted up from
Fig. 5. Step and turn interface. (a)–(c) If a short pen stroke is given, th

long stroke or trajectory is given, the figure turns first and starts wal

locomotion

right
turn

left
turn

step

Fig. 4. The relationship between the orientation and distance of

the pen stroke and executed motion. Given a short stroke, the

figure makes a step in response to the orientation and distance.

Given a long stroke or trajectory, the figure turns and/or starts

walking.
the tablet and touched on a nearby position on the

tablet, the figure jumps toward the touched position

(Fig. 6(a) and (b)). If the pen is touched in a position

very close to the pen left, the figure performs a vertical

jump (Fig. 6(c)). If the pen is touched on a point out of

jump range, the system does not start a jump motion

and recognizes it as a start of new input as described in

Section 3.3.1. To help the user control the landing

position, the system displays the available jump range

and the cursor corresponding to the current pen position

while the pen is floating on the tablet (Fig. 6(a) and (b)).

The jump direction and distance are determined based

on the difference between the landing point and the

take-off point. The jump height is determined based on

the pen pressure just before the pen left the tablet. The

more the user presses the pen onto the tablet, the higher

the figure jumps. The jump height is currently con-

trollable only for vertical jumps, but for directional

jumps in our implementation.

3.3.4. Posture control (bend, stretch, tilt, and duck)

The posture of the figure is controlled through

additional DOF that the pen device provides. The tilt

and pressure of pen are used for this purpose. The figure

bends, stretches, and tilts its upper body in response to

the angle and direction of the pen tilt (Fig. 7(d)–(f)).

The figure also ducks in response to the pen pressure

(Fig. 7(c)). The height of duck depends on the size

of pressure. As long as the pressure is being applied,

the figure keeps ducking. These posture controls work
e figure steps along the stroke without it orientation. (d)–(f) If a

king.

ARTICLE IN PRESS

Fig. 6. Jump interface. (a) If the pen is lifted up and touched on a nearby point quickly, (b) the figure jump toward the touched

position. If the pen is touched on the same point, (c) a vertical jump is executed. The jump height is determined based on the pen

pressure before the pen is released. Guide circles which show the range of vertical jump and directional jump are displayed for the user.

Fig. 7. Posture control interface. (a), (b) The figure tilts, bend sand stretches in response to the pen tilt. (b) The figure also ducks in

response to the pen pressure. (d)–(f) The posture control also works during locomotion.

M. Oshita / Computers & Graphics 29 (2005) 931–945 937
not only when the figure is standing but also during

locomotion (Fig. 7(d)–(f)).

4. System overview

The structure of our system is shown in Fig. 8.

The system consists of the interface module and

the motion generation module. The interface module

interprets input data from a tablet device and sends

motion parameters, root constraints and motion

transition command to the motion generator. The

motion generation module is composed of submodules

for each type of motion. Based on a current motion,

one of submodules takes charge of generating motion.

When a motion transition signal is sent from the
interface module, the main submodule switches one to

another.

4.1. Motion generation modules

The motion submodules are developed based on a

global motion blending method as discussed is Section

2.2 with a small number of example motion data. To

ensure smooth blending over the examples, every

example in a motion module has similar patterns and

the same sequence of keyframes, for example, left

foot up or right foot down. For this reason, we

separate a vertical jump and four orientational jumps,

right turn and left turn, and right step and left step,

respectively.

ARTICLE IN PRESS

Interface Module Motion Generation
Module

animationpen input
motion parameters
motion transitnion

root constraints

Fig. 8. System overview.

Table 2

Motion modules

Motion Parameters # Examples

Locomotion Speed, angle, tilt,

bend-stretch, duck

12

Standing Tilt, bend-stretch,

duck

6

Right step Angle, distance 10

Left step Angle, distance 10

Directional jump

(front right)

Angle, distance 6

Directional jump

(right)

Angle, distance 4

Directional jump

(front left)

Angle, distance 6

Directional jump

(left)

Angle, distance 4

Vertical jump Height 2

Right turn Angle 4

Left turn Angle 4

M. Oshita / Computers & Graphics 29 (2005) 931–945938
The parameters that each motion module takes are

shown in Table 2. Some motion modules such as

locomotion are designed to generate one cycle of a

continuous motion, e.g. moving the right leg first and

the left leg. By repeating the same motion with varying

parameters, continuous motions are generated. The

parameters are allowed to be changed during motion.

Currently we do not terminate a motion before a cycle of

motion has finished in order to avoid discontinuous

between motions. A motion transition command from

the interface module is queued in the motion generation

module and is executed after the previous motion has

finished.

4.2. Example motions

We need motion parameters of each example motion

in order to blend them. The motion parameters are

computed from the motion data using simple approx-

imations. Locomotion speed and angle are computed by

using a method similar to that of Park et al. [21]. Jump,

step, and turn parameters are simply computed from the

difference between the first frame and last frame of the

example motion. Jump height and tilt, bend, and stretch

angle are calculated from the maximum height and spine

angle during the motion. To apply motion blending, a

sequence of keyframe is manually assigned to all

motions in each motion set in advance.
5. User interface implementation

This section describes the implementations of the user

interface described in Section 3. Since there is some time

difference between the current input data from the pen

and device and the motion that is currently being

executed, input data are recorded in a queue as a series

of point data, and then a block of them is interpreted to

generate an appropriate motion from the top of the

queue. The motion parameters are also computed from

the corresponding input data.

5.1. Recording pen trajectory

Input data from the pen device are recorded as a series

of point data (Fig. 9). Input data come from the pen

device asynchronously while the pen is moving on the
tablet. If the pen is not moving, no input data comes.

Based on the spatial and temporal difference from the

previous and next point data, we categorize each point

data into one of four types: moving, stop, jump landing,

and reset (Fig. 10). When the pen keeps moving, the

point data are recognized as moving data. If the pen is

stopped or lifted up from the tablet, it is recognized as a

stop data. If the pen is lifted up and positioned on a

point in a short distance from the previous position

quickly, the data is treated as a landing point of jump. If

the distance or time from the previous point is large, the

point data is treated as a reset data. In case the pen is

moved very quickly on the tablet, we treat the input data

as moving data instead of jump landing data in order to

avoid unexpected jump motions. These rules are

summarized in Fig. 10. As explained in Section 3.3.1,

the position of a reset data is assigned to the same

position with the last data and the user can continue to

extend the previous trajectory (Fig. 9(d)). Based on these

other types of the point data a series of point data in the

queue is recognized and interpreted as one motion. The

pen pressure and tilt at the moment are also recorded on

each point data. They are not used to determine the type

ARTICLE IN PRESS

moving

stop

jump

reset

step locomotion jump

new trajectory

(a) (b) (c) (d)

Fig. 9. An example of a series of point data that is stored in queue. Each point data are categorized into one of four types.

time

distance

moving
stop

reset

jump

Fig. 10. Rules for categorization of point data. Based on the

distance and temporal difference from the previous and next

input data, each input point data is categorized into one of four

types.

M. Oshita / Computers & Graphics 29 (2005) 931–945 939
of executed motion but for computing motion para-

meters.

5.2. Starting a motion

If the pen starts moving and then stops in a short

time, the pen stroke from the beginning of the series of

moving data to the stop data is interpreted as a step

motion (Fig. 9(a)). If the pen moves over a certain

distance, locomotion or turn-and-locomotion is started

(Fig. 9(b)). If a jump landing data is recorded, a vertical

jump or directional jump is generated based on the

distance between the landing position data and the

previous stop data (Fig. 9(c)).

Locomotion is initiated after enough length of point

data that are categorized as moving data are recorded.

Other motions are executed after the all point data for

the motion are given. We could predict the user’s

intension and start a motion before the entire stroke is

inputted. However, we did not use such an approach for

now, because it is difficult to decide the correct motion

from a very short input data. In addition, the duration
of input is shorter than the duration of the motion

executed.

5.3. Motion parameter computation

Motion parameters are computed from a pen stroke

(series of position data). All motion except locomotion

starts after the entire stroke is given (stop or jump

landing data is recorded). Therefore, the distance and

angle parameters are computed using the difference

between the first and last point data. The parameters of

locomotion are computed from the difference between

the current position data on the locomotion trajectory

(series of position data) and a position data in a certain

distance from the current data. The current position on

the trajectory is updated based on the speed parameter

on each frame.

The generated motion that is blended based on the

computed motion parameters may not always satisfy the

given trajectory or target position and direction. There-

fore, we apply spatial and orientational constraints to

the root (pelvis) of the figure. These constraints are

computed from the input trajectory. During locomotion,

the horizontal position and horizontal orientation of the

root is always constrained so that the root moves above

a locomotion trajectory. The figure orientation on each

point of the pen trajectory is computed from tangent

vector of the trajectory. In other motions, only the

terminal position and direction is constrained. The

weight of constraints becomes large when the motion

reaches the end.

Other locomotion parameters such as speed, duck,

bend-stretch, tilt are computed by averaging the

recorded values of point data nearby the current

position on the trajectory. As explained in Section 4.1,

a long locomotion is generated by repeating a motion of

one locomotion cycle. However, the last locomotion step

does not always finish at the end of trajectory. In such

case, the figure must keep walking motion without

moving forward and this looks like an unnatural

ARTICLE IN PRESS

current stepcurrent step

end of
trajectory

next step

end of
trajectory

(a) (b)

Fig. 11. (a), (b) Control of the last step of locomotion so that a

locomotion step finishes at the end of the trajectory.

M. Oshita / Computers & Graphics 29 (2005) 931–945940
animation. Therefore, we adjust the locomotion speed

parameter during the terminal part of locomotion so

that the last locomotion step stops just at the end of the

trajectory. The distance of the current step is computed

by multiplying the speed parameter and the motion

duration. If the speed parameter is changed, motion

duration also changes since the blending weights are

recomputed to satisfy the changed parameters. There-

fore, the relationship between speed parameter and

distance of step is nonlinear. However, we can assume

that the more the locomotion speed is increased, the

longer the step distance is extended. Using this assump-

tion, we repeat adjusting speed parameter until the step

distance fits to the desired length. We apply two rules

here. First, if the current step is going to exceed the

end of the trajectory (Fig. 11(a)), the speed is reduced to

fit the step distance to the rest of trajectory. Second, if

the next step is going to be very short and we cannot

handle it even if the minimum speed is applied

(Fig. 11(b)), the speed of the current step is increased

so that it finishes at the end of the trajectory and the next

step becomes unnecessary. As explained in Section 3.3.1,

if the figure catches up the current pen position but the

trajectory is not finished yet, we simply reduce the speed

parameters.
6. Motion generation

As discussed in Section 2.2, we decided to take

a global motion blending approach with small

modification. When a set of parameters is given,

weights of all example motions are determined first.

By blending example motions based on the weights,

a desired motion is then generated. In addition

to this motion blending, we use motion transition

and constraints methods for generating continuous

motions.

6.1. Motion blending

Our implementation is based on the algorithm

by Park et al. [21] and Rose et al. [22]. A typical
method for weigh computation is to combine linear

coefficients and nonlinear coefficients for a radial basis

function.

w ¼ Apþ BRðpÞ, (1)

where w is the n-dimensional vector that represents the

weights for example motions and n is the total number

of them; p the m-dimensional parameters and m is the

dimension of the parameter space. First term is for

blending example motions linearly with coefficients

matrix A and the second term is for reducing error

using a radial basis function.

Ignoring the second term of Eq. (1) and considering

the conditions that wi ¼ 1 is satisfied when p ¼ pi where

pi is the parameter vector of ith motion, each row of A is

computed using a least-square method.

A radial basis function R(p) is used for the second

term. The ith column of R(p) is computed using a faction

and distance between p� pi

�
�

�
�. For a radial basis

function, we use the cubic B-spline function in the

same way as Park et al. [21]. Using the same conditions

for the first term, each row of the radial basis co-

efficients matrix B to reduce the error between the actual

weights and computed weights calculated using

the linear term is determined by solving the linear

problem:

BRðpiÞ ¼ w� Api (2)

Using Eq. (1) and coefficient matrices A and B,

weights of example motions are determined based on the

given parameters.

Once the weights are determined, a blended motion is

computed by timewarping the example motions based

on the sequential keyframes that are given in advance.

For smooth blending we employ an incremental time-

warping and sphere-vector space orientation blending

technique that are presented by Park et. al. [21].

The major differences between the original method

[21] and our method are as follows. We use an

incremental technique also for the horizontal position

of the root instead of simply blending the positions of

example motions, because blending of long step motion

and short step motion may causes reverse movements of

the root position. Therefore, we blend the velocities of

example motion instead of positions of example

motions. The height of the root is computed based

on the example motions and the ground height. In

addition to this, we use the initial posture of the

following motion as (n+1)th example for motion

blending in order to realize smooth transition as

discussed next (Fig. 12).

6.2. Motion transition

We need to make a transition from one motion to the

next motion. This includes repeating the same motion,

ARTICLE IN PRESS

previous motion

following motion

time

transition
foot constraintsfoot constraints

Fig. 12. Motion transition and foot constraints. The initial

posture of the following motion is blended with the previous

motion as the (n+1)th example motion.

M. Oshita / Computers & Graphics 29 (2005) 931–945 941
such as locomotion cycle. For smooth transitions, we

simply blend the terminal segment of the previous

motion and the initial posture of the following motion

(Fig. 12). We employ this simple technique since the

types of motions in our system are limited and the

differences between motions are small. Although there is

a more complete approach that we prepare all transition

motion data from one motion to another in advance

[26], it is difficult to be adopted in our system since we

use many types of motions and the combination is quite

large.

6.3. Root and foot constraints

During a motion root constraints are given from the

interface module based on an input pen stroke or

trajectory. The constraints include horizontal spatial

constraints and horizontal directional constraints. These

constraints are directory applied to the root position and

rotation.

The motion blending scheme does not ensure a foot

position is always fixed while the foot is contacting the

ground. In addition, the root constraints also change the

foot positions. To avoid these problems, the constraints

between the figure feet and the ground are also applied.

We introduced a kind of importance-based end-effectors

constraints [27]. Once a foot contacts the ground, a filter

tries to keep it on the same position on the ground. The

leg postures are computed based on the filtered end-

effectors position using an analytical inverse kinematics.

However, we do not apply the constraints during a

motion transition phase, because the following motions

sometimes become unnatural when two transition

postures are different and the initial posture of the

following motion is not established because of the

constraints. Although our system currently generates

motions on an even terrain, it is easy to retarget them on

a curved terrain by controlling the heights of the foot

constraints.
7. User experiments and discussion

We have implemented the proposed interface as a

Windows application with MS Visual C++ and

Wacom Tablet Library [25]. The program works on

over 60 fps on a standard computer. Fig. 13 shows an

example animation. In the animation, the user was

making the figure walk along the path in many styles.

The camera is automatically moved along the figure so

that the figure was displayed on the center of the view.

While the use is drawing a motion trajectory, if the pen

trajectory that the user is drawing reaches the edge of

screen, the camera moves along the end of the trajectory

so that the end of trajectory remains inside the screen.

The user needs to see the trajectory rather than the

animating figure. The orientation of the camera is fixed

in order to keep the relationship between the pen

direction and figure direction constant.

7.1. A gamepad-based interface for comparison

We also developed a gamepad-based interface based

on a velocity-based control for comparison with our

pen-based interface (Fig. 14). This interface uses the

same motion generation engine with the pen-based

interface. We used a gamepad for PlayStation 2 in our

experiments with a USB adopter for PC. The gamepad

has two sticks (4 DOFs) and 14 buttons. The user can

control locomotion using the left stick. The speed and

orientation of locomotion are directly computed from

the tilt of the left stick. In addition, by combining with a

button with the left stick, the user can initiate a step and

jump motion. The orientation and distance of a step or

jump are computed from the tilt of the right stick. The

right stick is for posture control of the figure. There is

also a duck button. The duck height is computed based

on the duration that the user keeps pressing the button.

7.2. Experiments

To evaluate the controllability of the pen-based

interface and to compare it with a standard gamepad-

based interface, we developed a kind of game applica-

tion. Five undergraduate students participated in our

experiments. The subjects were requested to control the

figure to the goal (blue tile) without going over the given

course (cyan tiles) or be hit by moving obstacles. The

obstacles moved between two fixed points in a fixed

speed. We designed four stages to test various control

abilities (Fig. 15).

First, we explained the subjects how to use the pen

and gamepad interface and then let them try one

of two interfaces freely on the stages without obstacles.

After about 15min training, the subjects tried each

stage three times and the scores are recorded. A score

record includes the goal time, times of course out,

ARTICLE IN PRESS

Fig. 13. Images from an example animation.

Fig. 14. The gamepad-based interface with a gamepad for

PlayStation 2.

M. Oshita / Computers & Graphics 29 (2005) 931–945942
and times of collision with an obstacle. Then the subjects

switched to the other interface, and did the same

thing with another 15min training. After that, the

subjects tried each stage with obstacles after about

10min training for each interface. Finally, we summar-

ized the average scores for each stage and each interface

from all the records.
7.3. Results and discussion

The result of the experiments is shown in Table 3. It

leads us to the flowing discussion.
�
 The number of course out times is smaller with the

pen-based interface in all the stages. This result
strongly supports our expectation that the pen-based

interface is suitable for precise locomotion trajectory.
�
 The goal time is shorter with the pen-based interface

in the stages that have narrow paths while it is longer

in the stages that have wide paths. From an

observation of the experiments, we found that the

users do not tend to control speed with the gamepad-

based interface. Instead, they just use the maximum

speed or the minimum speed. They basically have

been trying to run through a narrow path at a

maximum speed. As a result, they reach the goal in a

shorter time, although the number of course out

times increases. On the other hand, the users move

their pens slowly even involuntarily in a curved or

narrow path with the pen-based interface. As a result,

locomotion speed naturally changes in response to

the path and the control of the users.
�
 The number of collision times with obstacles is

basically smaller with the gamepad-based interface.

The reason considered is that the delay before a

desired jump or step motion is executed is smaller in

the gamepad-based interface. The problem seemed to

be the duration of the input time of a jump stroke

rather than the duration from when the stroke was

inputted to when the motion was executed. To

initiate a jump motion the user has to move the pen

within a certain distance and timing. Because of this,

it seems to be difficult for the user to execute a

motion on an appropriate timing to avoid moving

obstacles. We think the controllability will be

improved by allowing more margins for motion

input.

ARTICLE IN PRESS

Fig. 15. The stages used in our experiments. The subjects are requested to control the figure to the goal.

Table 3

Results of the experiments

Stage Pen Gamepad

Course out # Collision Goal time # Course out # Collision Goal time

Stage 1 (no obstacle) 0.50 — 5.60 0.89 — 3.68

Stage 2 (no obstacle) 0.75 — 7.94 1.33 — 8.87

Stage 3 (no obstacle) 2.25 — 23.06 2.42 — 19.17

Stage 4 (no obstacle) 0.33 — 11.93 2.00 — 11.93

Stage 1 (with obstacles) 0.50 1.08 6.85 0.67 0.83 6.14

Stage 2 (with obstacles) 0.67 0.67 10.00 1.42 0.92 9.68

Stage 3 (with obstacles) 2.17 2.92 17.75 3.25 2.33 24.58

Stage 4 (with obstacles) 0.83 2.17 15.82 2.35 1.33 16.29

M. Oshita / Computers & Graphics 29 (2005) 931–945 943
In summary, the pen-based interface has advantages

especially when precise control is required. It also has

the comparable controllability with the traditional

gamepad-based interface. Further improvement of the

input recognition will help the user control not only

positions but also timings of motions precisely. We also

could improve the controllability by introducing some

kind of prediction of user input and by executing an

anticipated motion before the user has finished the

input. However, this may cause detection errors and

unnatural resulting motion when an incorrect motion is

executed and is transformed to the correct motion.

There is a trade-off between controllability and natural

animation.
As mentioned above, the pen-based interface also

seems to be suitable for natural looking animation since

even subtle changes of input are reflected on the

resulting motion. Therefore, it may be useful not only

for on-line applications but also in animation editing for

off-line animations. However, unexpected noises of pen

position also may be reflected since the figure tracks the

input trajectory precisely. Moreover, a hand trajectory

and a human locomotion trajectory should have

different kinds of features in a detailed level. To realize

more natural looking animation, we might need to

introduce a kind of filter that converts an input

trajectory into a natural locomotion trajectory based

on some knowledge of locomotion trajectory [28].

ARTICLE IN PRESS
M. Oshita / Computers & Graphics 29 (2005) 931–945944
8. Conclusion

In this paper we presented a pen-based interface for

interactive motion control. We introduce a position-

based pen interface which also has controllability and

interactivity. The user can control locomotion speeds

and styles during motion in addition to the precise

control of motion trajectory and positions. We think

that our interface is also suitable for novice users and

kids. We are going to experiment the pen-based interface

with more various types of people. Pen is a very

common tool in our life and we think they have

potential for an interactive motion control interface.

In addition to the direct control based on the pen

movements, more intelligent movements such as avoiding

obstacles or working with other character will be required

on some applications. We also intend to develop reaction

models that generate believable reactions based on the

environments in addition to input from the pen. For

example, a dance application in which two figures dance

cooperatively guided by two separate pens that are

manipulated by two users is an interesting application.
Acknowledgments

The author would like to thank Naoko Ikesumi for

her help in motion capture and experiments. The author

also would like to thank the participants of the 1st

Eurographics Sketch-Based Interfaces and Modeling

2004, who gave a lot of thoughtful comments for the

earlier version of this work. This research was partially

supported by a Grant-in-Aid for Scientific Research

(16650022) from the Ministry of Education, Culture,

Sports, Science and Technology.
References

[1] Tachi S. Telecommunication, teleimmersion and telexis-

tence. Ohmusha: IOS Press; 2003.

[2] Perlin K, Goldberg A. Improv: a system for scripting

interactive actors in virtual worlds. In: Proceedings of

SIGGRAPH, 1996, p. 205–16.

[3] Oshita M. Pen-to-mime: pen based interface for interactive

control of a human figure. In: Proceedings of eurographics

workshop on sketch-based interfaces and modeling, 2004,

p. 43–53.

[4] Sun HC, Metaxas DN. Automating gait generation. In:

Proceedings of SIGGRAPH, 2001, p. 261–70.

[5] Gleicher M. Motion path editing. In: Proceedings of the

ACM SIGGRAPH symposium on interactive 3D graphics,

2001, p. 195–202.

[6] Kovar L, Gleicher M, Pighin F. Motion graphs. ACM

Transactions of Graphics (Proceedings of SIGGRAPH

2002) 2002;31(3):473–82.
[7] Lee J, Chai J, Reistma P, Hodgins J, Pollard N. Interactive

control of avatars animated with human motion data.

ACM Transactions of Graphics (Proceedings of SIG-

GRAPH 2002) 2002;22(3):491–500.

[8] Thorne M, Burke D, van de Panne M. Motion doodles: an

interface for sketching character motion. ACM Transac-

tions of Graphics (Proceedings of SIGGRAPH) 2004;

23(3):2004.

[9] Oore S, Terzopoulos D, Hinton G. A desktop input device

and interface for interactive 3D character animation. In:

Proceedings of Graphics Interface, 2002, p. 133–40.

[10] Dontcheva M, Yngve G, Povović Z. Layered acting

for character animation. ACM Transactions of

Graphics (Proceedings of SIGGRAPH 2003) 2003;22(3):

409–16.

[11] Laszlo J, van de Panne M, Fiume E. Interactive control for

physically based animation. In: Proceedings of SIG-

GRAPH, 2000, p. 201–8.

[12] Spaceball. 3Dconnexion, http://www.3dconnexion.com.

[13] Yin KK, Pai DK. FootSee: an interactive animation

system. In: Proceedings of the ACM SIGGRAPH/

Eurapraphics symposium on computer animation, 2003,

p. 329–38.

[14] Monkey2, Digital Image Design Inc. http://www.didi.com/

www/areas/products/monkey2/.

[15] Davis J, Agrawala M, Chuang E, Povović Z, Salesin D. A

sketching interface for articulated figure animation. In:

Proceedings of the ACM SIGGRAPH/Eurapraphics

symposium on computer animation, 2003, p. 320–8.

[16] Igarashi T. Freeform User Interfaces for Graphical

Computing. In: Proc. of 3rd International Symposium on

Smart Graphics, 39–48, 2003.

[17] Ramos G, Boulos M, Balakrishnan R. Pressure Widgets.

ACM CHI Conference on Human Factors in Com-

puting Systems 2004. ACM CHI Letters 2004;6(1):

487–94.

[18] Boulic R, Thalmann NM, Thanlmann D. A global human

walking model with real-time kinematic personification.

The Visual Computer 1990;6:344–58.

[19] Bruderlin A, Calvert TW. Goad-directed, dynamic anima-

tion of human walking. Computer Graphics (Proceedings

of SIGGRAPH 1989) 1989;23(3):233–42.

[20] Laszlo J, van de Panne M, Fiume E. Limit cycle control

and its application to the animation of balancing

and walking. In: Proceedings of SIGGRAPH, 1996,

p. 155–62.

[21] Park SI, Shin HJ, Shin SY. On-line locomotion generation

based on motion blending. In: Proceedings of the ACM

SIGGRAPH symposium on computer animation, 2002,

p. 113–20.

[22] Rose C, Cohen MF, Bodenheimer B. Verbs and adverbs:

multidimensional motion interpolation. IEEE Computer

Graphics and Applications 1998;18(5):32–40.

[23] Tsumura T, Yoshizuka T, Nojirino T, Noma T. T4: a

motion-capture-based goal-directed realtime responsive

locomotion engine. In: Proceedings of computer anima-

tion, 2001, p. 52–60.

[24] Wiley DJ, Hahn JK. Interpolation synthesis of articulated

figure motion. IEEE Computer Graphics and Applications

1999;17(6):39–45.

[25] WACOM Technology Co. http://www.wacom.com.

http://www.3dconnexion.com
http://www.didi.com/www/areas/products/monkey2/
http://www.didi.com/www/areas/products/monkey2/
http://www.wacom.com

ARTICLE IN PRESS
M. Oshita / Computers & Graphics 29 (2005) 931–945 945
[26] Park SL, Shin HJ, Kim TH, Shin SY. On-line motion

blending for real-time locomotion generation. Computer

Animation and Virtual Worlds 2004;15(4):125–8.

[27] Shin HJ, Lee J, Gleicher M, Shin SY. Computer puppetry:

an importance-based approach. ACM Transactions on

Graphics 2001;20(2):67–94.
[28] Brogan DC, Johnson NL. Realistic human walking paths.

In: Proceedings of the 16th international conference on

computer animation and social agents (CASA 2003), 2003,

p. 94–104.

	Pen-to-mime: Pen-based interactive control of a human figure
	Introduction
	Related work
	Motion control interface
	Locomotion generation

	User interface
	Tablet device
	Position-based vs. velocity-based control
	Interface design
	Locomotion
	Step and turn
	Jump
	Posture control (bend, stretch, tilt, and duck)

	System overview
	Motion generation modules
	Example motions

	User interface implementation
	Recording pen trajectory
	Starting a motion
	Motion parameter computation

	Motion generation
	Motion blending
	Motion transition
	Root and foot constraints

	User experiments and discussion
	A gamepad-based interface for comparison
	Experiments
	Results and discussion

	Conclusion
	Acknowledgments
	References

