Symbol Recognition in Sketch-Based Interfaces

Lecture #9: Symbol Recognition
Joseph J. LaViola Jr.
Fall 2016

Recall Pen-Based Interface Dataflow

Raw Stroke Data → Preprocessing → Segmentation → Feature Extraction And Analysis

Sketch Understanding → Ink Parsing → Classification → Make Inferences
Symbol Recognition

- Want to recognize handwritten symbols
 - characters
 - shapes
 - gestures
- Use machine learning approach
- Which algorithm?
 - depends on number of symbols in alphabet
 - complexity (i.e., similarity of symbols)
 - distribution assumptions

Recognition Algorithms

- Many different approaches
- Machine learning techniques (classification)
 - linear classifiers
 - k-means classifiers
 - neural networks
 - Hidden Markov Models
 - template matching
 - support vector machines
 - AdaBoost
- Curve matching
 - elastic matching
- Primitive decomposition
Rubine’s Gesture Recognition Algorithm (Rubine 1991)

- Simple linear classifier
- Utilizes rejection metrics
- Assumes normality for features
- Simple to implement
- Does not need a lot of training samples

Recall Rubine’s Feature Set

- Cosine and sine of initial angle
- Length and angle of bounding box diagonal
- Distance between first and last point
- Cosine and sine of angle between first and last point
- Total gesture length
- Total angle traversed
- Sum of absolute value of the angle at each point
- Sum of squared values of the angle at each point
- Maximum speed
- Stroke duration
Rubine Classifier

\[v_{\hat{c}} = w_{\hat{c}0} + \sum_{i=1}^{F} w_{\hat{c}i} f_i \quad 0 \leq c < C \]

where \(F \) is the number of features,
\(w_{\hat{c}} \) is the weights, and the classification of symbol \(g \) is the \(c \) that maximizes \(v_{\hat{c}} \).

- Evaluate each gesture \(0 \leq c < C \).
- \(v_{\hat{c}} = \text{value} = \text{goodness of fit for that gesture } c. \)

Rubine Classifier Training

- Collect \(E \) samples for each symbol class
- Calculate feature vector for each sample for each class
 - \(f_{\hat{c}ei} \) = the feature value of the \(j \)th feature for the \(e \)th sample of
 the \(c \)th symbol
- For each symbol calculate the mean value for each feature

\[\overline{f_{\hat{c}i}} = \frac{1}{E_{\hat{c}}} \sum_{e=0}^{E_{\hat{c}}-1} f_{\hat{c}ei} \quad \text{where } 0 \leq e < E_{\hat{c}} \]

and \(E_{\hat{c}} \) is the number of training samples per class
Rubine Classifier – Computing Weights

- We first need the covariance matrix of each class c

$$
\sum_{\hat{c}ij} = \frac{1}{E_{\hat{c}} - 1} \sum_{c=0}^{C-1} (f_{\hat{c}ei} - \bar{f}_{\hat{c}i})(f_{\hat{c}ej} - \bar{f}_{\hat{c}j})
$$

Rubine Classifier – Computing Weights (2)

- Using the covariance matrices from each class, find the common covariance matrix
 - numerator = non-normalize total covariance
 - denominator = normalization factor = total number of examples – total number of shapes

$$
\sum_{ij} = \frac{\sum_{\hat{c}} \sum_{\hat{c}ij}}{C - 1} - C + \sum_{\hat{c}} E_{\hat{c}}
$$
Rubine Classifier – Computing Weights (3)

- Using the common covariance matrix and the mean feature vectors from each class, we can compute the weights

\[w_{\hat{c}i} = \sum_{i=1}^{F} (\Sigma^{-1})_{ij} \bar{f}_{\hat{c}i}, \quad 1 \leq j \leq F \]

\[w_{\hat{c}0} = -\frac{1}{2} \sum_{i=1}^{F} w_{\hat{c}i} \bar{f}_{\hat{c}i} \]

Rubine Classifier – Rejection Measures

- Linear classifier always will classify a symbol as one of the C classes
 - want to try to reject outliers and ambiguous symbols
 - two approaches
 - probabilistic
 - distance measure
Rubine Classifier – Probabilistic Rejection Measure

- Given a symbol \(g \) with feature vector \(f \) classified as class \(i \) (\(v_i > v_j, \forall j \neq i \))

\[
\tilde{P}(i \mid g) = \frac{1}{\sum_{j=0}^{C-1} e^{(v_j - v_i)}}
\]

Reject symbols with \(\tilde{P}(i \mid g) < 0.95 \)

Rubine Classifier – Rejection based on Distance

- Mahalanobis distance – the number of standard deviations a symbol \(g \) is away from the mean of its chosen class \(i \)

\[
\delta^2 = \sum_{j=1}^{F} \sum_{k=1}^{F} (\Sigma^{-1})_{jk} (f_j - \bar{f}_j)(f_k - \bar{f}_k)
\]

Rejecting symbols for which \(\delta^2 > \frac{1}{2} F^2 \)

- May need to be careful not to reject too many good symbols (a simple alternate list to correct mistakes will be helpful)
AdaBoost (Schapire 1997)

- Not really a classification algorithm – more like a framework
- Can use many different classification algorithms within AdaBoost framework
- Works with series of weak (base) classifiers
 - Want to increase the importance of incorrectly classified examples
 - series of weak hypotheses and weights form a strong hypothesis
 - need to ensure weak learners output either 1 or -1
- Many different variants (M1, M2, etc…)

AdaBoost Algorithm

Given \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\)

For \(t = 1\) to \(T\)

- Train weak learner using distribution on \(D_t\)
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\) with error
 \[e_t = \text{Pr}_{\text{y} \sim D_t} [h_t(x) \neq y] = \sum_i D_t(i) \]
- Compute \(\alpha_t = \frac{1}{2 \ln \left(\frac{1 - e_t}{e_t} \right)}\)
- Update \(D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t \cdot w_h(x_i)}}{Z_t}\)

Final hypothesis is \(H(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x) \right)\)
More Information on Machine Learning

Readings