Pen-Based Gestural User Interfaces

Lecture #6: Gestures Joseph J. LaViola Jr. Fall 2016

Fall 201

CAP 6105 - Pen-Based User Interfaces

©Joseph J. LaViola Jr.

What is a Pen Gesture?

- Simple ink stroke or strokes to convey an idea
 - fast to perform
 - easy to remember
- Typically disappear after they are recognized
- Supports in-band interaction

Fall 2016

CAP 6105 – Pen-Based User Interfaces

Gesture Types

- Single stroke
- Multi-stroke
 - compound gestures
 - punctuated gestures
- Trade-off in recognition between single and multiple stroke gestures
- Used in
 - modeling
 - command languages
 - invoking interface widgets

Single stroke gesture

Multi-stroke gesture

Fall 201

CAP 6105 - Pen-Based User Interfaces

©Joseph J. LaViola Jr.

Gestures in Modeling

- Used in 2D/3D object modeling
- Distinction between sketch-based modeling and gestures in modeling
- Used to
 - create geometry
 - manipulate geometry
 - guidance for computational algorithms

www-ui.is.s.u-tokyo.ac.jp/~takeo/research/teddy/teddy.htm

Fall 2016

CAP 6105 – Pen-Based User Interfaces

SKETCH

- Seminal work by Zeleznik et al. (1996)
- Conceptual modeling
- Uses simple lines and curves to build geometric primitives
 - □ cubes, cylinders. pyramids, etc...
- No machine learning-based recognition used
 - simple FSA
- Does make use of modifier keys

Fall 2016

CAP 6105 - Pen-Based User Interfaces

Surface/Mesh Editing

- Fine line between sketching and gestures
- Uses simple gesture as input to a surface editing algorithm
- This type of approach has been used for image processing as well
 - see work of Salesin

Nealen et al. (2005)

Fall 2010

CAP 6105 - Pen-Based User Interfaces

©Joseph J. LaViola Jr.

Gestures as Command Languages

- Gestural commands
 - replace traditional WIMP user interfaces
 - also used to invoke interface widgets
- Notion of in-band gestures
 - invoking commands and operations at the location of interaction
 - contrasts with having to move to top/side of the screen to press a button or find a menu item
- Used in
 - entering text
 - text editing
 - note taking
 - mathematical apps
 - etc...

Fall 2016

CAP 6105 - Pen-Based User Interfaces

Graffiti

- Language for entering text
- Maps to keyboard
- Used with Palm Pilot
- Single stroke language
 - Has prefix for some symbols
- Takes a while to learn

Fall 2010

CAP 6105 - Pen-Based User Interfaces

©Joseph J. LaViola Jr.

Text Editing

- Example of a gesture set taken from real world and developed for pen computers
- Natural connection between pencil and paper and computer

www.jumpingminds.com

Fall 201

CAP 6105 - Pen-Based User Interfaces

MathPad²

- Simple gesture set for
 - invoking operations
 - manipulating ink
- Uses notion of punctuated gestures
 - multi-stroke (gesture + punctuation)
 - makes use of context
- Why?
 - reduce number of gestures
 - overload appropriate gestures
 - reduce conflicts

Fall 2016

CAP 6105 - Pen-Based User Interfaces

Recognizing Gestures

- FSA's and simple primitive operators
 - conditionals and saving state from one event trigger to another
 - Operators can be features
 - same features used in machine learning!
 - features must be excellent discriminators
- Machine learning techniques
 - SVMs, K-nearest neighbor, AdaBoost
 - more on this soon!

Fall 2016 CAP 6105 — Pen-Based User Interfaces ©Joseph J. LaViola Jr.

Anatomy of a Gesture

Fall 2016

```
Input: Strokes s_{i-1} and s_{i-2}, a bounding box threshold \epsilon_{box}, and a line
                                                     difference threshold \epsilon_{diff}.
 Detecting and equal
                                                     Output: True or false.
 sign
                                                     \text{DetectEqualSign}(s_{i-1}, s_{i-2}, \epsilon_{box}, \epsilon_{diff})
                                                               P \leftarrow Points(s_{i-1})
                                                                Q \leftarrow Points(s_{i-2})
                                                              b_1 \leftarrow BoundingBox(s_{i-1})
                                                               b_2 \leftarrow BoundingBox(s_{i-2})
                                                              b_{2} \leftarrow Bounaing Dow_{(\neg i - \sigma)}
slen_{1} \leftarrow \sum_{i=2}^{n} \|P_{i} - P_{i-1}\|
slen_{2} \leftarrow \sum_{i=2}^{n} \|Q_{i} - Q_{i-1}\|
if \quad slen_{1} > \frac{\epsilon_{box} \sqrt{Width(b_{1})^{2} + Height(b_{1})^{2}}}{\epsilon_{box} \sqrt{Width(b_{2})^{2} + Height(b_{1})^{2}}} \quad \text{or } slen_{2}
                                                                    return false
                                                                \mathbf{if} \ Width(b_1) < Height(b_1) \ \mathbf{or} \ Width(b_2) < Height(b_2)
                                                     (10)
                                                                    return false
Note that as the gesture
                                                                diff_1 = |X(P_1) - X(Q_1)|
set increases the more
                                                     (12)
                                                                diff_2 = |X(P_n) - X(Q_n)|
                                                                \text{if} \quad \mathit{LineOverlap}(P_1, P_n, Q_1, Q_n) \text{ and } \mathit{diff}_{\,1} < \epsilon_{\mathit{diff}} \text{ and } \mathit{diff}_{\,2} < \epsilon_{\mathit{diff}}
tests you typically have
                                                     (13)
                                                                    return true
to employ to avoid
                                                     (15)
                                                                _{
m else}
conflicts.
                                                     (16)
                                                                     {f return} false
```

CAP 6105 - Pen-Based User Interfaces

9

Readings

- Zeleznik, R., K. Herndon, and J. Hughes. SKETCH: An Interface for Sketching 3D Scenes. Proceedings of SIGGRAPH'96, ACM Press, 163-170, 1996.
- Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: A Sketching Interface for 3D Freeform Design. Proceedings of SIGGRAPH'99, ACM Press, 409-416, 1999.
- Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H., and Buxton, B. Pen + Touch = New Tools. In *Proc. UIST 2010 Symposium on User interface Software and Technology*, 27-36, October 2010.
- Zeleznik, R., Bragdon, A., Adeputra, F., and Ko. H. Hands-On Math: A Page-based Multi-touch and Pen Desktop for Technical Work and Problem Solving. In *Proceedings of the* 23rd Annual Symposium on User Interface Software and Technology (UIST 2010), 17-26, October 2010.

Fall 2016 CAP 6105 - Pen-Based User Interfaces ©Joseph J. LaViola Jr.