

PaleoSketch: Accurate Primitive Sketch Recognition and
Beautification

Brandon Paulson
Sketch Recognition Lab, Texas A&M University

Department of Computer Science
College Station, TX 77843-3112 USA

bpaulson@cs.tamu.edu

Tracy Hammond
Sketch Recognition Lab, Texas A&M University

Department of Computer Science
College Station, TX 77843-3112 USA

hammond@cs.tamu.edu

ABSTRACT
Sketching is a natural form of human communication and
has become an increasingly popular tool for interacting with
user interfaces. In order to facilitate the integration of
sketching into traditional user interfaces, we must first
develop accurate ways of recognizing users’ intentions
while providing feedback to catch recognition problems
early in the sketching process. One approach to sketch
recognition has been to recognize low-level primitives and
then hierarchically construct higher-level shapes based on
geometric constraints defined by the user; however, current
low-level recognizers only handle a few number of
primitive shapes. We propose a new low-level recognition
and beautification system that can recognize eight primitive
shapes, as well as combinations of these primitives, with
recognition rates at 98.56%. Our system also automatically
generates beautified versions of these shapes to provide
feedback early in the sketching process. In addition to
looking at geometric perception, much of our recognition
success can be attributed to two new features, along with a
new ranking algorithm, which have proven to be significant
in distinguishing polylines from curved segments.
Author Keywords
Sketch recognition, shape beautification, low-level
processing, pen-based interfaces.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces – Input devices and strategies.

INTRODUCTION
Sketching has become an increasing popular form of
human-computer interaction due to the increased use of
Tablet PCs. Furthermore, tools have been developed that
allow sketching to be easily incorporated into user
interfaces [5][9]. It has also been argued that sketched
gestures are typically easier to remember than textual
commands [7]. Although there is much evidence to support

the usefulness of incorporating sketching into user
interfaces, sketch recognition as a whole has not yet entered
into mainstream technology. We believe this is because
current recognizers place many constraints on how users
must draw certain shapes. Users are forced to learn the
system rather than the system having to learn users’
intentions. Our recognizer places virtually no constraints
on how users must draw individual shapes; they are allowed
to draw freely. Currently, our recognizer classifies single
strokes into primitives. Primitives drawn with multiple
strokes can be merged by an upper-level recognition
system. A stroke is defined as the set of points (consisting
of an x coordinate, y coordinate, and time value) sampled
between pen down and pen up events.
In addition to placing few drawing constraints on users, our
recognizer has several other benefits. First, it is able to
return multiple interpretations. This capability allows
recognition errors to be easily corrected as a simple pen-
click could be used to switch to an alternative
interpretation. Our system also recognizes more primitives
than other popular low-level recognizers [10][12]. In
particular, our recognizer distinguishes circles from ellipses
and arcs from curves. We also recognize spirals and
helixes; two shapes not supported by most low-level,
geometric recognizers. By increasing the number of
primitives capable of being recognized, we will allow
sketch-based interfaces to be created for domains that
include shapes which were previously indescribable in
terms of the previous primitive lists. The shapes our system
currently recognizes include:

• Line: a stroke with a relatively constant slope
between all sample points

• Polyline: a stroke consisting of multiple,
connected lines

• Circle: a stroke that has a total direction close to
2π, constant radius between the center point and
each stroke point, and whose major and minor
axes are close in size

• Ellipse: a stroke with similar properties of a circle,
but whose major and minor axes are not similar.

• Arc: a segment of an incomplete circle
• Curve: a stroke whose points can be fit smoothly

up to a fifth degree curve

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

1

• Spiral: a stroke that is composed of a series of
circles with continuously descending (or
ascending) radii but a constant center.

• Helix: a stroke that is composed a series of circles
with similar radii but with moving centers. We
also assume that helixes are drawn linearly.

Our recognizer has significantly better recognition rates
than existing algorithms because of two new features we
have developed. We will show that these features, along
with our novel ranking algorithm, can be used to aid in
shape recognition, particularly when determining polylines
from curved shapes. We will also compare the overall
accuracy of our system to the commonly used recognizer
presented in [10].
PREVIOUS WORK
The idea of interacting with computers via pen-based input
began in 1964 with the seminal work of Ivan Sutherland’s
Sketchpad system [11]. In 1991, Dean Rubine proposed a
gesture recognition toolkit, GRANDMA, which allowed
single-stroke gestures to be learned and later recognized
through the use of a linear classifier [8]. Rubine proposed
thirteen features that could be used to describe any single-
stroke shape. Rubine also provides two techniques for
rejecting bad gestures.
Rubine's work was later extended by Long et al. [6], who
determined a new feature set that consisted of eleven of
Rubine’s features along with six of their own. This feature
set was chosen after multi-dimensional scaling was used to
determine the most relevant features. Like Rubine’s
recognizer, a linear classifier was used to classify single
stroke shapes.
One disadvantage of these first two systems is that they use
feature-based techniques which require extensive training.
Furthermore, because of the features chosen, these systems
required that strokes be drawn in the same manner each
time they were drawn. For example, a circle drawn in a
clockwise manner would not be the same as a circle drawn
in a counter-clockwise manner. Such constraints produce
recognizers that are heavily user-dependent. We want users
to be able to draw shapes as they would naturally. When
we tested the Rubine recognizer on our data, it only
achieved an overall accuracy of 54.2%. This accuracy
shows how feature-based classifiers which place many
constraints on the user can perform poorly on natural sketch
data.
Because feature-based techniques required much training
on the users’ behalf, a shift occurred towards more
geometric-based recognizers. This includes two systems
which greatly influenced the work presented in this paper.
The first system is that of Sezgin et al. In [10], a system
was described that was composed of an approximation
stage, a beautification stage, and a recognition stage. The
system used a novel approach to detect corners in sketched
strokes. Corners were detected by finding the points of
highest curvature, along with the points of lowest speed.
These points were determined by finding points above or

Figure 1. Recognizer Architecture

below a certain threshold. Hybrid fits between these two
sets of points were calculated using an average based
filtering technique. The error of each fit was determined by
using an orthogonal distance squared error. The system
was limited to only a few primitive shapes: lines, ellipses,
and complex fits (fits composing of a combination of lines
and curves). For complex fits and vertex (corner)
approximation, the authors reported an accuracy of 96%.
In [12], Yu and Cai present an alternative low-level sketch
recognizer. Corners were detected using only curvature
data. The technique of using curvature as a means to
segment strokes has been used in other works as well [4].
The most significant contribution of Yu and Cai was the
introduction of a feature area error metric, which is also
used in our recognizer. The shape set of the Yu recognizer
was expanded to include lines, polylines, circles, ellipses,
arcs, and helixes. For primitive shapes, they achieved near
98% accuracy; however, they admit to not having produced
the recognition rates of Sezgin for complex shapes.
Low-level recognizers, such as those presented by Sezgin
and Yu, are not adequate for most sketch recognition
domains. Typically, diagrams and sketches consist of
symbols that are more complex than the primitives
supported by these recognizers. Therefore, tools such as
LADDER [2] have been created which allow users to
describe higher level symbols as a combination of lower-
level primitives meeting certain geometric constraints.
UML diagrams, mechanical engineering diagrams, circuit
diagrams, military course of action diagrams, and flow
charts are all examples of various sketch systems that have
been produced using this shape definition language. Others
have attempted to improve upper-level recognition by using
context [3]; however, the use of context typically requires
domain knowledge.
The work in this paper uses many of the concepts learned
from the Sezgin and Yu systems. We improve on these
systems with the goal of being able to recognize a larger
number of primitive shapes while still maintaining a high
recognition rate.
IMPLEMENTATION
The overall architecture for our recognizer can be seen in
Figure 1. The recognizer takes a single stroke as input, and
performs a series of pre-recognition calculations. Once
these values have been computed, the stroke is then sent to
various low-level shape recognizers. Each shape recognizer

2

returns a Boolean flag stating whether the recognizer passed
or failed, as well as a beautified shape object (in the form of
Java2D shapes) that best fits the input stroke. Once the
recognizers for all possible shapes are executed, the results
are then sent to a hierarchy function which sorts the
interpretations in order of best fit. We will first discuss the
pre-recognition stage, followed by each individual shape
test, and finally we will discuss the hierarchy we chose for
ordering fits.

Pre-recognition
We begin pre-recognition by first removing consecutive,
duplicate points from the stroke. These points can occur in
systems with a high sampling rate. If two consecutive
points either have the same x and y values or if they have
the same time value then the second point is removed.
Next, a series of graphs and values are computed for the
stroke, including direction graph, speed graph, curvature
graph, and corners. The graphs are computed using
methods from [10] and [12], whereas corners are calculated
using a simple corner finding algorithm presented in the
appendix. This algorithm is meant to produce a polyline
interpretation that closely fits the original shape (even for
non-polyline strokes). The polyline interpretation in Figure
3 was produced from this algorithm.
In addition to these graphs, we also compute two new
features which we have found to be very helpful to the
recognition process. The first is normalized distance
between direction extremes (NDDE). To calculate this
feature, we first take the point with the highest direction
value (change of y over change of x) and the point with the
lowest direction value and compute the stroke length
between these two points. This length is then divided by
the length of the entire stroke, essentially giving us the
percentage of the stroke that occurs between the two
direction extremes. For curved shapes, such as arcs, the
highest and lowest directional values will typically be near
the endpoints of the stroke, thus yielding very high NDDE
values. Polylines, on the other hand, normally have one or
more spikes in their direction graphs. These spikes often
cause the point of highest or lowest directional value to no
longer be near the endpoints of the stroke. Therefore,
polylines typically will have NDDE values which are lower
than curved strokes (see Figure 2).
Our second new feature also aids in determining polylines
from curved strokes. We call this direction change ratio
(DCR). Like NDDE, DCR is also meant to gauge whether
or not spikes are present in the direction graph. This value
is computed as the maximum change in direction divided
by the average change in direction. Because there tends to
be a great deal of noise at the beginning and ending of a
stroke (what we typically refer to as “tails”), we ignore the
first and last 5% of the stroke we calculating this feature.
As seen in Figure 2, the polyline has a large downward
spike in its direction graph, whereas the arc has relatively
little change between consecutive direction values.
Therefore, polylines will typically have higher DCR values
than curved strokes.

As mentioned before, “tails” at the endpoints of strokes can
be significant problems for recognition. We attempt to
remove these tails before sending the stroke to each of the
shape tests. To determine if a tail is present, we analyze the
first and last 20% of the stroke and find the point within
each section that has the highest curvature. If that curvature
is higher than a thresholdA, then we break the stroke at that
point and remove the tail. We do not perform tail removal
on strokes with a low number of pointsB or with too small
of stroke lengthC. (Please note that we will use superscripts
throughout this paper to denote thresholds whose values
can be found in the appendix of this paper.)
After removing tails, we conduct two other tests before
performing any actual recognition. The first test determines
whether or not the stroke is overtraced. Using the direction
graph we can determine whether or not a stroke is
overtraced based on the number of revolutions the stroke
makes. This can be calculated by computing the total
rotation of the stroke, as mentioned in [8], and dividing it
by 2π. If the number of revolutions is greater than a certain
thresholdD then we consider the stroke to be overtraced.
We use the term ''overtraced'' to denote shapes that make
multiple revolutions. This does not necessarily mean that
each revolution is the same shape, as is the case of an
overtraced circle. For example, a helix is also considered
overtraced since it makes several revolutions which are
self-intersecting.
Finally, a test is used to determine if the stroke represents a
closed figure. We begin by computing the distance
between the endpoints and dividing it by the stroke length.
In order for a stroke to be closed this ratio must be less than
some thresholdE and the number of revolutions must be
greater than another thresholdF (different from the
overtraced threshold).

Line Test
To determine if a stroke is a line, the following conditions
must be met. First, we fit a least squares line to the stroke

Figure 2. Direction graphs for a polyline (left) and arc (right).

The points of highest and lowest direction value are circled.
The polyline has a lower NDDE value because its minimum

direction value is in the middle of the stroke, whereas the arc
has its direction extremes closer to the endpoints.

NDDE = 0.551

DCR = 10.53

NDDE = 0.955

DCR = 2.49

3

points. The orthogonal distance squared between the best
fit line and the actual stroke points is calculated similar to
that in [10]. This distance is divided by the stroke length to
determine the least squares error, which must be below a
certain thresholdG. Next, the feature area of the line is
determined using techniques from [12]. Again this value is
divided by the stroke length to get an error which must be
within a thresholdH. Finally, we verify that the stroke is not
overtraced and only contains two (or three) corners (one for
each of the endpoints). We allow three corners in order to
account for occasional examples in which the line was
drawn with a lot of noise. If all of these conditions are met,
then we accept the stroke as a single line.
We return a beautified shape object that consists of the line
created by connecting the endpoints of the stroke. We
could have alternatively returned the computed best fit line,
but we believe that endpoints are significant in sketching,
particularly in diagramming domains where lines are meant
to act as connectors. This endpoint-significance theme
continues in the beautification of the other low-level shapes
as well.
Polyline Test
The polyline test begins by breaking the stroke into sub-
strokes at the calculated corners. We send each sub-stroke
to the line test and keep track of the sum of least squares
errors as well as the sum of the feature area errors. These
errors are normalized by dividing by the length of the
stroke. In order for a stroke to pass as a polyline, one of
three conditions must exist.

1. Each sub-stroke must pass the line test.

2. The average least squares error of each sub-stroke
must be less than some thresholdI.

3. The stroke has a high DCR valueJ.

The shape object returned consists of the lines formed by
connecting the corners calculated from the corner finder.

Ellipse Test
One advantage of our ellipse test compared to others’ is that
we allow for rotated, as well as overtraced, ellipses. To
allow for this, we first calculate the ideal major axis, center,
and minor axis. The major axis is determined by finding
the two stroke points that are the furthest away from each
other. The center is taken as the average x and y values of
the stroke points. The minor axis is constructed as the
perpendicular bisector of the major axis at the center point.
This line is extended and clipped where it meets the stroke
points, which may be at interpolated values. Once these
values are computed, we then check to make sure the
following conditions apply:

1. The stroke must have passed the closed shape test
from pre-recognition.

2. The stroke’s NDDE value must be highK. This
value tends to be less relevant for small ellipses, so
this condition is ignored if the major axis does not
meet certain length requirementsL.

3. The feature area error (feature area divided by area
of the ideal ellipse, as described in [12]) must be

less than some thresholdM. If the stroke is
overtraced, then it is broken into sub-strokes at
each 2π interval in the direction graph. All of the
sub-strokes (minus the last sub-stroke, as it may be
an incomplete ellipse) are then fit to ellipses and
the error becomes the average feature area error
across each sub-ellipse.

The shape object returned consists of the beautified ellipse
formed from the ideal center, major axis length, and minor
axis length. This shape is then rotated around the center
point based on the angle of the major axis.
Circle Test
For circles, we re-use many of the tests conducted for
ellipses. We start by first calculating an ideal radius, which
is computed as the average distance between each stroke
point and the ideal center from the ellipse test. Once we
have this value, we then verify that the stroke passed
conditions 1 and 2 (again, small circlesN according to radius
are ignored for NDDE) of the ellipse test. To verify that a
stroke is better fit with a circle rather than an ellipse, we
find the major axis to minor axis length ratio, which after
subtracted from 1.0, must me less than some valueO. We
also perform feature area error verification; however, the
feature area is divided by the area of an ideal circle rather
than an ideal ellipse. This error must be less than some
thresholdP. We handle overtraced circles similarly to the
way we handled overtraced ellipses. The shape object
returned is the beautified circle formed from the calculated
center (from ellipse test) and radius.

Arc Test
For our recognizer, we consider arcs to be segments of
circles; therefore, in order to determine the best fit arc, we
need to determine the best fit circle that the arc is a part of.
To do this, we first calculate the ideal center point of the arc
using a series of perpendicular bisectors. First, we connect
the endpoints of the stroke and find the perpendicular
bisector at the midpoint. We determine where that bisector
intersects the stroke (through interpolation between stroke
points) and then connect two more lines from that point to
the endpoints. We take two more bisectors at the midpoints
of those two lines and find where they intersect each other.
That intersection point is the center of our arc.
We then calculate the ideal radius of the arc by taking the
average distance between the stroke points and the center
point. In order to pass the arc test a stroke must not be
closed or overtraced and must have a NDDE value that is
highK. Once again, the NDDE value is ignored in the cases
of small arcsN (based on radius). We also verify that the
stroke’s DCR value is lowJ. Finally, we calculate the
feature area of the arc and make sure its error is below a
certain thresholdQ. A beautified arc is constructed from the
ideal center, radius, and angles between the center point and
endpoints. As with lines, we want to make sure that
endpoint consistency is maintained.

Curve Test
In our implementation, we could allow for any degree
curve; however, we need to limit this degree not only to
keep recognition to a practical running time, but also

4

because complex figures could easily be represented by
some n-degree curve. For our system, we limit curves to
fourth and fifth degree curves, choosing the degree that best
fits the stroke points. Unlike other tests where we generate
ideal shapes after checking for passing conditions, for
curves we generate the ideal shape first, and then check the
least squares error of the generated shape against the actual
stroke points.
To generate an ideal curve, we use the Bézier curve
formula. In order to use this formula we must first calculate
d+1 control points, where d is the degree of the Bézier
curve. Currently, we use a naïve approach to approximate
these points. To find these points, we first find the
parametric value of each stroke point. We determine a
point’s parametric value by dividing the length of the stroke
up to that point by the length of the entire stroke. Once
these values are computed, we take the endpoints (whose
parametric values are 0 and 1), as well as, d-1 other points
which are spread evenly across the stroke. For example, for
a fourth degree curve, we would take the endpoints, along
with the points whose parametric values were close to 0.25,
0.5, and 0.75. We then estimate the control points by
solving a system of equations using these selected points
and their corresponding parametric values. Once we have
the estimated control points, we can then generate the ideal
curve according to the Bézier curve formula where n is the
degree of the curve and Pi is the set of computed control
points:

()∑
=

−−⎟
⎠
⎞

⎜
⎝
⎛=

n

i

iin
i

n

i
ttPtB

0

1)(

To pass the curve test, a stroke must have a lowJ DCR value
as well as a low least squares errorR. The least squares error
can be easily computed by plugging the corresponding
parametric values of each of the stroke points into the
Bézier curve equation and comparing it to its actual
location. The beautified shape object is simply the curve
generated by the Bézier curve equation.

Spiral Test
For spirals, we begin by breaking the stroke up at every 2π
interval in the direction graph like we did for overtraced
circles and ellipses. The center of the spiral is taken to be
the center of the bounding box for the entire stroke. The
average radius is calculated as in the circle test. Strokes
passing the spiral test must meet the following conditions:

1. The stroke must be overtraced.
2. The stroke’s NDDE value must be highK.
3. Each sub-stroke (minus the last sub-stroke) is fit to

a circle. Although we do not expect these strokes
to necessarily pass the circle fit test, we are able to
calculate the ideal radius of each sub-stroke. For
spirals, these radii must either be completely
ascending or completely descending through the
progression of each sub-stroke.

4. The average radius of the stroke divided by the
bounding box radius must be less than a
thresholdS. The radius of the bounding box is the

average between half of the width and half of the
height. This test is used to aid in determining the
difference between spirals and other overtraced
shapes (mainly circles). For overtraced circles, the
bounding box radius will be very close to the
average radius, whereas with spirals the average
radius will typically be smaller because each
consecutive sub-stroke should get closer and closer
to the center point of the spiral.

5. The centers of each consecutive sub-stroke must
be close to each other. To test this we find the
sum of the distances between the centers of each
consecutive sub-stroke and divide it by the average
radius times the number of revolutions the spiral
makes. This value must be less than some
thresholdT.

6. To further check the closeness of centers, we find
the centers of the sub-strokes that are farthest
apart. The distance between these centers should
not exceed the diameter of the spiral.

7. Finally, we calculate the distance between
endpoints and divide it by stroke length. This
value is helpful for distinguishing spirals from
helixes. In helixes, this value will be high whereas
spirals should be lower. We verify that this value
is below another thresholdU.

To return the shape object that represents the beautified
spiral, we generate an Archimedes spiral that starts at the
center point and has the polar equation, r = aθ. In this
equation the radius, r, changes as θ changes. The a value
represents the “tightness” of the spiral. We set this value to
be the bounding box radius divided by 2π times the number
of revolutions. To generate the spiral we continuously
increment (or decrement) the theta value until the radius
value reaches the bounding box radius. We decide whether
to increment or decrement theta based on whether the spiral
was drawn clockwise or counter-clockwise (which can be
determined by looking at the slope of the direction graph).
In order to preserve the outer-most endpoint of the spiral,
we can shift the theta value by the angle created from the
endpoint and the starting center point. Once we find the r
value that corresponds to the current theta, we simply plug
it into the polar equation for a circle to generate x and y
coordinates.
Helix Test
Helixes are essentially checked for during the spiral test so
little work is required for this test. For a stroke to be passed
as a helix it must pass conditions 1 and 2 of the spiral test,
but must fail condition 7.
Creating a beautified helix object is more complex than
creating a beautified spiral, since we want to maintain both
of the endpoints of the stroke. Essentially, we want to use
the polar equation of a circle like we did for spirals, but
instead of iteratively changing the radius, we want to
instead change the position of the center point and maintain
a constant radius. We chose the constant radius as the
average distance between the stroke points and the major
axis of the stroke (as calculated from the ellipse test). We

5

also find our starting and ending center points by finding
the points on the major axis that are a length equal to the
radius away from the endpoints of the stroke. Once these
two points are specified, we parametrically find the center
point for the current iteration. The parametric value used is
the absolute theta value divided by 2π times the number of
revolutions. We continue to increase or decrease theta until
its absolute value becomes greater than 2π times the
number of revolutions (the total direction).
Complex Test
A complex fit is a default interpretation in instances where
none of the above tests (with the exception of curves and
polylines) pass. Since it is a default interpretation, this test
will always pass but may not always be used as an
interpretation returned by the hierarchy. Our method for
handling complex shapes is much like that of [12]. We,
too, bias towards a complex fit with the fewest number of
primitive shapes. We start by breaking a stroke up into two
sub-strokes at the point of highest curvature. Each of these
strokes is then recursively sent back into the recognizer
until we get all non-polyline primitives.
We then add an additional step, which is different from the
implementation of Yu and Cai. Since breaking a stroke at
the point of highest curvature may not always guarantee
that we break at a logical location, we send our sub-strokes
to a secondary function which attempts to recombine
consecutive sub-strokes and check to see if they can be
recognized as a single primitive. If they can, then the two
sub-strokes are replaced with a single sub-stroke that is a
combination of the two. Because our recognizer also
returns beautified shapes, we can also generate a beautified
complex shape by simply combining all of the shapes
returned from the sub-strokes.
Hierarchy
Since we do not use a consistent error metric across all
shape tests, we had to create a hierarchy to sort our
interpretations. When ordering interpretations the hardest
problem is determining when a complex, curve, or polyline
fit is the best fit for a stroke. To help solve this problem we

Figure 3. An input sketch (left) along with two possible
interpretations – a polyline interpretation (middle) and a
complex interpretation made up of one line and one arc

(right). To determine which of these interpretations is best we
sum their ranks. The polyline interpretation is made up of 8

lines and therefore has a rank of 8. The complex
interpretation is made up of 1 lines and 1 arc, thus yielding a

score of 1+3=4. In this case the complex interpretation is
chosen over the polyline interpretation because of its lower

rank.

came up with a new ranking algorithm that takes advantage
of an inherent property of the corner finding algorithm we
used. The corner finding algorithm presented in the
appendix is meant primarily to converge to the corners of
polylines only. When applied to curved strokes the
algorithm tries to produce the best possible polyline
interpretation with as few lines as it can. This typically will
yield a large number of corners across the curved segment.
We use this property to our advantage, as we can predict
approximately the minimum number of corners that would
be found in most of the curved segments such as arcs,
curves, circles, and ellipses. We assigned a shape score
based on our initial observations. Essentially, these scores
tell us the minimum number of lines we will accept in place
of these shapes. The scores were as followed:
 Line – 1 Arc – 3
 Curve – 5 Circle – 5
 Ellipse - 5 Helix – 5
 Spiral - 5
Helixes and spirals are hard to assign scores because they
are arbitrarily large and the number of rotations differs
across each occurrence. Therefore, we gave them a default
score of 5. In order to determine whether or not we should
choose a polyline fit over a complex fit, we simply sum the
ranks of each interpretation and choose the fit with lowest
rank (complex wins tie). Figure 3 gives an example of the
algorithm in work.
Interpretations are ordered according to our hierarchy,
which can be referenced in the appendix of this paper.
Once we have ordered the interpretation, we perform one
last calculation in our hierarchy function. If a complex fit
was added to the interpretation list then we check it for sub-
stroke “tails” (typically in the form of very small lines or
curves) that occur at the endpoints of the stroke. If the
length of the first or last sub-stroke in a complex
interpretation divided by the entire stroke length is less than
some thresholdV then we remove it from the complex fit. If
this reduces the size of the complex fit to a single shape
then we replace the complex fit with the appropriate single
shape interpretation.
RESULTS
In our study, we collected two sets of data. The first set of
data consisted of 900 shapes collected from 10 users. Each
user drew 10 examples of each primitive shape, along with
10 examples of a complex shape. We asked users to draw a
complex shape consisting of one line and one arc, an
example which some recognizers have difficulty in
interpreting [12]. We used this first data set for training to
help establish thresholds and develop our hierarchy.
We then collected a second data set of the same size with
the same number of users and used this set to test our
recognizer. In addition to running the test set through our
recognizer, we also tested the data set against a modified
version of the recognizer created by Sezgin et al. [10]. This
recognizer was modified in work done by [1] to include the
return of multiple interpretations. For our experiment, we
wanted to see how often the correct interpretation was

6

 Correct Interpretation Produced Correct Interpretation is Top Interpretation
 Paleo Paleo-F Paleo-R SSD Paleo Paleo-F Paleo-R SSD
Arc 1.00 0.98 1.00 N/A 1.00 0.35 1.00 N/A
Circle 1.00 1.00 1.00 1.00 0.97 0.68 0.68 0.83
Complex 1.00 0.43 0.99 1.00 0.97* 0.33 0.99 0.99†
Curve 0.99 1.00 0.99 N/A 0.99 0.09 0.74 N/A
Ellipse 1.00 0.99 1.00 1.00 1.00 0.74 0.75 0.56
Helix 1.00 1.00 1.00 N/A 1.00 0.99 1.00 N/A
Line 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99
Polyline 1.00 1.00 1.00 1.00 0.94 0.91 0.58 0.92
Spiral 1.00 1.00 1.00 N/A 1.00 0.99 1.00 N/A
Total 99.89% 93.33% 99.78% 99.80% 98.56% 67.56% 86.00% 85.80%

Table 1. Results for each recognizer. Paleo refers to the proposed recognizer. Paleo-F is the proposed recognizer without the
NDDE and DCR features included. Paleo-R is the proposed recognizer without the ranking algorithm and SSD is the recognizer
from [10]. *Of these interpretations, all but one returned either a line/arc or line/curve interpretation. †Of these, 27% returned a

one line, multiple curve1 interpretation. All others consisted of a multi-line, multi-curve interpretation.

among the listed interpretations as well as how often the
correct interpretation was the top or best interpretation.
Since the Sezgin recognizer does not distinguish between
ellipses and circles we will count circles as being correct if
the Sezgin recognizer returns an ellipse. Also, because the
Sezgin recognizer does not handle spirals, helixes, or
individual arcs and curves we have omitted those examples
from his recognizer. Approximation of curved regions is
mentioned in [10], but only for complex shapes consisting
of lines and curves.
We also wanted to see the impact that our new features, as
well as our new ranking algorithm, had on the accuracy of
the system. To see this effect we also tested our recognizer:
a) without including the NDDE and DCR features and b)
without including the ranking algorithm. In total we have
tested four recognizers: our recognizer (denoted by
“Paleo”), the Sezgin et al. recognizer (“SSD”), our
recognizer without the two new features (“Paleo-F”), and
our recognizer without the ranking system (“Paleo-R”).
Table 1 displays the full results from our experiment.

In addition to testing the accuracy of our system, we also
analyzed execution time. Our recognizer had a total
recognition time of 26,539 milliseconds for all 900
examples, an average of 29.5 milliseconds per example.
The Sezgin recognizer had a total recognition time of
23,212 milliseconds, an average of 25.8 milliseconds per
example. Both recognizers obviously perform in real-time.
We also wanted to test the accuracy of our complex fits.
We chose to have users draw complex examples consisting
of one line and one arc, a notoriously hard example. The
recognizer from [12] claimed to recognize these shapes
with an accuracy of 70%. In our tests, the SSD recognizer
correctly returned a one line, multiple curve1 interpretation
27% of the time. For our recognizer, a “one line, one arc”

1 We considered a multiple curve interpretation to be correct for single
arcs since the SSD recognizer breaks arcs down into multiple curved
segments.

interpretation was correctly returned 92% of the time
(93.8% in cases where the complex interpretation was the
top interpretation). All but one of the remaining 8% of
complex examples consisted of a line/curve combination.
Upon observation of these examples, it could be argued that
the examples were interpreted correctly, since most of these
examples were drawn with less circular and more elliptical
arcs. Some examples can be seen in Figure 4. The
remaining incorrect complex fit was recognized as a two
curve interpretation because the line portion of the stroke
was drawn in a curvy manner.
DISCUSSION
In our experiment, the correct shape interpretation was
returned 99.89% of the time; however, only 98.56% of the
time was the correct interpretation the top interpretation. Of
this 1.44% error (12 examples), half came from polyline
interpretations that were incorrectly classified as complex
shapes. Most of these examples were polylines that were
drawn in a wavy manner, as seen in Figure 5.
Of the remaining six misclassified examples, three came in
the form of circles that were drawn more like ellipses
(Figure 6). The other three examples were complex shapes
that were misclassified as either a polyline or a curve. In
one case, a polyline interpretation was chosen over a
complex interpretation of one line, one curve (Figure 7).
This occurred because the user drew an elliptical arc and

Figure 4. Examples of complex shapes drawn with elliptical
arcs, thus causing the recognizer to return a one line, one

curve interpretation rather than one line, one arc (the users’
intentions). Future work would include finding multiple

complex interpretations.

7

Figure 5. Polylines that were classified as complex shapes
because their polyline fit (shown in black) contained too much

error. For both of these examples a one line, two curve
interpretation was returned in front of the polyline one

the corner finding algorithm only found four corners within
the curved region. Because the complex rank of this
interpretation (5) is greater than the polyline rank (4) the
recognizer chose a polyline interpretation. If the recognizer
would have chosen a one line, one arc interpretation (rank
4), then the ranks of the two interpretations would have
been equal and a complex interpretation would have been
correctly chosen as the top interpretation. The remaining
complex error came in the form of curve fits being chosen
over complex fits. These cases occurred when the user had
a very curvy transition between shapes, and the corner we
would typically segment at was not very defined.
Although it could be argued that most of our misclassified
examples would also be misclassified by a human
recognizer, we still consider these to be recognition errors
since our goal is to capture user intention. In some cases,
context could be used in a higher-level recognition system
to help choose the lower ranking interpretation. For
example, if we have a domain that would never contain
shapes consisting of a mixture of lines and arcs, then we
would know that in the ambiguous cases of polyline versus
complex (line/arc combination), we should always choose a
polyline interpretation. This is one of the advantages of
having a low-level recognizer capable of returning multiple
interpretations.
While it is important to return many interpretations, we also
want to make sure that we prune away examples that we
know cannot be correct. The average size of our ordered
interpretation list was 2.68, meaning on average 2.68 out of
the 9 shape tests passed per input stroke. One of the shapes
in the list will be polyline, as it is always added as a default
interpretation. We had a very high accuracy in producing
the correct interpretation; however, our recognizer failed for
a single example. This example was a curve which was
classified as a complex fit of one line and one arc. The
curve interpretation was not added to the interpretation list
because it was determined that the transition was not
smooth enough to be a single curve. The stroke had a high

Figure 6. Circles (as intended by the user) misclassified as
ellipses. A circle interpretation was, however, returned as an
alternative interpretation. It could be argued that a human

recognizer would also misclassify these shapes.

Figure 7. Complex shape in which a polyline interpretation
(in black) was incorrectly chosen before the complex

interpretation. This occurred because the recognizer returned
a complex interpretation of one line, one curve which had a

higher rank than the polyline interpretation.

DCR value (9.5) and low NDDE value (.72), which are not
characteristic of typical curves. Figure 8 shows the
misclassified curve.
When analyzing the results, our recognizer outperformed
the SSD recognizer in all shapes except complex fits. In this
case, we simply passed the SSD if it returned a complex fit;
we were unable to test the fit to verify that a one line, one
arc interpretation was indeed returned. Furthermore, we are
able to recognize other shapes which are currently not
supported by the SSD recognizer. We also can see that our
two new features, NDDE and DCR, are significant in aiding
the recognition process, particularly with arcs, curves, and
complex shapes containing arcs and curves. The ranking
algorithm had significance as well, particularly with
distinguishing polylines, curves, circles and ellipses.
HIGH-LEVEL INTEGRATION
We have successfully integrated our low-level recognizer
into a higher-level sketch recognition system, LADDER
[2]. Through this integration, we have been able to begin
testing the accuracy of our complex fits beyond one line,
one arc combinations. Although we have not formally
evaluated higher degree complex fits, we have seen
promising results as seen in Figure 9.
FUTURE WORK
We are pleased with the results we achieved thus far, but
we still wish to continue testing our recognizer. In
particular, we would like to test it against the recognizer
from Yu [12]. We are mainly interested in determining
how our complex interpretation results would compare with
theirs. In our experiment we achieved 94% accuracy with
the same types of shapes that their recognizer only
recognized 70% of the time (arc/line combinations).
Obviously these were not tested with the same data set. It
would be interesting to see if their recognizer still has 70%
accuracy with our data set.

Figure 8. The only example to not have its correct
interpretation returned at all (curve). Our classifier returned
a one line, one arc interpretation, which could arguably be the

interpretation of a human recognizer.

8

Figure 9. Examples of higher degree complex fits achieved
through the integration of our recognizer into LADDER.

In addition to this, we would like to further test complex
interpretations that include more than two sub-strokes. The
integration of our recognizer into LADDER has allowed us
to do preliminary testing, which seems to indicate
promising results for higher degree complex fits; however,
it has yet to be formally tested and evaluated.
We also want to explore the idea of “continuation strokes.”
As mentioned before, our goal is to produce sketch
recognizers that place little constraint on a user’s drawing
style. Currently, we make the assumption that all primitive
shapes are drawn with a single stroke. We would
ultimately like to erase this assumption. We are currently
looking into adding the concept of stroke continuation into
our current recognizer. Stroke continuation refers to the act
of a user drawing a low-level shape, stopping (by picking
up the pen), and then later continuing the previous drawn
stroke. Instead of recognizing a continuation stroke as two
separate shapes, we ideally would want to merge the two
strokes into a single shape.

Another area we would like to explore is creating a
universal way to compare error in various shape
interpretations. We are currently exploring the possibility
of using a feature-based classifier that uses the values of the
different geometric tests presented throughout this paper as
a feature set. Current results look promising for the eight
basic primitives, but we are unsure how a feature-based
classifier will perform when given different variations of
complex fits.
Our group is also interested coming up with better corner
finding algorithms. The one used by this recognizer is
simple, but does not always give a perfect polyline
interpretation. One idea we would like to explore is the
idea of “invisible corners” – corners that better approximate

the interpretation of the stroke but that don’t actually lie on
the stroke itself. As a motivating example, we imagine a
rounded rectangle (which most users will sketch when
asked to draw a rectangle). In this case, choosing corners
that are real stroke points will not be as good of a fit as
those that could be estimated, for example, by finding the
intersection of the best least squares line for each segment
of the rectangle.
CONCLUSION
Because sketching is a very natural means of interaction
between humans, many experts are looking into ways of
integrating sketch recognition into traditional user
interfaces. With this integration comes the need to develop
robust and accurate recognizers. However, many low-level
sketch recognizers struggle with the trade-off between the
number of primitive shapes it recognizes and accuracy. In
this paper we described a low-level sketch recognition and
beautification system that uses two new features, along with
a novel ranking algorithm. The system is capable of
recognizing eight primitive shapes, along with complex
shapes, with accuracy rates over 98.5%. These rates proved
to be comparable to the current state-of-art low-level
recognition systems that do not recognize as many
primitives. Furthermore, through the integration of our
recognizer into the high-level sketch recognition system,
LADDER, we have seen promising results for fitting higher
degree complex interpretations.
ACKNOWLEDGMENTS
Thanks to those in the 2006 sketch recognition class for
their ideas as well as the other members of the SRL – Paul
Logasa Bogen II, Amanda Coots, Henry Choi, Katie
Dahmen, Mark Eaton, Brian Eoff, Pankaj Rajan, Aditya
Ramgopal, Vijay Singh, Jennifer Weingarten, and Aaron
Wolin. This work is supported by NSF:IIS Grant #0744150.

APPENDIX
Thresholds: Below are the thresholds used in the
implementation of the system described in this paper.
These thresholds were determined empirically through our
initial training data set and are given to allow readers to
reproduce our results.
A. 0.5 H. 10.25 O. 0.425 V. 0.1
B. 5.0 I. 0.0036 P. 0.35 W. 9.0
C. 70.0 J. 6.0 Q. 0.4 X. 10.0
D. 1.31 K. 0.8 R. 0.37 Y. 0.99
E. 0.16 L. 30.0 S. 0.9 Z. 0.06
F. 0.75 M. 0.33 T. 0.25
G. 2.0 N. 16.0 U. 0.2
Hierarchy: Our hierarchy is given below with shape
interpretations at the top being added before shape
interpretations at the bottom. Shape interpretations may
appear multiple times in the hierarchy, but are only added
once to our list.

1. All lines.
2. Arcs whose feature area error is less than the

feature area of its polyline interpretation.
3. Polylines with very high DCR valuesW and low

number of sub-strokesX. We use a less strict DCR
thresholdJ if all sub-strokes passed the line test.

Ellipse,
Line, Line,
Line, Spiral

Line, Line,
Curve,

Line, Line,
Helix

Line,
Arc,
Line,
Circle

9

4. Non-overtraced circles whose feature area error is
less than the feature area of its polyline
interpretation. We do make an exception however.
If the polyline test passed and the polyline rank is
less than that of the circle (as determined by the
ranking algorithm) then polyline is added in front
of the circle interpretation. This exception does
not apply to small circlesN.

5. Non-overtraced ellipses whose feature area error is
less than the feature area of its polyline
interpretation. As with circles, we add polylines
that meet the conditions mentioned in part 4.
Again, this would not apply to small ellipsesL. A
circle fit will also be added with the ellipse as an
alternative interpretation.

6. Arcs not already added from step 2
7. Spirals that may have also passed an overtraced

circle or overtraced ellipse test.
8. Circles (including overtraced) not added in step 3

(polyline condition still applies).
9. Ellipses (including overtraced) not added in step 4

(polyline condition still applies).
10. All helixes with scores less than the complex

interpretation score. If the complex score is lower
then it is added, followed by the helix.

11. All curves.
12. All spirals not added in step 7.
13. All other polylines.
14. If the interpretation list is empty at this point, or

the top interpretation is a curve or polyline, then
we execute a complex test. If the complex test
returns an interpretation that contains all lines or
polylines then we add a polyline interpretation. If
not, then we compare the ranking of the complex
fit with the ranking of the top interpretation
(whether it is a curve or polyline). If the complex
rank is less than the current interpretation rank
then the complex interpretation is added at the
front of the list. Otherwise, we add the complex fit
to the end of the interpretation list.

15. Polyline is always added as a default interpretation
(regardless of whether or not its test passed).

Corners: The goal of our corner finding algorithm is to
determine a good polyline interpretation for the stroke. We
begin by first trying to determine the neighborhood where a
corner may lie. To do this we begin at the first point of the
stroke (first corner) and iteratively choose the next
consecutive point until we determine that the sub-stroke
between the two points is no longer a line. To determine
this, we do a quick line test of dividing the distance
between the two points by the length of the sub-stroke. As
long as that ratio is greater than a thresholdY, then the sub-
stroke is considered a line. Once we reach a point that
violates the line condition we mark the previous point as a
corner, update the current point to be the new first point and
continue the test to find the next corner. After the initial
test is run, we have a list of preliminary corners.
Next, we perform a round of merging to make sure that we
don’t have corners that are right next to each. To do this,

we look at the points that are within the “neighborhood”
(we used a percent thresholdZ of all points) of each one of
the corners. If a neighbor point is also a corner, then the
two corners are merged into a single corner at the averaged
index. If one of the corners to be merged is an endpoint
then we simply remove its counterpart rather than
performing a merge.
After finding the merged corners, we then analyze the
neighborhood of each non-endpoint corner one last time
and find the point in the neighborhood with the highest
curvature (which should look more perceptually like the
true corner). We replace each corner with the
neighborhood point of highest curvature, and perform
merging once more. We continue to merge until no change
is made in consecutive merge attempts.
REFERENCES
1. Alvarado, C., Oltmans, M. and Davis, R. A Framework for
Multi-Domain Sketch Recognition. In Proc. of the AAAI Spring
Symposium on Sketch Understanding, AAAI Press (2002), 1-8.
2. Hammond, T. and Davis, R. LADDER, A Sketching Language
for User Interface Developers. Computers & Graphics 29, 4
(2005), 518-532.
3. Kara, L.B. and Stahovich, T.F. Hierarchical Parsing and
Recognition of Hand-sketched Diagrams. In Proc. of the 2004
ACM Symposium on User Interface Software and Technology,
ACM Press (2004), 13-22.
4. Kim, D.H. and Kim, M.J. A Curvature Estimation for Pen
Input Segmentation in Sketch-based Modeling. Computer-Aided
Design 38, 3 (2006), 238-248.
5. Long, Jr., A.C., Landay, J.A. and Rowe, L.A. “Those Look
Similar!” Issues in Automating Gesture Design Advice. In Proc.
of the 2001 Workshop on Perceptive User Interfaces, ACM Press
(2001), 1-5.
6. Long, Jr., A.C., Landay, J.A., Rowe, L.A. and Michiels, J.
Visual Similarity of Pen Gestures. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems, ACM Press
(2000), 360-367.
7. Morrel-Samuels, P. Clarifying the Distinction Between Lexical
and Gestural Commands. The International Journal of Man-
Machine Studies 32, 5 (1990), 581-590.
8. Rubine, D. Specifying Gestures by Example. In Proc. of the
18th Annual Conference on Computer Graphics and Interactive
Techniques, ACM Press (1991), 329-337.
9. Saund, E., Fleet, D., Larner, D. and Mahoney, J. Perceptually-
Supported Image Editing of Text and Graphics. In Proc. of the
2003 ACM Symposium on User Interface Software and
Technology, ACM Press (2003), 183-192.
10. Sezgin, T.M., Stahovich, T. and Davis, R. Sketch Based
Interfaces: Early Processing for Sketch Understanding. In Proc. of
the 2001 Workshop on Perceptive User Interfaces, ACM Press
(2001), 1-8.
11. Sutherland, I.E. Sketch Pad A Man-Machine Graphical
Communication System. In Proc. of the SHARE Design
Automation Workshop, ACM Press (1964), 6.329-6.346.
12. Yu, B. and Cai, S. A Domain-Independent System for Sketch
Recognition. In Proc. of the 1st International Conference on
Computer Graphics and Interactive Techniques in Australasia and
South East Asia, ACM Press (2003),141-146.

10

