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ABSTRACT 
Sketching is a natural form of human communication and 
has become an increasingly popular tool for interacting with 
user interfaces.  In order to facilitate the integration of 
sketching into traditional user interfaces, we must first 
develop accurate ways of recognizing users’ intentions 
while providing feedback to catch recognition problems 
early in the sketching process.  One approach to sketch 
recognition has been to recognize low-level primitives and 
then hierarchically construct higher-level shapes based on 
geometric constraints defined by the user; however, current 
low-level recognizers only handle a few number of 
primitive shapes.  We propose a new low-level recognition 
and beautification system that can recognize eight primitive 
shapes, as well as combinations of these primitives, with 
recognition rates at 98.56%.  Our system also automatically 
generates beautified versions of these shapes to provide 
feedback early in the sketching process.  In addition to 
looking at geometric perception, much of our recognition 
success can be attributed to two new features, along with a 
new ranking algorithm, which have proven to be significant 
in distinguishing polylines from curved segments.  
Author Keywords 
Sketch recognition, shape beautification, low-level 
processing, pen-based interfaces. 
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INTRODUCTION 
Sketching has become an increasing popular form of 
human-computer interaction due to the increased use of 
Tablet PCs.  Furthermore, tools have been developed that 
allow sketching to be easily incorporated into user 
interfaces [5][9].  It has also been argued that sketched 
gestures are typically easier to remember than textual 
commands [7].  Although there is much evidence to support 

the usefulness of incorporating sketching into user 
interfaces, sketch recognition as a whole has not yet entered 
into mainstream technology.  We believe this is because 
current recognizers place many constraints on how users 
must draw certain shapes.  Users are forced to learn the 
system rather than the system having to learn users’ 
intentions.  Our recognizer places virtually no constraints 
on how users must draw individual shapes; they are allowed 
to draw freely.  Currently, our recognizer classifies single 
strokes into primitives.  Primitives drawn with multiple 
strokes can be merged by an upper-level recognition 
system.  A stroke is defined as the set of points (consisting 
of an x coordinate, y coordinate, and time value) sampled 
between pen down and pen up events.  
In addition to placing few drawing constraints on users, our 
recognizer has several other benefits.  First, it is able to 
return multiple interpretations.  This capability allows 
recognition errors to be easily corrected as a simple pen-
click could be used to switch to an alternative 
interpretation.  Our system also recognizes more primitives 
than other popular low-level recognizers [10][12].  In 
particular, our recognizer distinguishes circles from ellipses 
and arcs from curves.  We also recognize spirals and 
helixes; two shapes not supported by most low-level, 
geometric recognizers.  By increasing the number of 
primitives capable of being recognized, we will allow 
sketch-based interfaces to be created for domains that 
include shapes which were previously indescribable in 
terms of the previous primitive lists.  The shapes our system 
currently recognizes include:  

• Line: a stroke with a relatively constant slope 
between all sample points 

• Polyline: a stroke consisting of multiple, 
connected lines 

• Circle: a stroke that has a total direction close to 
2π, constant radius between the center point and 
each stroke point, and whose major and minor 
axes are close in size 

• Ellipse: a stroke with similar properties of a circle, 
but whose major and minor axes are not similar. 

• Arc: a segment of an incomplete circle 
• Curve: a stroke whose points can be fit smoothly 

up to a fifth degree curve 
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• Spiral: a stroke that is composed of a series of 
circles with continuously descending (or 
ascending) radii but a constant center. 

• Helix: a stroke that is composed a series of circles 
with similar radii but with moving centers.  We 
also assume that helixes are drawn linearly.   

Our recognizer has significantly better recognition rates 
than existing algorithms because of two new features we 
have developed.  We will show that these features, along 
with our novel ranking algorithm, can be used to aid in 
shape recognition, particularly when determining polylines 
from curved shapes.  We will also compare the overall 
accuracy of our system to the commonly used recognizer 
presented in [10]. 
PREVIOUS WORK 
The idea of interacting with computers via pen-based input 
began in 1964 with the seminal work of Ivan Sutherland’s 
Sketchpad system [11].  In 1991, Dean Rubine proposed a 
gesture recognition toolkit, GRANDMA, which allowed 
single-stroke gestures to be learned and later recognized 
through the use of a linear classifier [8].  Rubine proposed 
thirteen features that could be used to describe any single-
stroke shape.  Rubine also provides two techniques for 
rejecting bad gestures.    
Rubine's work was later extended by Long et al. [6], who 
determined a new feature set that consisted of eleven of 
Rubine’s features along with six of their own.  This feature 
set was chosen after multi-dimensional scaling was used to 
determine the most relevant features.  Like Rubine’s 
recognizer, a linear classifier was used to classify single 
stroke shapes.    
One disadvantage of these first two systems is that they use 
feature-based techniques which require extensive training.  
Furthermore, because of the features chosen, these systems 
required that strokes be drawn in the same manner each 
time they were drawn.  For example, a circle drawn in a 
clockwise manner would not be the same as a circle drawn 
in a counter-clockwise manner.  Such constraints produce 
recognizers that are heavily user-dependent.  We want users 
to be able to draw shapes as they would naturally.  When 
we tested the Rubine recognizer on our data, it only 
achieved an overall accuracy of 54.2%.  This accuracy 
shows how feature-based classifiers which place many 
constraints on the user can perform poorly on natural sketch 
data.  
Because feature-based techniques required much training 
on the users’ behalf, a shift occurred towards more 
geometric-based recognizers.  This includes two systems 
which greatly influenced the work presented in this paper.  
The first system is that of Sezgin et al.  In [10], a system 
was described that was composed of an approximation 
stage, a beautification stage, and a recognition stage.  The 
system used a novel approach to detect corners in sketched 
strokes.  Corners were detected by finding the points of 
highest curvature, along with the points of lowest speed.  
These points were determined by finding points above or  

 

Figure 1.  Recognizer Architecture 

below a certain threshold.  Hybrid fits between these two 
sets of points were calculated using an average based 
filtering technique.  The error of each fit was determined by 
using an orthogonal distance squared error.  The system 
was limited to only a few primitive shapes: lines, ellipses, 
and complex fits (fits composing of a combination of lines 
and curves).  For complex fits and vertex (corner) 
approximation, the authors reported an accuracy of 96%.  
In [12], Yu and Cai present an alternative low-level sketch 
recognizer.  Corners were detected using only curvature 
data.  The technique of using curvature as a means to 
segment strokes has been used in other works as well [4].  
The most significant contribution of Yu and Cai was the 
introduction of a feature area error metric, which is also 
used in our recognizer.  The shape set of the Yu recognizer 
was expanded to include lines, polylines, circles, ellipses, 
arcs, and helixes.  For primitive shapes, they achieved near 
98% accuracy; however, they admit to not having produced 
the recognition rates of Sezgin for complex shapes.  
Low-level recognizers, such as those presented by Sezgin 
and Yu, are not adequate for most sketch recognition 
domains.  Typically, diagrams and sketches consist of 
symbols that are more complex than the primitives 
supported by these recognizers.  Therefore, tools such as 
LADDER [2] have been created which allow users to 
describe higher level symbols as a combination of lower-
level primitives meeting certain geometric constraints.  
UML diagrams, mechanical engineering diagrams, circuit 
diagrams, military course of action diagrams, and flow 
charts are all examples of various sketch systems that have 
been produced using this shape definition language.  Others 
have attempted to improve upper-level recognition by using 
context [3]; however, the use of context typically requires 
domain knowledge.  
The work in this paper uses many of the concepts learned 
from the Sezgin and Yu systems.  We improve on these 
systems with the goal of being able to recognize a larger 
number of primitive shapes while still maintaining a high 
recognition rate. 
IMPLEMENTATION 
The overall architecture for our recognizer can be seen in 
Figure 1.  The recognizer takes a single stroke as input, and 
performs a series of pre-recognition calculations.  Once 
these values have been computed, the stroke is then sent to 
various low-level shape recognizers.  Each shape recognizer 
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returns a Boolean flag stating whether the recognizer passed 
or failed, as well as a beautified shape object (in the form of 
Java2D shapes) that best fits the input stroke.   Once the 
recognizers for all possible shapes are executed, the results 
are then sent to a hierarchy function which sorts the 
interpretations in order of best fit.  We will first discuss the 
pre-recognition stage, followed by each individual shape 
test, and finally we will discuss the hierarchy we chose for 
ordering fits. 

Pre-recognition 
We begin pre-recognition by first removing consecutive, 
duplicate points from the stroke.  These points can occur in  
systems with a high sampling rate.  If two consecutive 
points either have the same x and y values or if they have 
the same time value then the second point is removed.  
Next, a series of graphs and values are computed for the 
stroke, including direction graph, speed graph, curvature 
graph, and corners.  The graphs are computed using 
methods from [10] and [12], whereas corners are calculated 
using a simple corner finding algorithm presented in the 
appendix.  This algorithm is meant to produce a polyline 
interpretation that closely fits the original shape (even for 
non-polyline strokes).  The polyline interpretation in Figure 
3 was produced from this algorithm.  
In addition to these graphs, we also compute two new 
features which we have found to be very helpful to the 
recognition process.  The first is normalized distance 
between direction extremes (NDDE).  To calculate this 
feature, we first take the point with the highest direction 
value (change of y over change of x) and the point with the 
lowest direction value and compute the stroke length 
between these two points.  This length is then divided by 
the length of the entire stroke, essentially giving us the 
percentage of the stroke that occurs between the two 
direction extremes.  For curved shapes, such as arcs, the 
highest and lowest directional values will typically be near 
the endpoints of the stroke, thus yielding very high NDDE 
values.  Polylines, on the other hand, normally have one or 
more spikes in their direction graphs. These spikes often 
cause the point of highest or lowest directional value to no 
longer be near the endpoints of the stroke.  Therefore, 
polylines typically will have NDDE values which are lower 
than curved strokes (see Figure 2).  
Our second new feature also aids in determining polylines 
from curved strokes.  We call this direction change ratio 
(DCR).  Like NDDE, DCR is also meant to gauge whether 
or not spikes are present in the direction graph.  This value 
is computed as the maximum change in direction divided 
by the average change in direction.  Because there tends to 
be a great deal of noise at the beginning and ending of a 
stroke (what we typically refer to as “tails”), we ignore the 
first and last 5% of the stroke we calculating this feature.  
As seen in Figure 2, the polyline has a large downward 
spike in its direction graph, whereas the arc has relatively 
little change between consecutive direction values.  
Therefore, polylines will typically have higher DCR values 
than curved strokes.  

As mentioned before, “tails” at the endpoints of strokes can 
be significant problems for recognition.  We attempt to 
remove these tails before sending the stroke to each of the 
shape tests.  To determine if a tail is present, we analyze the 
first and last 20% of the stroke and find the point within 
each section that has the highest curvature.  If that curvature 
is higher than a thresholdA, then we break the stroke at that 
point and remove the tail.  We do not perform tail removal 
on strokes with a low number of pointsB or with too small 
of stroke lengthC.  (Please note that we will use superscripts 
throughout this paper to denote thresholds whose values 
can be found in the appendix of this paper.)  
After removing tails, we conduct two other tests before 
performing any actual recognition.  The first test determines 
whether or not the stroke is overtraced.  Using the direction 
graph we can determine whether or not a stroke is 
overtraced based on the number of revolutions the stroke 
makes.  This can be calculated by computing the total 
rotation of the stroke, as mentioned in [8], and dividing it 
by 2π.  If the number of revolutions is greater than a certain 
thresholdD then we consider the stroke to be overtraced.  
We use the term ''overtraced'' to denote shapes that make 
multiple revolutions.  This does not necessarily mean that 
each revolution is the same shape, as is the case of an 
overtraced circle.  For example, a helix is also considered 
overtraced since it makes several revolutions which are 
self-intersecting.    
Finally, a test is used to determine if the stroke represents a 
closed figure.  We begin by computing the distance 
between the endpoints and dividing it by the stroke length.  
In order for a stroke to be closed this ratio must be less than 
some thresholdE and the number of revolutions must be 
greater than another thresholdF (different from the 
overtraced threshold). 

Line Test 
To determine if a stroke is a line, the following conditions 
must be met.  First, we fit a least squares line to the stroke  

 

 
Figure 2.  Direction graphs for a polyline (left) and arc (right).  

The points of highest and lowest direction value are circled.  
The polyline has a lower NDDE value because its minimum 

direction value is in the middle of the stroke, whereas the arc 
has its direction extremes closer to the endpoints. 

NDDE = 0.551

DCR = 10.53 

NDDE = 0.955

DCR = 2.49 
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points.  The orthogonal distance squared between the best 
fit line and the actual stroke points is calculated similar to 
that in [10].  This distance is divided by the stroke length to 
determine the least squares error, which must be below a 
certain thresholdG.  Next, the feature area of the line is 
determined using techniques from [12].  Again this value is 
divided by the stroke length to get an error which must be 
within a thresholdH.  Finally, we verify that the stroke is not 
overtraced and only contains two (or three) corners (one for 
each of the endpoints).  We allow three corners in order to 
account for occasional examples in which the line was 
drawn with a lot of noise.  If all of these conditions are met, 
then we accept the stroke as a single line.   
We return a beautified shape object that consists of the line 
created by connecting the endpoints of the stroke.  We 
could have alternatively returned the computed best fit line, 
but we believe that endpoints are significant in sketching, 
particularly in diagramming domains where lines are meant 
to act as connectors.  This endpoint-significance theme 
continues in the beautification of the other low-level shapes 
as well.  
Polyline Test 
The polyline test begins by breaking the stroke into sub-
strokes at the calculated corners.  We send each sub-stroke 
to the line test and keep track of the sum of least squares 
errors as well as the sum of the feature area errors.  These 
errors are normalized by dividing by the length of the 
stroke.  In order for a stroke to pass as a polyline, one of 
three conditions must exist. 

1. Each sub-stroke must pass the line test. 

2. The average least squares error of each sub-stroke 
must be less than some thresholdI.   

3. The stroke has a high DCR valueJ.   

The shape object returned consists of the lines formed by 
connecting the corners calculated from the corner finder. 

Ellipse Test 
One advantage of our ellipse test compared to others’ is that 
we allow for rotated, as well as overtraced, ellipses.  To 
allow for this, we first calculate the ideal major axis, center, 
and minor axis.  The major axis is determined by finding 
the two stroke points that are the furthest away from each 
other.  The center is taken as the average x and y values of 
the stroke points.  The minor axis is constructed as the 
perpendicular bisector of the major axis at the center point.  
This line is extended and clipped where it meets the stroke 
points, which may be at interpolated values.  Once these 
values are computed, we then check to make sure the 
following conditions apply: 

1. The stroke must have passed the closed shape test 
from pre-recognition. 

2. The stroke’s NDDE value must be highK.  This 
value tends to be less relevant for small ellipses, so 
this condition is ignored if the major axis does not 
meet certain length requirementsL. 

3. The feature area error (feature area divided by area 
of the ideal ellipse, as described in [12]) must be 

less than some thresholdM.  If the stroke is 
overtraced, then it is broken into sub-strokes at 
each 2π interval in the direction graph.  All of the 
sub-strokes (minus the last sub-stroke, as it may be 
an incomplete ellipse) are then fit to ellipses and 
the error becomes the average feature area error 
across each sub-ellipse.  

The shape object returned consists of the beautified ellipse 
formed from the ideal center, major axis length, and minor 
axis length.  This shape is then rotated around the center 
point based on the angle of the major axis. 
Circle Test 
For circles, we re-use many of the tests conducted for 
ellipses.  We start by first calculating an ideal radius, which 
is computed as the average distance between each stroke 
point and the ideal center from the ellipse test.  Once we 
have this value, we then verify that the stroke passed 
conditions 1 and 2 (again, small circlesN according to radius 
are ignored for NDDE) of the ellipse test.   To verify that a 
stroke is better fit with a circle rather than an ellipse, we 
find the major axis to minor axis length ratio, which after 
subtracted from 1.0, must me less than some valueO.  We 
also perform feature area error verification; however, the 
feature area is divided by the area of an ideal circle rather 
than an ideal ellipse.  This error must be less than some 
thresholdP.  We handle overtraced circles similarly to the 
way we handled overtraced ellipses.  The shape object 
returned is the beautified circle formed from the calculated 
center (from ellipse test) and radius.  

Arc Test 
For our recognizer, we consider arcs to be segments of 
circles; therefore, in order to determine the best fit arc, we 
need to determine the best fit circle that the arc is a part of.  
To do this, we first calculate the ideal center point of the arc 
using a series of perpendicular bisectors.  First, we connect 
the endpoints of the stroke and find the perpendicular 
bisector at the midpoint.  We determine where that bisector 
intersects the stroke (through interpolation between stroke 
points) and then connect two more lines from that point to 
the endpoints.  We take two more bisectors at the midpoints 
of those two lines and find where they intersect each other.  
That intersection point is the center of our arc.  
We then calculate the ideal radius of the arc by taking the 
average distance between the stroke points and the center 
point.  In order to pass the arc test a stroke must not be 
closed or overtraced and must have a NDDE value that is 
highK.  Once again, the NDDE value is ignored in the cases 
of small arcsN (based on radius).  We also verify that the 
stroke’s DCR value is lowJ.  Finally, we calculate the 
feature area of the arc and make sure its error is below a 
certain thresholdQ.  A beautified arc is constructed from the 
ideal center, radius, and angles between the center point and 
endpoints.  As with lines, we want to make sure that 
endpoint consistency is maintained. 

Curve Test 
In our implementation, we could allow for any degree 
curve; however, we need to limit this degree not only to 
keep recognition to a practical running time, but also 
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because complex figures could easily be represented by 
some n-degree curve.  For our system, we limit curves to 
fourth and fifth degree curves, choosing the degree that best 
fits the stroke points.  Unlike other tests where we generate 
ideal shapes after checking for passing conditions, for 
curves we generate the ideal shape first, and then check the 
least squares error of the generated shape against the actual 
stroke points.    
To generate an ideal curve, we use the Bézier curve 
formula.  In order to use this formula we must first calculate 
d+1 control points, where d is the degree of the Bézier 
curve.  Currently, we use a naïve approach to approximate 
these points.  To find these points, we first find the 
parametric value of each stroke point.  We determine a 
point’s parametric value by dividing the length of the stroke 
up to that point by the length of the entire stroke.  Once 
these values are computed, we take the endpoints (whose 
parametric values are 0 and 1), as well as, d-1 other points 
which are spread evenly across the stroke.  For example, for 
a fourth degree curve, we would take the endpoints, along 
with the points whose parametric values were close to 0.25, 
0.5, and 0.75.  We then estimate the control points by 
solving a system of equations using these selected points 
and their corresponding parametric values.  Once we have 
the estimated control points, we can then generate the ideal 
curve according to the Bézier curve formula where n is the 
degree of the curve and Pi is the set of computed control 
points: 
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To pass the curve test, a stroke must have a lowJ DCR value 
as well as a low least squares errorR.  The least squares error 
can be easily computed by plugging the corresponding 
parametric values of each of the stroke points into the 
Bézier curve equation and comparing it to its actual 
location.  The beautified shape object is simply the curve 
generated by the Bézier curve equation. 

Spiral Test 
For spirals, we begin by breaking the stroke up at every 2π 
interval in the direction graph like we did for overtraced 
circles and ellipses.  The center of the spiral is taken to be 
the center of the bounding box for the entire stroke.  The 
average radius is calculated as in the circle test.  Strokes 
passing the spiral test must meet the following conditions: 

1. The stroke must be overtraced. 
2. The stroke’s NDDE value must be highK. 
3. Each sub-stroke (minus the last sub-stroke) is fit to 

a circle.  Although we do not expect these strokes 
to necessarily pass the circle fit test, we are able to 
calculate the ideal radius of each sub-stroke.  For 
spirals, these radii must either be completely 
ascending or completely descending through the 
progression of each sub-stroke. 

4. The average radius of the stroke divided by the 
bounding box radius must be less than a 
thresholdS.  The radius of the bounding box is the 

average between half of the width and half of the 
height.  This test is used to aid in determining the 
difference between spirals and other overtraced 
shapes (mainly circles).  For overtraced circles, the 
bounding box radius will be very close to the 
average radius, whereas with spirals the average 
radius will typically be smaller because each 
consecutive sub-stroke should get closer and closer 
to the center point of the spiral. 

5. The centers of each consecutive sub-stroke must 
be close to each other.  To test this we find the 
sum of the distances between the centers of each 
consecutive sub-stroke and divide it by the average 
radius times the number of revolutions the spiral 
makes.  This value must be less than some 
thresholdT.   

6. To further check the closeness of centers, we find 
the centers of the sub-strokes that are farthest 
apart.  The distance between these centers should 
not exceed the diameter of the spiral. 

7. Finally, we calculate the distance between 
endpoints and divide it by stroke length.  This 
value is helpful for distinguishing spirals from 
helixes.  In helixes, this value will be high whereas 
spirals should be lower.  We verify that this value 
is below another thresholdU.  

To return the shape object that represents the beautified 
spiral, we generate an Archimedes spiral that starts at the 
center point and has the polar equation, r = aθ.  In this 
equation the radius, r, changes as θ changes.  The a value 
represents the “tightness” of the spiral.  We set this value to 
be the bounding box radius divided by 2π times the number 
of revolutions.  To generate the spiral we continuously 
increment (or decrement) the theta value until the radius 
value reaches the bounding box radius.  We decide whether 
to increment or decrement theta based on whether the spiral 
was drawn clockwise or counter-clockwise (which can be 
determined by looking at the slope of the direction graph).  
In order to preserve the outer-most endpoint of the spiral, 
we can shift the theta value by the angle created from the 
endpoint and the starting center point.  Once we find the r 
value that corresponds to the current theta, we simply plug 
it into the polar equation for a circle to generate x and y 
coordinates. 
Helix Test 
Helixes are essentially checked for during the spiral test so 
little work is required for this test.  For a stroke to be passed 
as a helix it must pass conditions 1 and 2 of the spiral test, 
but must fail condition 7.    
Creating a beautified helix object is more complex than 
creating a beautified spiral, since we want to maintain both 
of the endpoints of the stroke.  Essentially, we want to use 
the polar equation of a circle like we did for spirals, but 
instead of iteratively changing the radius, we want to 
instead change the position of the center point and maintain 
a constant radius.  We chose the constant radius as the 
average distance between the stroke points and the major 
axis of the stroke (as calculated from the ellipse test).  We 

5



 

also find our starting and ending center points by finding 
the points on the major axis that are a length equal to the 
radius away from the endpoints of the stroke.  Once these 
two points are specified, we parametrically find the center 
point for the current iteration.  The parametric value used is 
the absolute theta value divided by 2π times the number of 
revolutions.  We continue to increase or decrease theta until 
its absolute value becomes greater than 2π times the 
number of revolutions (the total direction). 
Complex Test 
A complex fit is a default interpretation in instances where 
none of the above tests (with the exception of curves and 
polylines) pass.  Since it is a default interpretation, this test 
will always pass but may not always be used as an 
interpretation returned by the hierarchy.  Our method for 
handling complex shapes is much like that of [12].  We, 
too, bias towards a complex fit with the fewest number of 
primitive shapes.  We start by breaking a stroke up into two 
sub-strokes at the point of highest curvature.  Each of these 
strokes is then recursively sent back into the recognizer 
until we get all non-polyline primitives.    
We then add an additional step, which is different from the 
implementation of Yu and Cai.  Since breaking a stroke at 
the point of highest curvature may not always guarantee 
that we break at a logical location, we send our sub-strokes 
to a secondary function which attempts to recombine 
consecutive sub-strokes and check to see if they can be 
recognized as a single primitive.  If they can, then the two 
sub-strokes are replaced with a single sub-stroke that is a 
combination of the two.  Because our recognizer also 
returns beautified shapes, we can also generate a beautified 
complex shape by simply combining all of the shapes 
returned from the sub-strokes. 
Hierarchy 
Since we do not use a consistent error metric across all 
shape tests, we had to create a hierarchy to sort our 
interpretations.  When ordering interpretations the hardest 
problem is determining when a complex, curve, or polyline 
fit is the best fit for a stroke.  To help solve this problem we 
 

  

Figure 3.  An input sketch (left) along with two possible 
interpretations – a polyline interpretation (middle) and a 
complex interpretation made up of one line and one arc 

(right).  To determine which of these interpretations is best we 
sum their ranks.  The polyline interpretation is made up of 8 

lines and therefore has a rank of 8.  The complex 
interpretation is made up of 1 lines and 1 arc, thus yielding a 

score of 1+3=4.  In this case the complex interpretation is 
chosen over the polyline interpretation because of its lower 

rank. 

 

came up with a new ranking algorithm that takes advantage 
of an inherent property of the corner finding algorithm we 
used.  The corner finding algorithm presented in the 
appendix is meant primarily to converge to the corners of 
polylines only.  When applied to curved strokes the 
algorithm tries to produce the best possible polyline 
interpretation with as few lines as it can.  This typically will 
yield a large number of corners across the curved segment.  
We use this property to our advantage, as we can predict 
approximately the minimum number of corners that would 
be found in most of the curved segments such as arcs, 
curves, circles, and ellipses.  We assigned a shape score 
based on our initial observations.  Essentially, these scores 
tell us the minimum number of lines we will accept in place 
of these shapes.  The scores were as followed: 
                 Line – 1 Arc – 3 
                 Curve – 5 Circle – 5 
                 Ellipse - 5 Helix – 5 
                 Spiral - 5  
Helixes and spirals are hard to assign scores because they 
are arbitrarily large and the number of rotations differs 
across each occurrence.  Therefore, we gave them a default 
score of 5.  In order to determine whether or not we should 
choose a polyline fit over a complex fit, we simply sum the 
ranks of each interpretation and choose the fit with lowest 
rank (complex wins tie).  Figure 3 gives an example of the 
algorithm in work.   
Interpretations are ordered according to our hierarchy, 
which can be referenced in the appendix of this paper.  
Once we have ordered the interpretation, we perform one 
last calculation in our hierarchy function.  If a complex fit 
was added to the interpretation list then we check it for sub-
stroke “tails” (typically in the form of very small lines or 
curves) that occur at the endpoints of the stroke.  If the 
length of the first or last sub-stroke in a complex 
interpretation divided by the entire stroke length is less than 
some thresholdV then we remove it from the complex fit.  If 
this reduces the size of the complex fit to a single shape 
then we replace the complex fit with the appropriate single 
shape interpretation. 
RESULTS 
In our study, we collected two sets of data.  The first set of 
data consisted of 900 shapes collected from 10 users.  Each 
user drew 10 examples of each primitive shape, along with 
10 examples of a complex shape.  We asked users to draw a 
complex shape consisting of one line and one arc, an 
example which some recognizers have difficulty in 
interpreting [12].  We used this first data set for training to 
help establish thresholds and develop our hierarchy.  
We then collected a second data set of the same size with 
the same number of users and used this set to test our 
recognizer.  In addition to running the test set through our 
recognizer, we also tested the data set against a modified 
version of the recognizer created by Sezgin et al. [10].  This 
recognizer was modified in work done by [1] to include the 
return of multiple interpretations.  For our experiment, we 
wanted to see how often the correct interpretation was
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  Correct Interpretation Produced Correct Interpretation is Top Interpretation 
  Paleo Paleo-F Paleo-R SSD Paleo Paleo-F Paleo-R SSD 
Arc 1.00 0.98 1.00 N/A 1.00 0.35 1.00 N/A 
Circle 1.00 1.00 1.00 1.00 0.97 0.68 0.68 0.83 
Complex 1.00 0.43 0.99 1.00 0.97* 0.33 0.99 0.99† 
Curve 0.99 1.00 0.99 N/A 0.99 0.09 0.74 N/A 
Ellipse 1.00 0.99 1.00 1.00 1.00 0.74 0.75 0.56 
Helix 1.00 1.00 1.00 N/A 1.00 0.99 1.00 N/A 
Line 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 
Polyline 1.00 1.00 1.00 1.00 0.94 0.91 0.58 0.92 
Spiral 1.00 1.00 1.00 N/A 1.00 0.99 1.00 N/A 
Total 99.89% 93.33% 99.78% 99.80% 98.56% 67.56% 86.00% 85.80% 

Table 1.  Results for each recognizer.  Paleo refers to the proposed recognizer.  Paleo-F is the proposed recognizer without the 
NDDE and DCR features included.  Paleo-R is the proposed recognizer without the ranking algorithm and SSD is the recognizer 
from [10].  *Of these interpretations, all but one returned either a line/arc or line/curve interpretation. †Of these, 27% returned a 

one line, multiple curve1 interpretation.  All others consisted of a multi-line, multi-curve interpretation.

among the listed interpretations as well as how often the 
correct interpretation was the top or best interpretation.  
Since the Sezgin recognizer does not distinguish between 
ellipses and circles we will count circles as being correct if 
the Sezgin recognizer returns an ellipse.  Also, because the 
Sezgin recognizer does not handle spirals, helixes, or 
individual arcs and curves we have omitted those examples 
from his recognizer.  Approximation of curved regions is 
mentioned in [10], but only for complex shapes consisting 
of lines and curves.  
We also wanted to see the impact that our new features, as 
well as our new ranking algorithm, had on the accuracy of 
the system.  To see this effect we also tested our recognizer: 
a) without including the NDDE and DCR features and b) 
without including the ranking algorithm.  In total we have 
tested four recognizers: our recognizer (denoted by 
“Paleo”), the Sezgin et al. recognizer (“SSD”), our 
recognizer without the two new features (“Paleo-F”), and 
our recognizer without the ranking system (“Paleo-R”).  
Table 1 displays the full results from our experiment. 
 
In addition to testing the accuracy of our system, we also 
analyzed execution time.  Our recognizer had a total 
recognition time of 26,539 milliseconds for all 900 
examples, an average of 29.5 milliseconds per example.  
The Sezgin recognizer had a total recognition time of 
23,212 milliseconds, an average of 25.8 milliseconds per 
example.  Both recognizers obviously perform in real-time.  
We also wanted to test the accuracy of our complex fits.  
We chose to have users draw complex examples consisting 
of one line and one arc, a notoriously hard example.  The 
recognizer from [12] claimed to recognize these shapes 
with an accuracy of 70%.  In our tests, the SSD recognizer 
correctly returned a one line, multiple curve1 interpretation 
27% of the time.  For our recognizer, a “one line, one arc” 

                                                           
1 We considered a multiple curve interpretation to be correct for single 
arcs since the SSD recognizer breaks arcs down into multiple curved 
segments. 

interpretation was correctly returned 92% of the time 
(93.8% in cases where the complex interpretation was the 
top interpretation).  All but one of the remaining 8% of 
complex examples consisted of a line/curve combination.  
Upon observation of these examples, it could be argued that 
the examples were interpreted correctly, since most of these 
examples were drawn with less circular and more elliptical 
arcs.  Some examples can be seen in Figure 4.  The 
remaining incorrect complex fit was recognized as a two 
curve interpretation because the line portion of the stroke 
was drawn in a curvy manner. 
DISCUSSION 
In our experiment, the correct shape interpretation was 
returned 99.89% of the time; however, only 98.56% of the 
time was the correct interpretation the top interpretation. Of 
this 1.44% error (12 examples), half came from polyline 
interpretations that were incorrectly classified as complex 
shapes.  Most of these examples were polylines that were 
drawn in a wavy manner, as seen in Figure 5.  
Of the remaining six misclassified examples, three came in 
the form of circles that were drawn more like ellipses 
(Figure 6).  The other three examples were complex shapes 
that were misclassified as either a polyline or a curve.  In 
one case, a polyline interpretation was chosen over a 
complex interpretation of one line, one curve (Figure 7).  
This occurred because the user drew an elliptical arc and 

 

            

Figure 4.  Examples of complex shapes drawn with elliptical 
arcs, thus causing the recognizer to return a one line, one 

curve interpretation rather than one line, one arc (the users’ 
intentions).  Future work would include finding multiple 

complex interpretations. 
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Figure 5.  Polylines that were classified as complex shapes 
because their polyline fit (shown in black) contained too much 

error.  For both of these examples a one line, two curve 
interpretation was returned in front of the polyline one 

the corner finding algorithm only found four corners within 
the curved region.  Because the complex rank of this 
interpretation (5) is greater than the polyline rank (4) the 
recognizer chose a polyline interpretation.  If the recognizer 
would have chosen a one line, one arc interpretation (rank 
4), then the ranks of the two interpretations would have 
been equal and a complex interpretation would have been 
correctly chosen as the top interpretation.  The remaining 
complex error came in the form of curve fits being chosen 
over complex fits.  These cases occurred when the user had 
a very curvy transition between shapes, and the corner we 
would typically segment at was not very defined.    
Although it could be argued that most of our misclassified 
examples would also be misclassified by a human 
recognizer, we still consider these to be recognition errors 
since our goal is to capture user intention.  In some cases, 
context could be used in a higher-level recognition system 
to help choose the lower ranking interpretation.  For 
example, if we have a domain that would never contain 
shapes consisting of a mixture of lines and arcs, then we 
would know that in the ambiguous cases of polyline versus 
complex (line/arc combination), we should always choose a 
polyline interpretation.  This is one of the advantages of 
having a low-level recognizer capable of returning multiple 
interpretations.  
While it is important to return many interpretations, we also 
want to make sure that we prune away examples that we 
know cannot be correct.  The average size of our ordered 
interpretation list was 2.68, meaning on average 2.68 out of 
the 9 shape tests passed per input stroke.  One of the shapes 
in the list will be polyline, as it is always added as a default 
interpretation.  We had a very high accuracy in producing 
the correct interpretation; however, our recognizer failed for 
a single example.  This example was a curve which was 
classified as a complex fit of one line and one arc.  The 
curve interpretation was not added to the interpretation list 
because it was determined that the transition was not 
smooth enough to be a single curve.  The stroke had a high  
 

       

Figure 6.  Circles (as intended by the user) misclassified as 
ellipses.  A circle interpretation was, however, returned as an 
alternative interpretation.  It could be argued that a human 

recognizer would also misclassify these shapes. 

 

 

Figure 7.  Complex shape in which a polyline interpretation 
(in black) was incorrectly chosen before the complex 

interpretation.  This occurred because the recognizer returned 
a complex interpretation of one line, one curve which had a 

higher rank than the polyline interpretation.  

DCR value (9.5) and low NDDE value (.72), which are not 
characteristic of typical curves.  Figure 8 shows the 
misclassified curve.  
When analyzing the results, our recognizer outperformed 
the SSD recognizer in all shapes except complex fits. In this 
case, we simply passed the SSD if it returned a complex fit; 
we were unable to test the fit to verify that a one line, one 
arc interpretation was indeed returned.  Furthermore, we are 
able to recognize other shapes which are currently not 
supported by the SSD recognizer.  We also can see that our 
two new features, NDDE and DCR, are significant in aiding 
the recognition process, particularly with arcs, curves, and 
complex shapes containing arcs and curves.  The ranking 
algorithm had significance as well, particularly with 
distinguishing polylines, curves, circles and ellipses. 
HIGH-LEVEL INTEGRATION 
We have successfully integrated our low-level recognizer 
into a higher-level sketch recognition system, LADDER 
[2].  Through this integration, we have been able to begin 
testing the accuracy of our complex fits beyond one line, 
one arc combinations.  Although we have not formally 
evaluated higher degree complex fits, we have seen 
promising results as seen in Figure 9. 
FUTURE WORK 
We are pleased with the results we achieved thus far, but 
we still wish to continue testing our recognizer.  In 
particular, we would like to test it against the recognizer 
from Yu [12].  We are mainly interested in determining 
how our complex interpretation results would compare with 
theirs.  In our experiment we achieved 94% accuracy with 
the same types of shapes that their recognizer only 
recognized 70% of the time (arc/line combinations).  
Obviously these were not tested with the same data set.  It 
would be interesting to see if their recognizer still has 70% 
accuracy with our data set. 

 

 

Figure 8.  The only example to not have its correct 
interpretation returned at all (curve).  Our classifier returned 
a one line, one arc interpretation, which could arguably be the 

interpretation of a human recognizer. 
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Figure 9.  Examples of higher degree complex fits achieved 
through the integration of our recognizer into LADDER. 

In addition to this, we would like to further test complex 
interpretations that include more than two sub-strokes.  The 
integration of our recognizer into LADDER has allowed us 
to do preliminary testing, which seems to indicate 
promising results for higher degree complex fits; however, 
it has yet to be formally tested and evaluated.  
We also want to explore the idea of “continuation strokes.”  
As mentioned before, our goal is to produce sketch 
recognizers that place little constraint on a user’s drawing 
style.  Currently, we make the assumption that all primitive 
shapes are drawn with a single stroke.  We would 
ultimately like to erase this assumption.  We are currently 
looking into adding the concept of stroke continuation into 
our current recognizer.  Stroke continuation refers to the act 
of a user drawing a low-level shape, stopping (by picking 
up the pen), and then later continuing the previous drawn 
stroke.  Instead of recognizing a continuation stroke as two 
separate shapes, we ideally would want to merge the two 
strokes into a single shape. 

Another area we would like to explore is creating a 
universal way to compare error in various shape 
interpretations.  We are currently exploring the possibility 
of using a feature-based classifier that uses the values of the 
different geometric tests presented throughout this paper as 
a feature set.  Current results look promising for the eight 
basic primitives, but we are unsure how a feature-based 
classifier will perform when given different variations of 
complex fits.  
Our group is also interested coming up with better corner 
finding algorithms.  The one used by this recognizer is 
simple, but does not always give a perfect polyline 
interpretation.  One idea we would like to explore is the 
idea of “invisible corners” – corners that better approximate 

the interpretation of the stroke but that don’t actually lie on 
the stroke itself.  As a motivating example, we imagine a 
rounded rectangle (which most users will sketch when 
asked to draw a rectangle).  In this case, choosing corners 
that are real stroke points will not be as good of a fit as 
those that could be estimated, for example, by finding the 
intersection of the best least squares line for each segment 
of the rectangle. 
CONCLUSION 
Because sketching is a very natural means of interaction 
between humans, many experts are looking into ways of 
integrating sketch recognition into traditional user 
interfaces.  With this integration comes the need to develop 
robust and accurate recognizers.  However, many low-level 
sketch recognizers struggle with the trade-off between the 
number of primitive shapes it recognizes and accuracy.  In 
this paper we described a low-level sketch recognition and 
beautification system that uses two new features, along with 
a novel ranking algorithm.  The system is capable of 
recognizing eight primitive shapes, along with complex 
shapes, with accuracy rates over 98.5%.  These rates proved 
to be comparable to the current state-of-art low-level 
recognition systems that do not recognize as many 
primitives.  Furthermore, through the integration of our 
recognizer into the high-level sketch recognition system, 
LADDER, we have seen promising results for fitting higher 
degree complex interpretations. 
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APPENDIX 
Thresholds: Below are the thresholds used in the 
implementation of the system described in this paper.  
These thresholds were determined empirically through our 
initial training data set and are given to allow readers to 
reproduce our results. 
A.  0.5 H.  10.25 O.  0.425 V.  0.1 
B.  5.0 I.  0.0036 P.  0.35 W.  9.0 
C.  70.0 J.  6.0 Q.  0.4 X.  10.0 
D.  1.31 K.  0.8 R.  0.37 Y.  0.99 
E.  0.16 L.  30.0 S.  0.9 Z.  0.06 
F.  0.75 M.  0.33 T.  0.25  
G.  2.0 N.  16.0 U.  0.2   
Hierarchy: Our hierarchy is given below with shape 
interpretations at the top being added before shape 
interpretations at the bottom.  Shape interpretations may 
appear multiple times in the hierarchy, but are only added 
once to our list.  

1. All lines. 
2. Arcs whose feature area error is less than the 

feature area of its polyline interpretation. 
3. Polylines with very high DCR valuesW and low 

number of sub-strokesX.  We use a less strict DCR 
thresholdJ if all sub-strokes passed the line test. 

Ellipse, 
Line, Line, 
Line, Spiral 

Line, Line, 
Curve, 

Line, Line, 
Helix 

Line, 
Arc, 
Line, 
Circle 
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4. Non-overtraced circles whose feature area error is 
less than the feature area of its polyline 
interpretation.  We do make an exception however.  
If the polyline test passed and the polyline rank is 
less than that of the circle (as determined by the 
ranking algorithm) then polyline is added in front 
of the circle interpretation.  This exception does 
not apply to small circlesN. 

5. Non-overtraced ellipses whose feature area error is 
less than the feature area of its polyline 
interpretation.  As with circles, we add polylines 
that meet the conditions mentioned in part 4.  
Again, this would not apply to small ellipsesL.  A 
circle fit will also be added with the ellipse as an 
alternative interpretation. 

6. Arcs not already added from step 2 
7. Spirals that may have also passed an overtraced 

circle or overtraced ellipse test. 
8. Circles (including overtraced) not added in step 3 

(polyline condition still applies). 
9. Ellipses (including overtraced) not added in step 4 

(polyline condition still applies). 
10. All helixes with scores less than the complex 

interpretation score.  If the complex score is lower 
then it is added, followed by the helix. 

11. All curves. 
12. All spirals not added in step 7. 
13. All other polylines. 
14. If the interpretation list is empty at this point, or 

the top interpretation is a curve or polyline, then 
we execute a complex test.  If the complex test 
returns an interpretation that contains all lines or 
polylines then we add a polyline interpretation.  If 
not, then we compare the ranking of the complex 
fit with the ranking of the top interpretation 
(whether it is a curve or polyline).  If the complex 
rank is less than the current interpretation rank 
then the complex interpretation is added at the 
front of the list.  Otherwise, we add the complex fit 
to the end of the interpretation list. 

15. Polyline is always added as a default interpretation 
(regardless of whether or not its test passed).  

Corners: The goal of our corner finding algorithm is to 
determine a good polyline interpretation for the stroke.  We 
begin by first trying to determine the neighborhood where a 
corner may lie.  To do this we begin at the first point of the 
stroke (first corner) and iteratively choose the next 
consecutive point until we determine that the sub-stroke 
between the two points is no longer a line.  To determine 
this, we do a quick line test of dividing the distance 
between the two points by the length of the sub-stroke.  As 
long as that ratio is greater than a thresholdY, then the sub-
stroke is considered a line.  Once we reach a point that 
violates the line condition we mark the previous point as a 
corner, update the current point to be the new first point and 
continue the test to find the next corner.  After the initial 
test is run, we have a list of preliminary corners.    
Next, we perform a round of merging to make sure that we 
don’t have corners that are right next to each.  To do this, 

we look at the points that are within the “neighborhood” 
(we used a percent thresholdZ of all points) of each one of 
the corners.  If a neighbor point is also a corner, then the 
two corners are merged into a single corner at the averaged 
index.  If one of the corners to be merged is an endpoint 
then we simply remove its counterpart rather than 
performing a merge.   
After finding the merged corners, we then analyze the 
neighborhood of each non-endpoint corner one last time 
and find the point in the neighborhood with the highest 
curvature (which should look more perceptually like the 
true corner).  We replace each corner with the 
neighborhood point of highest curvature, and perform 
merging once more.  We continue to merge until no change 
is made in consecutive merge attempts.  
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