Pen-Based Gestural User Interfaces

Lecture #6: Gestures
Joseph J. LaViola Jr.
Fall 2015

What is a Pen Gesture?

- Simple ink stroke or strokes to convey an idea
 - fast to perform
 - easy to remember
- Typically disappear after they are recognized
- Supports in-band interaction
Gesture Types

- Single stroke
- Multi-stroke
 - compound gestures
 - punctuated gestures
- Trade-off in recognition between single and multiple stroke gestures
- Used in
 - modeling
 - command languages
 - invoking interface widgets

Gestures in Modeling

- Used in 2D/3D object modeling
- Distinction between sketch-based modeling and gestures in modeling
- Used to
 - create geometry
 - manipulate geometry
 - guidance for computational algorithms
SKETCH

- Seminal work by Zeleznik et al. (1996)
- Conceptual modeling
- Uses simple lines and curves to build geometric primitives
 - cubes, cylinders, pyramids, etc...
- No machine learning-based recognition used
 - simple FSA
- Does make use of modifier keys

SKETCH Gesture Set (1)

- Dragging objects
- Scaling objects
- Copying objects
 - frehand drawing
 - scaling along an axis
SKETCH Gesture Set (2)

Teddy

- Seminal work by Igarashi et al. (1999)
 - did for organic modeling what Zeleznik et al. did for primitive-based modeling
- Supports
 - Object creation
 - Cutting
 - Extrusion
 - Smoothing
- No machine learning used
 - Simple FSA and geometric construction techniques
Surface/Mesh Editing

- Fine line between sketching and gestures
- Uses simple gesture as input to a surface editing algorithm
- This type of approach has been used for image processing as well
 - see work of Salesin

Gestures as Command Languages

- Gestural commands
 - replace traditional WIMP user interfaces
 - also used to invoke interface widgets
- Notion of in-band gestures
 - invoking commands and operations at the location of interaction
 - contrasts with having to move to top/side of the screen to press a button or find a menu item
- Used in
 - entering text
 - text editing
 - note taking
 - mathematical apps
 - etc…
Graffiti

- Language for entering text
- Maps to keyboard
- Used with Palm Pilot
- Single stroke language
 - Has prefix for some symbols
- Takes a while to learn

Text Editing

- Example of a gesture set taken from real world and developed for pen computers
- Natural connection between pencil and paper and computer

www.jumpingminds.com
MathPad2

- Simple gesture set for
 - invoking operations
 - manipulating ink
- Uses notion of punctuated gestures
 - multi-stroke (gesture + punctuation)
 - makes use of context
- Why?
 - reduce number of gestures
 - overload appropriate gestures
 - reduce conflicts

MathPad2 Gesture Set (1)

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y^2$</td>
<td>$x + y^2$</td>
<td>Lasso and tap to recognize an expression</td>
</tr>
<tr>
<td>$x + y^4$</td>
<td>$x + y$</td>
<td>Scribble and tap to delete ink</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x+y$</td>
<td>Creates a graph, line starts in recognized math, no cusps or intersections</td>
</tr>
<tr>
<td>$\frac{x(t)}{a + b}$</td>
<td>$\frac{x(t)}{a + b}$</td>
<td>Line through math and click on drawing makes association, Release makes rotation point</td>
</tr>
<tr>
<td>$y + \frac{1}{x} = 0$</td>
<td>$y = -\frac{1}{x}$</td>
<td>Solves equation, includes simultaneous and ordinary differential equations</td>
</tr>
<tr>
<td>$\int x^2 , dx$</td>
<td>$\frac{x^3}{3}$</td>
<td>Evaluate an expression, includes integrals, derivatives, summations, etc.</td>
</tr>
</tbody>
</table>
MathPad2 Gesture Set (2)

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{P}x = 3$</td>
<td>$\mathcal{P}x = 3$</td>
<td>Makes implicit association using label family \mathcal{P}</td>
</tr>
<tr>
<td>$\mathcal{P}x = 3$</td>
<td>$\mathcal{P}x = 3$</td>
<td>Makes implicit association with explicit tap on object</td>
</tr>
<tr>
<td>$x = 1.57$</td>
<td>$x = 1.57$</td>
<td>Implicit angle association and rectification</td>
</tr>
<tr>
<td>Flick</td>
<td>Flick</td>
<td>Nail two drawing elements by small circle and tap</td>
</tr>
<tr>
<td>$y = x^4$</td>
<td>$y = x^4$</td>
<td>Lasso and drag symbol to change position</td>
</tr>
</tbody>
</table>

Fluid Inking (Zeleznik and Miller 2006)

- Approach to augment free-form inking with gestures (collection of techniques)
- Guidelines
 - hardware impartiality (no buttons)
 - performability (minimal targeting)
 - extensibility
 - discoverability
- Uses
 - terminal punctuation
 - flicks

Gesture Class
- Mnemonic flick
 - Punctuated: self-contained mnemonic mimic
 - lasso (\(\bigcirc\)), scribble (\(\sim\)), or crop (\(\Box\))
 - letter or scribble (\(\Theta\))
 - stroke hook (\(\bigcirc\))

<table>
<thead>
<tr>
<th>Gesture Class</th>
<th>Context</th>
<th>Gesture</th>
<th>Terminal</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnemonic flick</td>
<td>$flick()$</td>
<td>letter</td>
<td>σ saves the line</td>
<td></td>
</tr>
<tr>
<td>Punctuated: self-contained mnemonic mimic</td>
<td>lasso ((\bigcirc)), scribble ((\sim)), or crop ((\Box))</td>
<td>tap or pause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctuated: self-contained mnemonic mimic</td>
<td>letter or scribble ((\Theta))</td>
<td>tap or pause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctuated: self-contained mnemonic mimic</td>
<td>stroke hook ((\bigcirc))</td>
<td>tap or pause</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- at deletes ink inside it
- \bigcirc copies ink contained in the lasso
- Ω applies Ninja menu option to lasso contents
Recognizing Gestures

- FSA’s and simple primitive operators
 - conditionals and saving state from one event trigger to another
 - Operators can be features
 - same features used in machine learning!
 - features must be excellent discriminators
- Machine learning techniques
 - SVMs, K-nearest neighbor, AdaBoost
 - more on this soon!

Anatomy of a Gesture

Input: Strokes s_{i-1} and s_{i-2}, a bounding box threshold e_{box}, and a line difference threshold e_{diff}.
Output: True or false.

DetectINGEqualSign($s_{i-1}, s_{i-2}, e_{box}, e_{diff}$)

1. $P \leftarrow$ Points(s_{i-1})
2. $Q \leftarrow$ Points(s_{i-2})
3. $b_1 \leftarrow$ BoundingBox(s_{i-1})
4. $b_2 \leftarrow$ BoundingBox(s_{i-2})
5. $slen_1 \leftarrow \sum_{x \in b_1} ||P_x - P_{x-1}||$
6. $slen_2 \leftarrow \sum_{x \in b_2} ||Q_x - Q_{x-1}||$
7. if $slen_1 > e_{box} \sqrt{\text{Width}(b_1)^2 + \text{Height}(b_1)^2}$ or $slen_2 > e_{box} \sqrt{\text{Width}(b_2)^2 + \text{Height}(b_2)^2}$
 return false
8. if Width(b_1) < Height(b_1) or Width(b_2) < Height(b_2)
 return false
9. $\text{diff}_1 = |X(P_1) - X(Q_1)|$
10. $\text{diff}_2 = |X(P_2) - X(Q_2)|$
11. if LineOverlap(P_1, P_2, Q_1, Q_2, and $\text{diff}_1 < e_{diff}$ and $\text{diff}_2 < e_{diff}$
 return true
12. else
 return false

Note that as the gesture set increases the more tests you typically have to employ to avoid conflicts.
Learning Gestures

- How many gestures is too many?
- Learning strategies
 - Simple tutorials/manuals
 - Gesture practice tools
 - color coding (useful for multi-stroke gestures)
 - Showing gestures through animations
- Techniques not proven – open research area

Music NotePad gestural tutorial system

Multi-Touch Gestures

http://www.flickr.com/photos/ideum/4380417382/
Readings