
Sketch-Based Navigation in

3D Virtual Environments

Benjamin Hagedorn and Jürgen Döllner

Hasso-Plattner-Institut at University Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
benjamin.hagedorn, doellner@hpi.uni-potsdam.de

Abstract. Navigation represents the fundamental interaction technique
in 3D virtual environments (3D VEs) as it enables the users to ex-
plore the 3D world and to interact with its objects. Efficient navigation
strategies and techniques are required, which take account of the users
and their goals and avoid problems of general navigation methods, such
as “getting-lost” situations and confusing view configurations. This pa-
per presents a novel method for specifying and controlling navigation
in 3D VEs based on sketching navigation commands. The users sketch
their navigation intentions on top of the perspective projection of the
3D scene. The system interprets these sketches regarding their geometry,
spatial context, and temporal context. Unlike other sketchy navigation
techniques, our approach identifies the hit objects of the underlying 3D
scene and takes advantage of their semantics and inherent navigation
affordances. The approach has been prototypically implemented for the
exploration of a virtual 3D city model with a touch-sensitive display.

1 Introduction

Navigation, which is often referred to as “the aggregate task of wayfinding and
motion” [4], denotes the fundamental interaction technique in 3D geovirtual
environments (3D VEs) but still represents a non-trivial task for the user inter-
face technology [7]. General navigation techniques (e.g., world-in-hand controls,
fly-over controls, and virtual trackballs) give the users direct control over the
navigation process. Common problems of these approaches include “getting-
lost” situations, confusing view configurations, abrupt camera motion, and loss
of visual contact to landmarks. Thus, to improve the usability of 3D interaction
processes, navigation techniques have to assist users to navigate through and
interact with the 3D world and its objects.

This paper presents a sketch-based navigation technique for 3D VEs such as
virtual 3D city models and 3D landscape models. In our approach, the users
express their navigation intentions in terms of graphical sketches by drawing
curves and points to indicate paths and locations as well as pen-based gestures.
These sketches are interpreted according to a pre-defined graphical vocabulary
of navigation commands, taking into account their spatial and temporal context
as well as the navigation affordances inherent to the elements of the 3D VE.

A. Butz et al. (Eds.): SG 2008, LNCS 5166, pp. 239–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 B. Hagedorn and J. Döllner

Fig. 1. Left: Example of a sketch-based navigation command applied to a complex
virtual 3D city model. The user draws a curve on the street and combines this com-
mand with a circle like gesture. The derived animation will move the camera along
the sketched path and finally rotate for inspecting the target area. – Right: Using the
sketch-based navigation with a touch-sensitive smart board.

Sketch-based navigation is conceptually a higher-level navigation technique,
as it relieves the users from controlling the motion task and even can assist in
wayfinding. It can be used with any device allowing for 2D sketch input, e.g.,
mouse, graphic tablet, or touch-screen – see Fig. 1.

2 Related Work

Navigation constraints cope with the large number of degrees of freedom inher-
ent to 3D navigation and represent a major technique in the field of assisted
3D navigation. Hanson and Wernert [9] propose designer-supplied constraints
on the bases of 2D controllers, Tan et al. [13] introduce the speed-coupled flying,
and Buchholz et al. [1] apply several navigation strategies for reaching a high
orientation value. A detailed description of constraints for navigation in geovir-
tual environments can be found at Döllner [5]. StyleCam by Burtnyk et al. [2]
represents an authoring-based approach constraining the camera movements in
space and time. HoverCam by Khan et al. [12] assists users in panning, zoom-
ing and tumbling the virtual camera, particularly for single object inspection.
Different from those, Russo dos Santos et al. [7] propose a navigation concept,
which provides specific navigation methods according to the type of a 3D VE.

Sketching is a natural and intuitive input technique, which can be applied
for 2D and 3D interaction. In the context of virtual 3D objects and virtual
3D worlds, sketching is often regarded as an effective means for modeling and
manipulation [3][11][14]. Only few approaches seem to target at sketch-based
navigation in 3D VEs. Igarashi [10] et al. introduce the concept of path draw-
ing for 3D walkthroughs, which allows the users to sketch the path a virtual
avatar shall move along on top of the perspective view of the 3D scene. Cohen
et al. [3] suggest a method for sketching 3D curves and mention the possibility

Sketch-Based Navigation in 3D Virtual Environments 241

to use them as a camera path and Hachet et al. [8] propose a technique, which
uses a circle-shaped gesture for focus definition and a special widget for posi-
tioning the camera. Döllner et al. [6] present an approach for semantics-based
navigation in 3D city models on mobile devices, which bases on sketching naviga-
tion commands by stylus and incorporates the type and meaning of the 3D city
objects for deriving an appropriate navigation animation. The article at hand
gives a detailed description of an extended sketch-based navigation concept and
implementation.

3 Sketch-Based Navigation

3.1 Sketchy Navigation Commands

As described in [6], we conceptually distinguish two types of navigation sketches:

– Object-related sketches are associated with objects of the 3D VE and en-
able a semantics-based interpretation as the system can derive the intended
navigation from the semantics of the marked scene objects.

– Pen-based gestures implement a complementary set of commands that are
not bound to a spatial context.

Sketchy navigation commands allow for the following types of navigation inter-
actions, which differ in their degree of navigation abstraction:

– Camera-oriented navigation. Users perform wayfinding by themselves. They
think in terms of moving the camera “left and right”, “up and down”, etc.

– Motion-oriented navigation. Users sketch by drawings, where the camera
shall move along and where to gaze. This allows for the definition of more
complex navigation patterns, such as “drive along this path and look at that
building”.

– Task-oriented navigation. Users sketch complete tasks or subtasks to be ful-
filled, e.g., “get an overview” or “inspect the building”. Particularly, they no
longer deal with camera positions and orientations or camera paths and gaze
directions. Of course, task-oriented navigation commands heavily depend on
the users and the user tasks.

Table 1. Examples of pen-based gestures. The black dot indicates a gesture’s starting
point.

Rotate the camera to right.Tilt up the camera.

Tilt down the camera. Rotate the camera to left.

Take an overview position.

Undo last navigation.

Sketch Navigation Command Navigation Command Sketch Navigation CommandSketch

242 B. Hagedorn and J. Döllner

Table 2. Examples of sketch-based navigation commands. Gestures can be used as
modifiers for object-related sketches.

Curve on a street: Driving
along the street.

Point on a building: Finding
the shortest path to the build-
ing, driving there, and looking
at the building.

Point on the ground and
point on a building: Flying to
the marked ground point and
looking at the building finally.

Point on a building’s roof:
Flying up to the roof, placing
the camera on top and looking
around.

Curve on a street and point
on a building: Driving along
the street and looking at the
building finally.

Point on the ground and
circle-shaped gesture: Flying
to the marked ground point and
looking around.

Point on the sky: Soaring
above ground for overview.

Circle-shaped gesture and
point on a building: Soaring
above ground and looking at
the building finally.

Sketch SketchNavigation Command & Result Navigation Command & Result

In our approach, motion-oriented navigation commands are mainly defined
by object-related sketches. Pen-based gestures cover user interface management
operations (undo), low-level camera-oriented navigation commands (e.g., rotat-
ing or tilting), modify preceding object-related sketches, or trigger more com-
plex navigations. Table 1 and Table 2 illustrate examples of sketchy navigation
commands.

3.2 Navigation Affordances of 3D Objects

The navigation abilities and affordances of typical elements of 3D VEs play a
key role in our approach. Taking into account the semantics of involved scene
objects facilitates navigation strategies that can be adapted to specific users
and tasks. These elements provide motion-oriented and task-oriented navigation
affordances, as well as additional information that can be facilitated for the
generation of appealing camera animations.

Thus, the sketch-based navigation technique requires for an appropriate model
that not only contains geometry but also provides thematic information about
the contained entities. Our implementation basis on the CityGML model, which
is a specification for virtual 3D city and landscape models and supports, e.g.,
terrain models, vegetation models and detailed building models. The prototype
implementation regards terrain, vegetation area, building, roof, street, and the
sky as relevant object types.

Sketch-Based Navigation in 3D Virtual Environments 243

4 Processing Sketch-Based Navigation Commands

The users enter object-related sketches by the left mouse button or by finger
or stylus on touch-sensitive displays. For gesture input, the right mouse button
or a view plane button are used. Additionally, sketch-based navigation process-
ing comprises sketch recognition, sketch interpretation, and camera animation –
see Fig. 2.

4.1 Interpreting Navigation Sketches

For the interpretation of navigation sketches, our technique takes into account
the sketch geometry (curves and points), the spatial context (the virtual location
to which the sketch is aligned or associated), and the temporal context (the
sketch composition, command history, and drawing speed). [6]

Object-related sketches get evaluated from the scene graph by projecting each
2D sketch point (curves are discretized), calculating a set of ray intersections with
the relevant objects, and retrieving the object types. For each sketch, its seman-
tics is determined from the major type of the nearest to the camera intersection
of each sketch point. All intersections corresponding to this type represent the
projected sketch and form the basis for retrieving positions and orientations. To-
gether with the geometry type, this semantics defines the meaning of the sketch,
e.g. “Curve–Street”.

Gestures are interpreted from their 2D shape without taking into account the
underlying scenery. The sketched 2D geometry is analyzed by a shape recognition
algorithm, which uses the distance and angle of intermediate gesture points as
features for the correlation of drawn gestures and predefined template gestures
and results in navigation commands such as “Gesture–CircleLeft”.

Navigation Sketch Processing

Sketch Projection /
Gesture Recognition

Sketching

Sketch Interpretation

Navigation Planning

Sketch Navigation
Vocabulary

Animation
Description

Camera
Animation

Navigation
Sketches

3D Rendering

Perspective
3D View

3D Environment Model

Camera
Settings

Navigation Symbol
Geometry

Navigation Visualization

[nextFrame]

Fig. 2. Principal components of the sketch-based navigation command system

244 B. Hagedorn and J. Döllner

For composite sketches, the component interpretations are concatenated
and thereby represent more complex navigation commands, e.g., “Curve–Street,
Point–Building”. From these navigation command representations, the navi-
gation system concludes how to generate camera animations from the sketch
input.

To improve the usability of our sketch-based navigation, the history of navi-
gation commands and animations is considered. For this, the navigation system
stores the past navigation activities (the type of navigation and a possible target
identifier). For example, a user points on a building and triggers the navigation
“drive to building”. If the user points to the same building with the follow-
ing sketchy navigation command, the system synthesizes a short camera flight
around the object allowing the user to “inspect the building”.

4.2 Mapping Navigation Commands to Animations

Based on the determined navigation intention, the camera animation is planned.
For each supported (composite) sketchy navigation command, the system fea-
tures a handler comprising the knowledge of how to derive paths and orientations
from projected sketches and gestures. For a curve on a street, the curve points
are filtered for removing noise and interpreted as a path on that street. Extend-
ing this sketch by a point on a building, orients the camera toward the hit surface
point. By contrast, a single “point on building” command leads to the compu-
tation of the shortest path to that building. The navigation handlers generate
camera settings for key frames (e.g., starting point, intermediate points, and end
point of a camera path), which are interpolated for creating the animation.

4.3 Visualization of Pending Navigation Commands

As a key element, our extended sketch-based navigation approach incorporates
feedback to the users by visual cues about pending navigations. They act as a
preview of how the system interprets the sketches, which navigation is deter-
mined, and allow the users to verify whether their navigation intention has been
correctly recognized.

The navigation cues are integrated into the 3D scene and displayed and an-
imated during the navigation animation. Path arrows on the terrain or street
hint at where the camera will move along and billboard-attached target arrows
indicate points of interest – see Fig. 3.

4.4 Sketching Speed

The speed at which sketch geometry is drawn can be utilized for improving the
sketch-based navigation interface. It can denote the user experience, can be used
for determining animation speed, and could influence the animation dramaturgy.

Sketching speed is different for near and far parts of the 3D scene. A path
drawn at far distance has a smaller extend on the 2D view plane than a path

Sketch-Based Navigation in 3D Virtual Environments 245

Fig. 3. Example of a sketch-based navigation command (left) and the resulting vi-
sual cues integrated in the 3D scene (right). The path arrow symbolizes the camera
movement and the target arrow points to the selected building.

drawn nearby. Thus, the speed of object-related sketches is calculated from the
path speed in 3D. As gestures are not projected into 3D, their speed is calculated
from the speed of sketching on the view plane.

5 Conclusions and Future Work

The presented sketch-based navigation commands abstract the navigation process
in 3D virtual environments. Instead of controlling and maneuvering the virtual
camera, users rather specify their navigation goals, trigger automated navigation
processes, and obtain smooth camera animations. The graphical navigation com-
mands are interpreted according to shape, spatial context, and temporal context.
The approach takes advantage of the inherent navigation affordances of the scene
objects, considers sketching speed, and integrates visual feedback.

Sketch-based navigation lends itself for being used by non-experts on 3D nav-
igation but also for providing task- and user-specific mechanisms to complex
navigation operation. Furthermore, sketch-based navigation allows to implement
a step-by-step interactive exploration of 3D VEs on thin clients (e.g., mobile de-
vices), which would only handle the sketch input, while the corresponding server
manages the 3D VE and renders the camera animations.

In future work, we will investigate task and goal-specific sketchy navigation
commands and extend the sketch-based navigation vocabulary including more
object types and navigation affordances for virtual 3D city and landscape models.
Additionally, we plan to enhance the visual feedback mechanisms to return more
information about recognized navigation intentions and to extend the camera
dramaturgy taking into account additional 3D object types.

246 B. Hagedorn and J. Döllner

References

1. Buchholz, H., Bohnet, J., Döllner, J.: Smart and physically-based navigation in 3d
geovirtual environments. In: IV 2005: Proceedings of the Ninth International Con-
ference on Information Visualisation, Washington, DC, USA, pp. 629–635. IEEE
Computer Society, Los Alamitos (2005)

2. Burtnyk, N., Khan, A., Fitzmaurice, G., Balakrishnan, R., Kurtenbach, G.: Style-
cam: Interactive stylized 3d navigation using integrated spatial & temporal con-
trols. In: UIST 2002: Proceedings of the 15th annual ACM Symposium on User
Interface Software and Technology, pp. 101–110. ACM, New York (2002)

3. Cohen, J.M., Hughes, J.F., Zeleznik, R.C.: Harold: A world made of draw-
ings. In: NPAR 2000: Proceedings of the 1st International Symposium on Non-
Photorealistic Animation and Rendering, pp. 83–90. ACM, New York (2000)

4. Darken, R.P., Peterson, B.: Spatial Orientation, Wayfinding, and Representation.
In: Handbook of Virtual Environment Technology, pp. 493–518. Lawrence Erlbaum
Assoc., New Jersey (2002)

5. Döllner, J.: Constraints as means of controlling usage of geovirtual environments.
Journal of Cartography and Geographic Information Science 32(2), 69–80 (2005)

6. Döllner, J., Hagedorn, B., Schmidt, S.: An approach towards semantics-based nav-
igation in 3d city models on mobile devices. In: Gartner, M.P.P.G., Cartwright,
W. (eds.) Location Based Services and TeleCartography. Lecture Notes in Geoin-
formation and Cartography, pp. 357–368. Springer, Heidelberg (2007)

7. Russo dos Santos, C., Gros, P., Abel, P., Loisel, D., Trichaud, N., Paris, J.P.:
Metaphor-aware 3d navigation. In: INFOVIS 2000: Proceedings of the IEEE Sym-
posium on Information Visualization 2000, Washington, DC, USA, 2000, pp. 155–
165. IEEE Computer Society, Los Alamitos (2000)

8. Hachet, M., Decle, F., Knödel, S., Guitton, P.: Navidget for easy 3d camera posi-
tioning from 2d inputs. In: IEEE Symposium on 3D User Interfaces 2008, March
2008, pp. 83–89 (2008)

9. Hanson, A.J., Wernert, E.A.: Constrained 3d navigation with 2d controllers. In:
VIS 1997: Proceedings of the 8th Conference on Visualization 1997, pp. 175–182.
IEEE Computer Society Press, Los Alamitos (1997)

10. Igarashi, T., Kadobayashi, R., Mase, K., Tanaka, H.: Path drawing for 3d walk-
through. In: UIST 1998: Proceedings of the 11th annual ACM Symposium on User
Interface Software and Technology, pp. 173–174. ACM, New York (1998)

11. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3d freeform
design. In: SIGGRAPH 1999: Proceedings of the 26th annual Conference on Com-
puter Graphics and Interactive Techniques, New York, NY, USA, pp. 409–416.
ACM Press/Addison-Wesley Publishing Co. (1999)

12. Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., Kurtenbach, G.: Hovercam: in-
teractive 3d navigation for proximal object inspection. In: I3D 2005: Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 73–80. ACM,
New York (2005)

13. Tan, D.S., Robertson, G.G., Czerwinski, M.: Exploring 3d navigation: Combining
speed-coupled flying with orbiting. In: CHI 2001: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 418–425. ACM, New York
(2001)

14. Zeleznik, R.C., Herndon, K.P., Hughes, J.F.: Sketch: An interface for sketching
3d scenes. In: Rushmeier, H. (ed.) SIGGRAPH 1996 Conference Proceedings, pp.
163–170. Addison Wesley, Reading (1996)

	Sketch-Based Navigation in 3D Virtual Environments
	Introduction
	Related Work
	Sketch-Based Navigation
	Sketchy Navigation Commands
	Navigation Affordances of 3D Objects

	Processing Sketch-Based Navigation Commands
	Interpreting Navigation Sketches
	Mapping Navigation Commands to Animations
	Visualization of Pending Navigation Commands
	Sketching Speed

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

