
Gestures as Point Clouds: A $P Recognizer for
User Interface Prototypes

Radu-Daniel Vatavu
University Stefan cel Mare of

Suceava
Suceava 720229, Romania

vatavu@eed.usv.ro

Lisa Anthony
UMBC Information Systems

1000 Hilltop Circle
Baltimore MD 21250

lanthony@umbc.edu

Jacob O. Wobbrock
Information School | DUB Group

University of Washington
Seattle, WA 98195-2840 USA

wobbrock@uw.edu

ABSTRACT
Rapid prototyping of gesture interaction for emerging touch
platforms requires that developers have access to fast, sim-
ple, and accurate gesture recognition approaches. The $-
family of recognizers ($1, $N) addresses this need, but the
current most advanced of these, $N-Protractor, has signifi-
cant memory and execution costs due to its combinatoric
gesture representation approach. We present $P, a new
member of the $-family, that remedies this limitation by con-
sidering gestures as clouds of points. $P performs similarly
to $1 on unistrokes and is superior to $N on multistrokes.
Specifically, $P delivers >99% accuracy in user-dependent
testing with 5+ training samples per gesture type and stays
above 99% for user-independent tests when using data from
10 participants. We provide a pseudocode listing of $P to
assist developers in porting it to their specific platform and a
“cheat sheet” to aid developers in selecting the best member
of the $-family for their specific application needs.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies; I.5.2 [Pattern Rec-
ognition]: Design Methodology—Classifier design and eval-

uation

General Terms
Algorithms, Experimentation, Performance

Keywords
Gesture recognition, point clouds, comparing classifiers, mul-
tistrokes, Euclidean, Hausdorff, Hungarian, $P, $1, $N.

1. INTRODUCTION
The currently increasing mainstream use and adoption of
touch input devices like the iPad, iPhone, and Microsoft
Surface, along with the surge in touch-based app develop-
ment, fosters a rising need for tools to support development
for such platforms. New applications may require gesture
recognition tailored to new gestures that are simply not built
into existing software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’12, October 22–26, 2012, Santa Monica, California, USA.
Copyright 2012 ACM 978-1-4503-1467-1/12/10 ...$10.00.

Figure 1: Even a simple square can be drawn using
1, 2, 3, or 4 strokes which can vary in order and
direction (with a total of 442 possible cases). How-
ever, all the articulation details are ignored when
looking at the square as a time-free cloud of points.

State-of-the-art gesture recognition techniques, such as Hid-
den Markov Models [19], feature-based statistical classifiers
[17, 22], or mixture of classifiers [12], typically require signif-
icant technical knowledge to understand and develop them
for new platforms, or knowledge from other fields such as
graph theory [11]. Therefore, our growing body of work
has been tackling this problem by proposing low-cost, easy
to understand and implement, yet high performing, gesture
recognition approaches [2, 3, 23]. These approaches, which
we will call the $-family of techniques, involve only simple
geometric computations and straightforward internal repre-
sentations. Furthermore, the algorithms are highly accessi-
ble through the publication of pseudocode which developers
may use for their own platforms. Indeed, both $1 and $N
have experienced swift uptake with implementations avail-
able in JavaScript, C#, and Objective-C by third-party de-
velopers1.

Yet the $-family approaches each have limitations. For ex-
ample, $1 and Protractor only handle unistroke gestures [14,
23]. $N and $N-Protractor have focused on remedying this
limitation, adding support for multistrokes [2, 3]. The $N
approaches do so by treating multistrokes as unistrokes ob-
tained by connecting individual strokes“in the air” [2], which
enables them to use the same matching algorithm as $1.
However, as stroke order and direction may differ among
users drawing the same symbol (Figure 1), $N needs to gen-
erate all possible permutations of a given multistroke [2, 3],
which causes an explosion in both memory and execution

1See “$1 implementations by others” at $1 homepage,
http://depts.washington.edu/aimgroup/proj/dollar/

273

time for $N and even for $N-Protractor, albeit to a lesser
extent. For example, a 2-stroke gesture such as an “X” has
8 permutations to represent, and a 4-stroke gesture such as
a square has 4! × 24 = 384 different permutations. To sup-
port a cube, a symbol typically drawn with 9 strokes2, the
system must represent 9!× 29 = 185,794,560 permutations.
This exceedingly high number poses a challenge for mod-
ern desktops, let alone mobile platforms. Although $N uses
run-time optimizations that reduce the number of compar-
isons to stored permutations [2], the cost of storing these
permutations is currently its main limiting factor [3].

To address the aforementioned problems, we present our new
approach, the $P recognizer, which avoids the storage com-
plexity of $N by representing gestures as “clouds of Points”
and thus ignoring variable user behavior in terms of stroke
order and direction. Just like its predecessors $1 [23] and
$N [2, 3], $P yields high accuracy, low complexity, and low
barriers to adoption (only 70 lines of code, 50% reusing $1
code [23]). Experiments showed an average accuracy of 98%
for $P, which outperformed $N in both user-dependent and
user-independent testing3. Also, $P delivered >99% accu-
racy in user-dependent testing with 5+ training samples per
gesture and stayed above 99% for user-independent tests
when using data from 10 participants.

The contributions of our work include: (1) a straightforward
algorithm called $P that represents and recognizes stroke
gestures as point clouds; (2) an evaluation of $P showing
that it is more accurate and needs considerably less memory
than $N-Protractor [3]; and (3) a pseudocode listing for $P
to enable rapid uptake of this new member of the $-family of
stroke recognizers for user interface prototypes. Finally, to
assist developers in selecting the most suitable classifier for
their needs ($1, $N, $P), we contribute a “cheat sheet” for
the $-family of recognizers highlighting the main similarities
and differences among the family members.

2. RECOGNIZING POINT CLOUDS
Most limitations of the $N recognizer come from reasoning
about gestures in terms of a chronological order of drawn
points, which enforces a predefined order for strokes and
points within each stroke. In consequence, to retain user
independence, $N needs to permute and store gestures by
stroke order and direction, which considerably affects the
size of the training set [2, 3] and negatively impacts mem-
ory usage and system performance. However, such com-
plications no longer apply when reasoning outside the ges-
ture timeline. Discarding the timeline makes gestures ap-
pear as simple sets without any particular order associated
to strokes or points: {pi = (xi, yi) | i = 1..n}. Point pi does
not necessarily follow pi−1, nor does it necessarily precede
pi+1. Point p1 does not mark the starting point of the ges-
ture nor is pn its endpoint. Instead, gestures are seen as
unordered sets, or what we call clouds, grouping points to-
gether. By adopting this time-free view of gestures, aspects
such as the number of strokes, stroke ordering, and stroke
direction become irrelevant. To make an analogy, such a
diminished representation resembles the input of off-line op-
tical character recognition systems that only use bitmaps
delivered by an optical scanner [16].

2See http://embedded.eecs.berkeley.edu/research/hhreco/
3For conciseness, we use the term $N to refer to the state of the
art $N, which is $N-Protractor [3], an improved version over [2].

Figure 2: Point alignments for two spiral gestures.
The time-ordered alignment performed by $1 and
$N (a) fails when one of the spirals is simply drawn
backwards (b) which is why $N creates permutations
of all stroke orders and directions in its training set.
The time-free alignment of point clouds (c) ignores
such execution details.

In order to better highlight the advantages of discarding the
execution timeline, Figure 1 illustrates some of the many
ways to draw a square. Drawing a square could be done
via 1, 2, 3, or 4-stroke gestures with many variations for the
individual strokes in terms of ordering and direction. In-
stead, when looking at the same gesture as a simple cloud
of points with no time labels, all such execution details are
hidden away into the final result. Indeed, just by looking at
the point cloud of Figure 1, the reader cannot tell whether
this is a unistroke or a multistroke gesture; whether it is
composed of 2 or 3 strokes; or what the order and direction
of strokes might be. We argue that the answers to these
questions are not essential for recognizing the gesture, and
in many cases they even complicate the structure of the rec-
ognizer [2] rather than helping with classification.

Once the gesture execution timeline has been discarded, the
number of strokes, stroke ordering, and stroke direction be-
come irrelevant. The task of the recognizer remains to match
the point cloud of the candidate gesture (C) to the point
cloud of each template (T) in the training set and compute a
matching distance. In the tradition of the Nearest-Neighbor
approach, the template located at the smallest distance from
C delivers the classification result.

We define the matching between two point clouds C and T

as a function M that associates each point Ci ∈ C with
exactly one point Tj ∈ T , Tj = M(Ci). If C and T have
been both resampled4 into the same number of points n,
then the matching will also consist of exactly n pairs of
points. Inspired by the Euclidean sum of $1 [23] and the
Proportional Shape Distance of Shark2 [13], we define the
goodness of matching M as the sum of Euclidean distances
for all the pairs of points from M:

n
∑

i=1

‖Ci − Tj‖ =
n
∑

i=1

√

(Ci.x− Tj .x)
2 + (Ci.y − Tj .y)

2 (1)

In this equation, j depends on i but, for ease of notation, we
only iterate on i and discard additional notation formalisms
by simply considering that point Ci from the first cloud was
matched to point Tj from the second cloud by some match-
ing algorithm implementing M. Note that when j equals
i (i.e., M = {(Ci, Ti) | i = 1..n}), the formula becomes the
Euclidean sum of the $1 recognizer. Figure 2 illustrates
the difference between time-ordered (a and b) and time-free
point alignments (c).
4Resampling is a common practice in gesture preprocessing [2,
14, 20, 23] in order to uniformize input data for classifiers.

274

2.1 The Hungarian Gesture Recognizer
With these considerations, a point cloud recognizer needs
to search for the minimum matching distance (“goodness”)
between C and T from all the n! possible alignments. Actu-
ally, this represents a well-known problem in combinatorial
optimization which is called the Assignment Problem [6]:

There are n men and n jobs for which we know the
cost of assigning man i to job j. Assign all men to
jobs so that each man gets only one job and the total
cost of assignments is minimum (p. 5).

The Assignment Problem is one that has been solved in
graph theory [9]. Our matching problem can be easily trans-
lated into the formalism of graphs by constructing an undi-
rected graph with 2n vertexes corresponding to the points
of C and T and edges weighted by the Euclidean distances
between these points. With this correspondence, the recog-
nizer simply needs to solve the assignment problem on this
constructed graph. In fact, the graph is a special case in
which vertices are split into two sets so that edges only exist
between and not inside the sets, which is known as a bipar-
tite graph [7] (p. 1083). If we were to adhere strictly to
graph theory, we would refer to our problem as finding the
Minimum Weighted Matching in a bipartite graph, which is
classically solved using the Hungarian algorithm [15].

Now that we have established that the problem of finding
the best match between two point clouds can be represented
as a problem from graph theory, we investigate the success
of this approach in recognizing multistrokes. As we will
show, the Hungarian algorithm delivers the ideal minimum-
cost matching performance, but at a high time complexity
(O(n3)). We discuss approximation methods to reduce com-
plexity of this approach, selecting the best one as our $P
recognizer. For the rest of the paper, we refer to the Hun-
garian algorithm within the Nearest-Neighbor classification
approach as the Hungarian recognizer. As we only use the
Hungarian algorithm as a reference for our $P recognizer,
we refer the reader to [15] (p. 248) for more details.

2.2 Analysis of the Hungarian Recognizer
We first conducted a recognition experiment in order to un-
derstand the performance of the Hungarian recognizer and
to compare it with its main competitor, $N [2, 3]. Also,
as the Euclidean [13], angular cosine (e.g., Protractor) [14],
and dynamic time warping (DTW) [23] distances have been
successfully used for gesture recognition before, we included
these metrics into our experiment as well. The experiment
was conducted in accordance with the practices of the do-
main [2, 14, 20, 23]. We ran all 5 recognizers on the $N
multistroke set [2] which contains a total of 3,200 samples
= 16 (gestures) × 20 (participants) × 10 (repetitions)5.

Our experiment extends previous studies [2, 23] by reporting
both user-dependent and user-independent recognition re-
sults. For the user-dependent scenario, recognition rates
were computed individually for each participant. For each
gesture type, T samples were randomly selected for training
and 1 extra sample was additionally chosen for testing. This
process was repeated 100 times for each value of T and re-
sults were averaged into a recognition rate per participant.
The number of training samples per gesture T varied from 1
to 9. In the user-independent scenario, data from P par-
ticipants was used for training while 1 additional participant
5http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

Figure 3: Performance of the Hungarian vs. com-
petitor recognizers: (a) recognition rate; (b) exe-
cution time (for a training set of 16 gestures × 3
samples). Error bars show 95% CI.

User-dependent User-independent

. 19 values for P ×

20 participants × 100 repetitions for each P a
×

9 values for Tb
× 9 values for T ×

100 repetitions for each T × 100 repetitions for each T ×

5 recognizers × 5 recognizers ×

16 gestures 16 gestures

≈ 1.5× 106 recognition tests ≈ 1.4× 108 recognition tests

a P represents the number of training participants (only ap-
plies to the user-independent scenario).

b T is the number of training samples per gesture type.

Table 1: Controlled variables for the Hungarian
recognition experiment.

was randomly selected for testing. T samples were randomly
selected for each gesture type from each training participant.
One sample for each gesture type was selected from the test-
ing participant and submitted for classification. The process
was repeated 100 times for each P and 100 times for each T

with 100×100 = 10, 000 classification results averaging into
a recognition rate depending on P and T . P varied from
1 to 19 and T from 1 to 9. As $N uses n = 96 sampling
points [3], all recognizers used this resolution. We report
recognition results from 1.5 ×106 recognition tests for the
user-dependent and 1.4 ×108 tests for the user-independent
scenario (see Table 1).

TheHungarian recognizer delivered the best average recog-
nition performance6 for both user-dependent (98.4%) and
user-independent (97.6%) testing. $N came next with 97.7%
and 96.4% accuracy, followed by DTW with 96.9% and
93.4% for the two testing scenarios (Figure 3a). A Fried-
man test [10] showed a significant difference between the
performance of all 5 recognizers for both user-dependent
(χ2(4) = 342.879, p < .001) and user-indepedent testing
(χ2(4) = 3478.055, p < .001). Post-hoc Wilcoxon signed-
rank tests showed the Hungarian recognizer outperforming
$N significantly (Z = −11.367, p < .001) for both testing
scenarios (with effect sizes r < .15).

6Averaged across all T = 1..9 and P = 1..19.

275

3. IN SEARCH OF A $-LIKE RECOGNIZER
FOR POINT CLOUDS

Despite its very good performance on the multistroke gesture
set, the Hungarian recognizer hardly fits into the $-family
paradigm of delivering simple and easy-to-use recognition
tools for user interface prototypers. Quite the opposite of
a $-like recognizer [2, 23], the Hungarian algorithm em-
ploys advanced concepts such as feasible labelings, equal-
ity graphs, alternating paths, and alternating trees [15] (p.
248), along with graph representation and traversal tech-
niques [7]. Even more, its O(n3) complexity is one order
higher than DTW’s O(n2) and two orders higher than the
complexity of Euclidean and Cosine recognizers (both
running in O(n) time). As a result, running the Hungarian

algorithm to classify a candidate gesture against the multi-
stroke set (16 gestures × 3 samples loaded) took 357 ms to
complete (see Figure 3b) on an IntelR© CoreTM i5 2.27 GHz
processor. This was 60 times slower than DTW (6.1 ms)
and 3000 times slower than Cosine and Euclidean (both
under 0.1 ms). Even the non-optimized $N-Protractor took
only 2.0 ms to execute (due to the fast Cosine it employs
[3, 14] and the number of permutations being low for this
set). Therefore, a low-cost alternative to the Hungarian al-
gorithm is necessary for qualifying the point cloud matching
approach as a $-recognizer.

Luckily, because the assignment problem is an important one
with many implications [6], many approximation algorithms
exist. They either rely on complex data structures [1] or on
the use of greedy heuristics [4]. The fastest approximation
for the Euclidean space is currently an algorithm from Agar-
wal and Varadarajan [1] with near linear time O(n1+ǫ) with
ǫ ∈ (0, 1). However, in terms of trying to optimize concep-
tual complexity, the algorithm is even farther away from the
$-paradigm than is the Hungarian recognizer, as it relies on
advanced data structures and tight upper bounds, hardly to
be understood without considerable effort outside the algo-
rithms research community. Another option is to use simple
heuristics [4] that do not provide optimal alignment but are
extremely simple to understand and implement. Therefore,
such heuristics seem to be more in accordance with the $-
paradigm of delivering simple recognizers.

Inspired by Avis [4] and the Hungarian algorithm’s in-
ner workings, we implemented the following heuristics for
matching clouds (which we namedGreedy-X with X=1..5):

➊ Greedy-1. All the Euclidean distances between the n

points of cloud C and the n points of cloud T are computed
and sorted in ascending order. The first n pairs of points
that can form a valid match are selected (each point is only
used once). The complexity is O(n2 × log(n)) as the list
needs to be sorted (using the quick sort algorithm).

➋ Greedy-2. For each point in the first cloud (Ci), find
the closest point from the second cloud that hasn’t been
matched yet. Once point Ci is matched, continue with Ci+1

until all points from C are matched (i = 1..n−1). The com-
plexity is O(n2) as for every point from C a linear search
needs to be performed in T .

After having implemented this heuristic, we observed that
the result varies with the order in which points Ci are se-
lected from the first cloud. Therefore, we decided to run
the algorithm multiple times with different starting points

and return the minimum matching of all runs. If Ck is the
starting point then:

∑

i

‖Ci − Tj‖ =
n
∑

i=k

‖Ci − Tj‖+

k−1
∑

i=1

‖Ci − Tj‖ (2)

where i goes circularly through all points in C. We intro-
duce a parameter ǫ to control the number of runs. If ǫ = 0,
Greedy-2 runs once (for points C1, C2, . . . Cn in this order).
If ǫ = 1, the algorithm runs n times (with each point Ci get-
ting the first chance to pair up). If ǫ < 1 the algorithm runs
for nǫ < n times. Using this formalism, the complexity of
Greedy-2 is easy to express as O(n2+ǫ) and lies between
O(n2) and O(n3). As the Hungarian delivers the result in
O(n3), there is no point working with ǫ > 1.

➌ Greedy-3. Similar to Greedy-2, except that the order
in which points Ci are matched is randomized at each run.
Greedy-3 also needs O(n2+ǫ) time.

➍ Greedy-4. Presumably difficult points from cloud C are
matched first: a point Ci is more difficult to match if its
sum of Euclidean distances to all the points in T is larger.
This heuristic sorts the points from C in descending order by
their total distance to T . Each point in C is then assigned
the closest point from T similar to Greedy-2. Greedy-4

runs in O(n2).

➎ Greedy-5. Similar to Greedy-2, except the sum of Eu-
clidean distances (eq. 2) contains weights:

∑

i

wi · ‖Ci − Tj‖ (3)

Weights wi encode the confidence in each pair (Ci, Tj) com-
puted during the greedy run. The first match is weighted
with w1 = 1.0 (meaning high confidence) because we trust
it: the first point has all the data in order to make a deci-
sion for its closest match. As the algorithm progresses, few
options remain for the rest of the points from the first cloud
when searching their closest pair into the second. Therefore,
we can’t trust these matches completely so we weight them
with confidence values in [0..1]. For example, the last point
to be matched has only one option (the last point from the
second cloud that has been left unmatched) so the confi-
dence in this alignment should also be small. We adopted a
linear weighting scheme in which:

wi = 1−
i− 1

n
(4)

where i = 1..n encodes the current step of the algorithm.
Greedy-5 also runs in O(n2+ǫ) time.

The results of Greedy-X depend on the direction of match-
ing (e.g., whether cloud C is matched to T or vice versa) so
their implementations must return:

min (Greedy-X(C, T),Greedy-X(T,C)) (5)

This change affects the heuristics execution time but not
their algorithmic complexities as discussed above.

Besides these heuristics, we note that Hausdorff distance [18]
can also be interpreted as an approximation of the match-
ing of two sets of points. Hausdorff computes the minimum
Euclidean distance for each point from the first cloud to all
the points in the second cloud and returns the maximum
of these minimum distances. The distance is heavily used
in computer vision for matching templates [18], and it has
also been applied for recognizing hand sketches [12]. How-
ever, studies have expressed concerns on Hausdorff being

276

Figure 4: Recognition performance of greedy heuristics vs. the Hungarian. Note: recognizers are ordered on
the horizontal axis by their average recognition performance. Error bars represent 95% CI.

too sensitive to outliers [18], which led to a variant called
the Modified Hausdorff distance [8]. Due to the relevance of
this previous work, we added both Hausdorff and the mod-
ified version to our list of heuristics:

➏ Hausdorff. Returns the maximum value of the mini-
mum Euclidean distances computed for each point in C and
every point from T [18]:

max
i=1..n

min
j=1..n

‖Ci − Tj‖ (6)

➐ Modified-Hausdorff. Returns the average value of the
minimum Euclidean distances computed for each point in C

and every point from T [8]:

1

n

n
∑

i=1

min
j=1..n

‖Ci − Tj‖ (7)

Both Hausdorffs are directional in the forms presented, so
their implementations also need to consider both matching
directions (C is matched to T and vice-versa). Hausdorffs
are computed with O(n2) complexity.

3.1 Performance Analysis of Greedy-X
A second experiment was conducted in order to compare
the recognition performance of the proposed heuristics. The
goal of the experiment was to discover a good $-like recog-
nizer candidate that would come as close as possible to the
performance of theHungarian algorithm which implements
the ideal behavior of the cloud point matching technique.
We used the same gesture corpus and experiment design
as in the first study. Greedy-2, Greedy-3, and Greedy-

5 were tested with ǫ ∈ {0.00, 0.25, 0.50, 0.75, 1.0} resulting
in 5 + 5 + 5 = 15 different recognizers. Hausdorff and
Modified-Hausdorff were also included in the experiment
for comparison purposes. In total, we tested 19 heuristic
recognizers (17 Greedy-X and 2 Hausdorffs) and report
results from 4.3 × 106 recognition tests for user-dependent
and 4.1 × 108 tests for user-independent testing. Again, all
gestures were resampled into n = 96 points. Figure 4 shows
the recognition performance of all the 20 recognizers (the
Hungarian included for comparison).

User-dependent results. Greedy-1 delivered the poor-
est performance with only 91.6% accuracy. It was followed
by Greedy-3 (all ǫ-versions) with the highest accuracy be-
ing 96.3% for ǫ = 1.0. Greedy-4 achieved 97.6% while
almost all Greedy-2 versions (except ǫ = .00) stayed above
98%. Both Hausdorffs performed well with 98.0% accu-
racy. Greedy-5 performed the best, staying above theHun-

garian (which delivered 98.4%). A Friedman test showed a
significant difference between the recognition rates of all 20
recognizers (χ2(19) = 10991.741, p < .001).

Greedy-2 (98.1% for ǫ = 0.5, 0.75, and 1.0), Modified-

Hausdorff (98.2%), and Greedy-5 (98.4% for ǫ=0.25, 0.5,
0.75, and 1.0) were the recognizers that came closest to the
performance of Hungarian (98.4%). Figure 4 shows a close
up view for these heuristics. Follow-up Wilcoxon signed-
rank tests were used to test differences between all these
8 recognizers and the Hungarian (a Bonferroni correction
was applied and effects are reported at 0.05/8 = 0.0063 level
of significance). The performance of Hungarian was sig-
nificantly different from that of Greedy-2 and Modified-

Hausdorff (the effect size r stayed below .20). However,
there was no significant difference in recognition between
Hungarian and the Greedy-5 metrics (ǫ ≥ .25).

User-independent results. Results were similar for the
user-independent testing. Again, Greedy-1 had the worst
performance with only 88.8% accuracy and it was followed
by Greedy-3 (<95%). Greedy-4 achieved 96.1% while
Greedy-2 stayed above 97.1% for ǫ > 0. The Hausdorff

metrics delivered 96.8% and 97.4% accuracies. Greedy-5

recognizers (98.4% for ǫ ≥ 0.25) stayed above the perfor-
mance of the Hungarian (which was 97.6%). A Friedman
test confirmed a significant difference between all 20 recog-
nizers (χ2(19) = 32709.094, p < .001). The same recognizers
that performed well in user-dependent testing were also the
ones that came closest to the performance of the Hungar-

ian for the user-independent scenario. Greedy-2 achieved
97.4% for ǫ ≥ 0.5. Modified-Hausdorff delivered 97.4%.
Greedy-5 managed to achieve 98% for ǫ = 1.0. Post-hoc
Wilcoxon signed-rank tests showed significant differences be-
tween all these 8 metrics and the Hungarian (effect sizes r
stayed below .20).

277

Figure 5: Recognition performance of $P vs. $N [2, 3] and Hungarian [15].

4. THE $P RECOGNIZER
Results obtained place Greedy-5 as the best candidate for
the $P recognizer. Recognition performance of Greedy-5

running with ǫ ≥ 0.50 was not significantly different from
that of Hungarian for user-dependent tests (as confirmed
by Wilcoxon tests). However, significant differences were
detected between the two recognizers for user-independent
testing, with Greedy-5 exhibiting better performance. As
the highest accuracy was found for ǫ = 0.50, we denote
Greedy-5 (0.50) as the $P recognizer. Pseudocode for $P
is listed in the appendix (≈ 70 lines of code, out of which
50% reuse $1 code). We continue to analyze $P against its
two main competitors: $N and Hungarian.

Effect of number of training samples. Figure 5a shows
the influence of the amount of training samples on $P’s per-
formance for user-dependent testing. $P reached 98.5% ac-
curacy with T = 3 training samples per gesture type and
stayed above 99% for T ≥ 5 (with a maximum of 99.4%).
The performance of Hungarian was almost identical (the
two lines practically overlap in the graph). $N delivered
97.8% performance with T = 3 samples and attained a max-
imum accuracy of 98.7% for T = 9.

Effect of number of training participants. For user-
independent testing, we are interested in how many partici-
pants need to provide data samples for recognizers to deliver
high performance for new users. $P achieved 90% recogni-
tion with data from just 1 training participant while $N
delivered 86% and the Hungarian 88% in the same con-
ditions (see Figure 5b). Again, the performance of $P and
Hungarian were closely related, with $P showing slightly
yet significantly higher rates. $P reached 97% with data
from 4 participants only and stayed above 99% with 10 par-
ticipants (with a maximum of 99.5%). $N needed data from
7 participants to reach 97% and stayed under 98% even when
data from 19 participants was available for training.

Execution time. Recall that, aside from being a complex
algorithm, the drawback of Hungarian is large execution
times (see Figure 3b). $P has O(n2.5) complexity, and classi-
fies a candidate gesture in just 32 ms, under the same condi-
tions of Figure 3b7. This is 10 times faster than Hungarian

but still 15 times slower than $N. However, these times were
measured for a sampling rate of n = 96 points as needed by
$N to run optimally [2]. Recent work has shown the bene-
fits of downsampling to speed-up execution time and reduce
memory constraints [20, 21]. We suspected $P would exhibit

7Classification of a candidate against a training set of 16 gestures
with 3 loaded templates per gesture type.

similar behavior, and therefore we investigated its perfor-
mance under various sampling rates. Figure 5c shows results
obtained for sampling rate n ∈ {8, 16, 32, 64, 96}. $N deliv-
ered the same performance under all sampling rates (around
97.7%). $P and Hungarian had a worse start with 96%
for n = 8 points but delivered 98.3% starting with n = 32
points. Wilcoxon tests showed a significant but extremely
small effect size r = .04 between n = 32 and n = 96 for $P.
Changing n from 96 to 32 reduced the execution time of $P
down to 5.5 ms from 32.0 ms.

5. DISCUSSION AND FUTURE WORK
What does the $P name mean? We decided to name our
new recognizer $P for two reasons. First, we wanted to keep
the $ in the name as it has come to denote a low-cost, easy to
understand and implement recognizer, while the “P” comes
from “Point clouds.” Therefore, $P is a point-based recog-
nizer instead of a stroke-based one, as are $1 (one stroke)
and $N (N strokes). The second reason is motivated by a
simple pun. $P was introduced as a low cost memory alter-
native to $N. As $N generates all permutations, it relates to
NP class problems from complexity theory [7](p. 984). And
by removing N from NP (as $P does not use the N strokes
at all), we end with a single P in the name and achieve
polynomial time complexity.

Performance on single-stroke gestures. Although $P
was designed to alleviate $N’s dependency on stroke permu-
tations, it is not specific to multistrokes. $P can be run on
unistroke gestures as well. Therefore, we tested $P on the
16 gestures of the $1 set [23]. This time, Euclidean ($1)
would be its main competitor. $P achieved 99.3% for user-
dependent and 96.6% for user-independent testing, similar
to Euclidean’s 99.5% and 97.1% performance.

Memory for storing the training set. As $P does not
require permutations, the memory it needs to represent the
training set T is linear with the size of the set, O(T). This is
similar to $1 and Protractor [14, 23]. In contrast, $N needs
O(T × S! × 2S) memory where S represents the number of
strokes in a multistroke. As shown in the introduction, the
memory required by $N becomes quickly impractical (e.g.,
185 million records for storing a 9-stroke cube).

Direction invariance. Due to its point cloud representa-
tion, $P is invariant to direction. This delivers freedom to
designers and users but also means that clockwise and coun-
terclockwise circles can’t be discriminated. Future work can
address this by reasoning on direction invariant stroke fea-
tures derived from curvature [22] (p. 3310).

278

Criteria $1 Protractor $N $P

➊ Gesture types

recognizes single strokes ✓ ✓ ✓ ✓

recognizes multistrokes ✕ ✕ ✓ ✓

is scale-invariant ✓ ✓ ✓ ✓

is rotation-invariant ✓ can be can be ✕

is direction-invariant ✕ ✕ ✓ ✓

➋ Performance

user-dependent accuracy (single/multi-strokes) 99.5% / ✕ 99.4% / ✕ 98.0% / 97.7% 99.3% / 98.4%
user-independent accuracy (single/multi-strokes) 97.1% / ✕ 95.9% / ✕ 95.2% / 96.4% 96.6% / 98.0%
algorithmic complexity O(n · T ·R) O(n · T) O(n · S! · 2S · T) O(n2.5 · T)
memory to store the training set O(n · T) O(n · T) O(n · S! · 2S · T) O(n · T)

➌ Code writing

needs rotation search (GSS) yes ✍ no no no
needs writing filters to speed-up matching no no yes ✍ no
approx. # of lines of code 100 ✍ 50 200 ✍ 70

1 n is the number of sampled points; T = the number of training samples per gesture type; R = the number of iterations
required by the Golden Section Search (GSS) algorithm used by $1 (experimentally set to 10 [23]); S = the number of strokes
in a multistroke; S! · 2S = the number of different permutations of stroke ordering and direction needed by $N [2].

2 A ✍ symbol means more coding is required (e.g. GSS, filters, or simply more lines of code).

Table 2: Cheat sheet for the $-family: $1 [23], Protractor [14], $N [2, 3], and $P.

User behavior in producing multistrokes. An interest-
ing finding was revealed while running the recognition tests
on the Euclideanmetric (see Figure 3a). Euclidean works
by performing 1-to-1 associations between points ordered by
their timeline. Therefore, users producing multistrokes in
many different ways would confuse such a simple recognizer,
which should exhibit low accuracy. However, the recogni-
tion rate of Euclidean was 96.3% on user-dependent and
91.5% on user-independent testing. The first value suggests
that users are consistent in the way they input multistroke
gestures (same order and direction of strokes). The user-
independent result suggests that a high degree of consensus
may exist between different users for the same gesture. We
note for now the interesting aspect of this finding and leave
the investigation of such user behaviour for future work.

Faster than O(n2.5). In its current form which adheres
to the simple implementation requirements of $-recognizers,
$P needs O(n2.5) time to produce a classification result. Al-
though execution times are more than reasonable for a 2
GHz processor (as shown in the previous section), practi-
tioners porting $P to low resource devices may want faster
versions. For such extreme cases, developers can opt for
space partitioning structures such as k-d trees which deliver
O(n× log(n)) performance, similar to the accelerated Itera-
tive Closest Point (ICP) registration technique [5].

Extension to 3D gestures. Due to its straightforward in-
ternal representation of gestures as point clouds, $P can be
easily extended to recognize 3D gestures simply by adding
the z dimension. Future work will compare $P against to-
day’s state-of-the-art 3D gesture recognizers.

Multistroke segmentation. Point cloud representations
could be exploited to address the multistroke segmentation
problem by formulating it as a cost minimization task usu-
ally solved with dynamic programming [7] (p. 323).

The designer’s $-family cheat sheet. $P extends the
$-family [2, 3, 14, 23] by addressing existing limitations.
Therefore, we provide practitioners a cheat sheet to inform

which recognizer to use in their prototypes. Table 2 com-
pares $1, Protractor, $N, and $P on 3 criteria: gesture types,
performance, and amount of code writing required.

6. CONCLUSION
We have demonstrated in this work that point clouds can
be useful in reducing the time and space complexity of the
$N recognizer while still retaining a simple algorithm imple-
mentable in about 70 lines of code. Our resultant recognizer,
$P, extends the $-family of recognizers with a low-cost, fast,
accurate recognizer for rapidly prototyping interfaces requir-
ing unistroke and multi-stroke recognition. $P performs sim-
ilarly to the $1 recognizer on unistrokes and is superior to
the $N recognizer on multistrokes. It is our hope that $P
will be embraced as $1 and $N have been, and will aid in
advancing the quality and speed of next-generation user in-
terface prototypes.

7. ACKNOWLEDGMENTS
The authors would like to thank Isaac Simmons for imple-
mentation assistance on $N testing procedures.

8. REFERENCES
[1] Agarwal, P., and Varadarajan, K. A near-linear

constant-factor approximation for euclidean bipartite
matching? In SCG ’04 (2004), 247–252.

[2] Anthony, L., and Wobbrock, J. O. A lightweight
multistroke recognizer for user interface prototypes. In GI
’10 (2010), 245–252.

[3] Anthony, L., and Wobbrock, J. O. $N-Protractor: A fast
and accurate multistroke recognizer. In GI’2012 (2012),
117–120.

[4] Avis, D. A survey of heuristics for the weighted matching
problem. Networks 13 (1983), 475–493.

[5] Besl, P. J., and McKay, N. D. A method for registration of
3-d shapes. IEEE TPAMI 14, 2 (Feb. 1992), 239–256.

[6] Burkard, R., Dell’Amico, M., and Martello, S. Assignment
Problems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2009.

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to algorithms. MIT Press, Cambridge, MA,
USA, 2001.

279

[8] Dubuisson, M.-P., and Jain, A. A modified Hausdorff
distance for object matching. In IAPR’94 (1994), 566–568.

[9] Edmonds, J. Paths, trees, and flowers. Canad. J. Math. 17
(1965), 449–467.

[10] Friedman, M. The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. J. Am.
Statist. Assoc. 32, 200 (1937), 675–701.

[11] Hammond, T., and Paulson, B. Recognizing sketched
multistroke primitives. ACM TIIS 1, 1 (2011), 4:1–4:34.

[12] Kara, L. B., and Stahovich, T. F. Hierarchical parsing and
recognition of hand-sketched diagrams. In UIST ’04 (2004),
13–22.

[13] Kristensson, P.-O., and Zhai, S. SHARK2: a large
vocabulary shorthand writing system for pen-based
computers. In UIST ’04 (2004), 43–52.

[14] Li, Y. Protractor: a fast and accurate gesture recognizer. In
CHI ’10 (2010), 2169–2172.

[15] Papadimitriou, C. H., and Steiglitz, K. Combinatorial
optimization: algorithms and complexity. Dover
Publications, Mineola, New York, USA, 1998.

[16] Plamondon, R., and Srihari, S. N. On-line and off-line
handwriting recognition: A comprehensive survey. IEEE
TPAMI 22, 1 (Jan. 2000), 63–84.

[17] Rubine, D. Specifying gestures by example. In SIGGRAPH
’91 (1991), 329–337.

[18] Rucklidge, W. Efficient Visual Recognition Using the
Hausdorff Distance. Springer-Verlag New York, 1996.

[19] Sezgin, T. M., and Davis, R. HMM-based efficient sketch
recognition. In IUI ’05 (2005), 281–283.

[20] Vatavu, R.-D. The effect of sampling rate on the
performance of template-based gesture recognizers. In
ICMI ’11 (2011), 271–278.

[21] Vatavu, R.-D. Small gestures go a long way: how many bits
per gesture do recognizers actually need? In DIS ’12
(2012), 328–337.

[22] Willems, D., Niels, R., Gerven, M. v., and Vuurpijl, L.
Iconic and multi-stroke gesture recognition. Pattern
Recognition 42, 12, 3303–3312.

[23] Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without libraries, toolkits or training: a $1 recognizer for
user interface prototypes. In UIST ’07 (2007), 159–168.

APPENDIX
We provide complete pseudocode for $P. Point is a struc-
ture that exposes x, y, and strokeId properties. strokeId

is the stroke index a point belongs to (1, 2, ...) and is filled
by counting pen down/up events. Points is a list of points
and Templates a list of Points with gesture class data.

$P-Recognizer (Points points, Templates templates)

1: n← 32
2: Normalize(points, n)
3: score←∞
4: for each template in templates do

5: Normalize(template, n) // should be pre-processed
6: d← Greedy-Cloud-Match(points, template, n)
7: if score > d then

8: score← d
9: result← template
10: return 〈result, score〉

Greedy-Cloud-Match (Points points, Points template, int n)

1: ǫ← .50
2: step←

⌊

n1−ǫ
⌋

3: min←∞
4: for i = 0 to n− 1 step step do

5: d1 ← Cloud-Distance(points, template, n, i)
6: d2 ← Cloud-Distance(template, points, n, i)
7: min← Min(min, d1, d2)
8: return min

Cloud-Distance (Points points, Points tmpl, int n, int start)

1: matched← new bool[n]
2: sum← 0
3: i← start // start matching with pointsi
4: do

5: min←∞
6: for each j such that not matched[j] do
7: d← Euclidean-Distance(pointsi, tmplj)
8: if d < min then

9: min← d
10: index← j
11: matched[index]← true

12: weight← 1− ((i− start + n) MOD n)/n
13: sum← sum + weight ·min
14: i← (i + 1) MOD n
15: until i == start // all points are processed
16: return sum

Normalize (Points points, int n)

1: points← Resample(points, n)
2: Scale(points)
3: Translate-to-Origin(points, n)

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin. The code is
similar to $1 [23] and $N [2, 3] and we repeat it here for

completeness. We highlight two minor changes only.

Resample (Points points, int n)

1: I ← Path-Length(points) / (n− 1)
2: D ← 0
3: newPoints← points0
4: for each pi in points such that i ≥ 1 do

5: if pi.strokeId == pi−1.strokeId then

6: d← Euclidean-Distance(pi−1, pi)
7: if (D + d) ≥ I then

8: q.x ← pi−1.x +((I −D)/d) · (pi.x - pi−1.x)
9: q.y ← pi−1.y +((I −D)/d) · (pi.y - pi−1.y)
10: Append(newPoints, q)
11: Insert(points, i, q) // q will be the next pi

12: D ← 0
13: else D ← D + d
14: return newPoints

Path-Length (Points points)

1: d← 0
2: for each pi in points such that i ≥ 1 do

3: if pi.strokeId == pi−1.strokeId then

4: d← d + Euclidean-Distance(pi−1, pi)
5: return d

Scale (Points points)

1: xmin ←∞, xmax ← 0, ymin ←∞, ymax ← 0
2: for each p in points do

3: xmin ← Min(xmin, p.x)
4: ymin ← Min(ymin, p.y)
5: xmax ← Max(xmax, p.x)
6: ymax ← Max(ymax, p.y)
7: scale← Max(xmax − xmin, ymax − ymin)
8: for each p in points do

9: p← ((p.x −xmin)/scale, (p.y −ymin)/scale)

Translate-to-Origin (Points points, int n)

1: c← (0, 0) // will contain centroid
2: for each p in points do

3: c← (c.x + p.x, c.y + p.y)
4: c← (c.x/n, c.y/n)
5: for each p in points do

6: p← (p.x - c.x, p.y - c.y)

280

