
Sketch-Based Robot Programming

Christine M. Barber2, Robin J. Shucksmith2, Bruce MacDonald2, Burkhard C. Wünsche1

1Department of Computer Science, The University of Auckland, New Zealand.
2Department of Electrical and Computer Engineering, The University of Auckland, New Zealand.

Email: {cbar141,rshu008}@aucklanduni.ac.nz
b.macdonald@auckland.ac.nz,burkhard@cs.auckland.ac.nz

Abstract

Robots are rapidly becoming a part of everyday life and have now moved from industrial environments
to household, medical and entertainment applications. In order to make full use of robots new interfaces
need to be developed, which allow inexperienced human users to instruct (program) robots, without having
to understand programming and the underlying electronics and mechanics. In this paper we present a
novel sketch-based interface for robot programming. We have identified applications which are difficult
to represent algorithmically, but can be easily represented with sketch input. We then define a range
of sketch impressions allowing the user to define a wide range of behaviours within these application
domains. Our system uses a Pioneer robot with an arm and a fixed overhead camera. The user sketches
into the camera view and the sketch input is interpreted, mapped into the 3D domain, and translated
into robot interactions. Current applications include specification of robot paths and obstacles, covering
regions (e.g., patrolling in security applications or seed sowing in agricultural applications), and directing
the robot arm, e.g., to pick up objects. A user evaluation of the system demonstrates that the interface is
intuitive and, with the exceptions of controlling the arm, all interactions are perceived as easy to perform.

Keywords: robot programming, sketch-based interfaces, human-robot interaction, augmented reality

1 Introduction

Robots are becoming increasingly prevalent in
today’s society, but use of robots is limited by the
difficulty in directing (programming) them. Most
production robots used in consumer and industry
applications today are fully autonomous, with a
clearly defined hardcoded set of functionalities.

Many different approaches to human-robot in-
teraction have been explored. The traditional
approach is to program robots using one of many
programming languages available. This requires
expert knowledge of the robot hardware and also
software programming skills. This process is well
above the knowledge of the ordinary consumer and
it is a complex and time consuming process even for
an expert. Alternatively, robots can be controlled
using joysticks or a keyboard, but this limits the
number of possible tasks, and requires training and
mental skills (user must take on the robot’s view).
A novel intuitive interface is needed that simplifies
interaction with and control of robots.

Gesture recognition and speech recognition have
both been suggested as possible interfaces [1]. Al-
though these are natural communication methods

978-1-4244-9631-0/10/$26.00 c©2010 IEEE

for humans, speech and voice commands suffer
from innate ambiguity so more general behaviour
and tasks are hard to convey, e.g., to accurately
specify an area for the robot to control. An
alternative approach is sketch-based interfaces,
which are rapidly gaining in popularity with the
increased uptake of consumer-level touch sensitive
devices. The premise is that a user draws a
free form picture on the screen with a mouse or
stylus. These sketches are then interpreted by
software, providing more complex functionality.
Sketch-input is a promising approach because of
its intuitive pen-and-paper metaphor. Sketching
avoids the need for 3D input devices, does usually
not require a 3D mental model, is supported by
many social networking tools (hence potentially
facilitating remote and collaborative work), and
is available on a wide variety of platforms such
as PCs with Windows 7, iPhones, and interactive
white boards. Furthermore it has been shown that
sketching encourages creativity [2] and enables
users to concentrate on the overall problems rather
than details [3]. By combining sketch and a real
time camera representation of the environment
an even richer experience can be provided. For
instance, objects for the robot to manipulate can
be identified easily by sketching a circle around

their image in the view. Note that this idea can
be considered as a type of Augmented Reality
interface, which are becoming more and more
popular in robotics.

This project aims to design and create a sketch-
based interface that can be used with minimal
instruction to control a robot to perform tasks
relating to real world applications. Section 2
covers previous relevant work on human-robot
interaction and sketch-based interfaces. Section 3
identifies requirements for our applications, which
are used to motivate the system design presented
in section 4. We explain two components of the
system, the sketch recogniser and the robot control
in more detail in section 5 and 6, respectively.
Section 7 gives implementation details. The results
of evaluating our system are found in section 8 and
are followed by the conclusion and an outlook on
future work in section 9.

2 Related Work

2.1 Human Robot Interaction

A variety of interfaces has been developed to
facilitate human-robot interaction including speech
recognition, gesture recognition, facial recognition,
and interfaces that use peripherals such as a
touch screen, mouse, joystick or keyboard. Speech
recognition has been successfully employed in ap-
plications with a limited number of commands,
e.g., to find our where people want to go and guide
them [4]. The ability to ask questions and ges-
ture recognition, such as detecting where the user
points to, can be used to resolve ambiguities [5].
Other interfaces to control robots include joysticks
and peripherals that take inputs from buttons [6].
These interfaces are intuitive and hence easy to
use for most people. However, they only allow
interaction via a set of predefined functions since
the input has a clearly defined semantic. Touch
screens are being used by the U.S. Army to
control Experimental Unmanned Vehicles (XUVs),
since they reduce supervisory workload, give new
operational flexibility and increase the span of
control [7]. Other applications include search and
rescue robots [8] and social robots [9]. However,
touch screen interfaces can suffer from too much
information being presented on the screen [8].

2.2 Sketch-Based Interfaces for Ani-
mation and Robot Control

The most common application of sketching for
controlling motion is character animation. Ani-
mated 3D characters and robots are both usually
represented as a skeleton of rigid bones connected
by joints. Steger represents 2D motions with

directed motion paths [10]. Disparate motions
are synchronized using events which are indicated
by time stamps along the motion paths. Motion
Doodles allow the user to sketch a motion path
for a sketched character which can consist of up to
seven components with predefined functionalities
(head, body, arms, etc.) [11]. The second approach
for sketch-based animation is to draw key poses
and extract motion from them. This can be
achieved by sketching skeletons for key frames
and interpolating them [12, 13]. An alternative
approach is to draw perspective 2D sketches of
different poses from a single view point and to
translate differences in bone length into 3D posi-
tions and hence motions [14].

Interfaces that use sketches to control robots have
been devised for robot navigation, controlling
multiple robots and controlling household robots.
Skubic et al. achieve robot navigation by drawing
landmarks on a PDA [15] and control formations of
multiple robots by sketching different symbols [16].
Sakamoto et al. control vacuuming robots by stroke
gestures and sketching motion paths and operation
areas [17].

3 Requirement Analysis

The goal of our research is to provide an interface
for applications where an inexperienced user needs
to control a robot using an unconstrained set of
motions. Five key application areas were identi-
fied: household robots for tasks such as mowing,
vacuuming and fetching objects, surveillance where
the robot patrols and protects a certain area,
industry where a robot may need to move around
a factory and manipulate products with a robotic
arm, agriculture where a robot might need to
sow seed, monitor crops and apply pesticides, and
education to provide users with insight into robot
control.

These applications can be characterised by the
following tasks: (1) Motion paths and target:
many household and industrial settings (e.g., au-
tomated forklifts) require the robot to move to a
given object, either directly or via a given path.
There must be a simple way of specifying real
world points for the robot to manoeuvre to and
paths to follow. Moving of objects requires the
sequences of tasks to be specified, for instance
move to the object, pick it up and then move
elsewhere in the room. Furthermore, in factory
and outdoor environments robots often must stay
off certain areas, e.g., in order to avoid dangerous
obstacles or collisions with pedestrian. There must
be a method of indicating areas that the robot
must not travel through. (2) Area coverage:
In surveillance, agriculture and household tasks,

such as cleaning, the robot must cover a prescribed
area, which can have an arbitrary shape. (3) Pick
up and drop off: In household and industrial
application it is common for robots to pick up
an object and drop it off at another location.
Examples are nursing robots fetching medicine and
automated forklifts shifting pallets.

In all applications the robot should be able to
be stopped immediately. This is particularly
important in large scale industrial robots where
safety is critical. The ability to pause the robot
is also desirable, e.g., for maintenance tasks in
industrial applications, or for cleaning applications
where users may wish to stop the robot whilst they
are in the room.

4 System Design

4.1 Physical Setup

In order to control the robot in the environment a
view of the environment is required. One solution
is to provide a map, e.g., created by sketch input,
or automatically using a SLAM (Simultaneous
localization and mapping) algorithm. We use
instead a ceiling mounted calibrated camera since a
real view of the environment is most intuitive, we
used a similar set-up in previous research which
accelerates development, and because cameras are
inexpensive and often already exist in indoor envi-
ronments for security purposes. We use a Pioneer
3 robot with attached arm. A fiducial marker
is attached to its top so it can be tracked by
the overhead camera, and its position computed
using using ARToolKitPlus, which is a part of
ARDev [18]. ARDev is also used to display the
image of the current view from the camera in real-
time on the environment window in our interface.
Two input windows exist as illustrated in figure 1:
the real-world view from the overhead camera and
a 3D OpenGL window displaying a robot model.

Figure 1: The environment window (left) and 3D robot

model window (right) for sketch input.

4.2 Logical Setup

Figure 2 shows an overview of the logical design
of our system. ARDev renders the sketches drawn
by the user within the environment window and

renders the 3D robot model. When input from
the mouse or touch screen is received the 2D
sketched input is mapped to ARDev’s 3D world
co-ordinates. An event is then fired in ARDev
to get the mouse co-ordinates which are sent to
the Sketch Manager. The Sketch Manager is
responsible for the recognition and classification
of sketches and how ARDev will display those
sketches. If the sketch corresponds to any of the
nine sketches able to be recognised by the system
the Sketch Manager fires an event to the Robot
Control. The Robot Control then interprets the
sketches so they can be executed as behaviours
by the robot using the robot’s current position
obtained from ARDev.

Figure 2: System Design.

To control the robot, the user sketches on the two
views shown in figure 1. The first view is of the
environment. In this window the sketch recogniser
is notified of any mouse motion or clicks and
records each sketch. Once each sketch is recorded
it is classified by the sketch recogniser to determine
what action has been drawn. Upon successful
classification, events are sent to the robot control
system where they are recorded. Each event is
processed in sequence by interpreting its associated
sketch as real world behaviour. This involves
projecting the sketch into real world points as well
as processing of the sketch to break it down into
a series of actionable tasks. ARDev provides the
robot control subsystem with information about
the robot’s current location by detecting a fiducial
marker in the image. Using this localisation
information, the Pioneer robot can then be con-
trolled via a robot interface to perform the required
behaviour.

The second view displays a 3D robot model; mouse
motion in this view is handled by the robot model
subsystem. This allows the user to manipulate a
3D model of a robotic arm using sketches. The
positions of this arm are passed to the robot control
which handles updating the position of the physical
arm to match the robot model.

4.3 Sketch Symbols and Semantic

The left part of figure 1 illustrates the types
of sketch input recognised by our system. The
symbols cover all of the functionalities described
in section 3. In order to simplify usage and recog-
nition we chose the simplest and most intuitive
representations we could find.

For directing a robot to a point a cross is used since
this avoids ambiguities with other functionalities
which could occur when using, e.g., a small circle.
Paths are defined with an arrow since this avoids
ambiguities compared to lines used in Sakamoto
et al.’s solution [17]. Arrows situated on the
robot rotate it to the arrows heading. A region
of interest (closed contour) is used to indicate an
area for the robot to patrol/cover. Double headed
arrows are used to specify routes to patrol. For
reasons of simplicity a triangle is used to initiate
a camera capture while a rectangle specifies an
obstacle or area to be avoided. A more general
representation for the future might be a closed
contour with a cross or scribble inside. For stop
and pause a square and parallel lines were used,
respectively. The reasoning being a large number
of people already understand the functionality
intended, based on their experience with music
players. Following a similar logic scribbles were
used for deletion since this functionality is similar
to using an eraser on paper, blackboards and in
drawing programs.

The window with the 3D robot model allows users
to rotate components by sketching a line starting
on the part to be moved. In our case the only
movable part is the arm. The user can rotate the
whole arm, the three hinge joints and can open and
close the gripper. Sketch input is translated to a
3D rotation by using the trackball concept [19]: a
virtual sphere is placed over the window centered
at the joint to be rotated. The start and end point
of the sketch are then projected onto the sphere
surface. Connecting the centre of the rotation
(the selected joint) to the points results in two
vectors. The rotation axis is obtained from the
cross product of these vectors and the rotation
angle from the angle between them. If the joint is
not a ball joint only rotations around the movable
directions are applied.

5 Sketch Recogniser

The Sketch Recogniser has to recognise single and
double sided arrows, scribbles, closed contours,
and various symbols. Recorded sketches are first
processed to compute basic properties and are then
tested with a series of classifiers. The sketch is then
stored as either a classified or unclassified sketch.
Notification through call-back to the robot control

subsystem occurs whenever a sketch is created or
deleted.

5.1 Sketch Processing

Once the sketch stroke has been captured it is
processed to reduce noise. This occurs in two
stages, first the raw data is smoothed by an eleven
point weighted moving average, which acts as a
low pass filter removing small perturbations in the
input which can arise due to an unsteady hand.
Next the sketch is broken down into a series of
straight line segments using a split and merge
technique. This involves continuously splitting the
set of raw sketch points if the straight line error is
too large. This is continued until lines are fitted to
all points with an acceptable error. This reduces
noise and computation time, as every pixel does
not have to be considered when performing sketch
recognition or when displaying the sketch to screen.
The points that define the start and the end of each
line are stored and become the “control points” of
that sketch object.

The following classifiers make use of the length of
a sketch, its number of direction changes, angles
between straight lines and the size and shape of
its oriented bounding box, which is the smallest
possible rectangle that can be placed around it.
The oriented bounding box for a sketch a is
calculated immediately after it has been sketched,
and its height and width are denoted by aoobH and
aoobW , respectively.

5.2 Sketch Classification

A variety of classifiers have been implemented
based on the above and some additional properties.

A scribble is characterised by a dense packing
within its bounding box and a high number of
direction changes or a circular repeating motion.
Experiments were conducted to derive the con-
stants in the following equations capturing these
properties:

length(a)
2 ∗ (aoobH + aoobW)

> 1.9

#DirectionChanges

#ControlPoints− 2
> 0.18

5.5 ∗ length(a)
aoobH + aoobW

+
#DirectionChanges

#ControlPoints− 2
> 2.4

The cross and pause sign are characterised by two
approximately straight lines a and b (width >>
height for the oriented bounding box) with similar
length. For the cross the bounding box centres are
similar and the bounding boxes roughly orthogonal
to each other, whereas for the pause sign they are
roughly parallel.

Arrows and double arrows are recognised by a
relatively long straight or curved sketch whose end
point has an arrow head, i.e., either it meets two
short sketches which have a roughly 45 degree
angle with its tangent at the end point, or its
endpoint is close to the sharp angle of a “<” shaped
sketch.

Squares, triangles and rectangles are assumed to be
sketched in a single stroke. To initially filter out
shapes that aren’t enclosures, a condition is placed
on the separation of the start and end points of a
sketch a:

|astart − aend| < 0.125 ∗ (aoobH + aoobW) (1)

In order to differentiate between triangles, squares
and rectangles the distance of each point ai to the
sketch’s centre of mass (COM) is considered:

COM =
1

numPixels
∗

numPixels−1∑
i=0

ai (2)

This method is scaling and rotation invariant and
results in a more flexible and simpler implementa-
tion.

Figure 3: Plot of the distances of a sketch’s pixels to

its centre of mass for a square, triangle and rectangle

symbol.

A plot of the distance of each pixel to the centre of
mass is shown for a triangle, square and rectangle
in figure 3. It can be seen that the representation
provides a unique signature of each type of shape
allowing them to be easily differentiated. A peak
detector is used to determine the number and
location of each local maxima and minima in the
distance profile. The peak detector uses a non zero-
derivative method to avoid false detections which
can occur due to accidental zero crossings [20].

The number of maxima and minima are then
used to classify the shape. Squares have typically
four maxima and minima, triangles three and
rectangles either two or four depending on the
rectangles width. This potential difference occurs
for extremely narrow rectangles because the small
troughs in the peaks relating to the short sides of
the rectangle are ignored due to the peak detection

threshold. When the shape has four maxima
and minima the height and width are used to
differentiate between rectangles and squares. For
the shape to be considered a square the width and
height of a bounding box must differ by at most
25%. The maxima identified should relate to the
corners of the triangle, rectangle or square. False
detections can occur when shapes other than this
are drawn. To allow for this the smoothed pixel
data is segmented at the maximum points and
lines are fitted between them using a modified least
squares technique. More details are found in [21].

6 Robot Control

Once sketches have been successfully classified the
robot control subsystem handles the higher level
interpretation of each recognised sketch. It also
handles all communication with the robot, reading
from its sensors and issuing commands for the
robot to perform.

6.1 Task Queue and Control Loop

The robot control system allows multiple tasks to
be queued using a two-sided queue, providing for
more complex behaviour. When a new sketch is
classified it is converted to a new task and placed
at the end of the queue. Certain sketches, e.g., a
square representing a “stop” sign, are placed on
the front of the task list, to interrupt the system.
Other sketches can act as interrupts depending on
the current state of the system. For instance the
first pause sketch drawn will interrupt the system
but subsequent pauses will be added to the back
of the list. When a sketch is deleted the robot
control code is notified and then searches through
the task queue deleting any tasks associated with
that sketch.

A simple control loop is used to command the
robot. During each iteration three main functions
are performed: updating the robot’s position uti-
lizing the calibrated overhead camera; checking
for any interrupts, such as if any of the robot’s
bumpers have been pressed; and if there are no
interrupts it processes the task at the front of the
queue. The tasks fall into five classes: robotic
arm manipulation, robot motion, forbidden region
definition, image capture, and system control. The
two system control tasks are stop and pause. When
processing the stop task, it simply clears the sketch
context and task queue. A pause task specifies no
behaviour so the system is held in a busy wait mode
until the pause sketch is erased.

6.2 Robotic Arm Manipulation

When the system is initialised the robot control
system places the arm in a known initial position,
to ensure the robot arm position initially matches
that of the 3D model. When the user rotates
the arm in the 3D model a change in angle from
this initial position is generated for each joint and
communicated to the control system. This must
then be mapped to the possible positions that each
joint can move to. This mapping is achieved by
linearly scaling the rotation to match the rotation
on the robotic arm. To account for any difference
between the initial position of the arm and the
3D model the rotations are adjusted by a joint
dependent constant value

6.3 Mapping Sketch Input into the 3D
World

In order for 2D sketches to specify 3D motions they
must be mapped into the 3D environment of the
robot. Using a calibrated camera this is achieved
by casting a ray from the view point through a
point of the sketch (parallel to the view plane).
Next the intersection with the ground plane, situ-
ated at the origin, is found. This intersection point
provides the point’s 2D coordinates in the robot’s
plane of motion.

6.4 Robot Motion

The path to a target point, indicated by a cross, is
a straight line. Sketched “no go” areas are avoided
by circumventing them until a line to the target
point can be traced which does not intersect that
obstacle. The robot itself has laser sensors and
avoids obstacles in a similar way. While more
complicated path planning algorithms could be
utilised, this algorithm was sufficient for testing
the given set-up.

Arrows can encode both a path for the robot
to follow or a rotation of the robot if drawn on
it. To determine if the arrow is drawn on the
robot, the robot is modelled as a circle (radius
200mm) for ease of calculation. Since the robot
is roughly circular anyway, this does not result in
a substantial error. The start and end points of
the arrow are projected into the robot plane and
their distance to the robot’s centre calculated. If
this falls inside the circle then the robot is simply
turned to the heading formed by the last two
control points of the arrow. If the arrow sketch falls
outside of the circle, path following is intended.
The waypoints for arrow sketches are formed from
their control points. Waypoints too close together
are removed.

In order to patrol a region of interest the region
is covered with parallel lines aligned with the

width of its oriented bounding box. We perform
this “scanline” computation in pixel space since
the current set-up does not have any significant
perspective distortion. For large scale applications
requiring high precision the scan lines should be
computed in world-space.

The above algorithms compute a series of way-
points, which the robot processes sequentially. To
manoeuvre itself to a waypoint the control algo-
rithm maps the point into the robot plane and then
commands the robot to turn at a rate proportional
to the difference between its current heading and
a straight line to the waypoint. Once the robot is
at the correct heading it begins moving forward
at a speed dependent on the distance to the
waypoint. If the task does not involve patrolling,
once the robot reaches the final waypoint the robot
is stopped and the task removed from the FIFO. If
the robot is in a patrolling mode then the control
system simply controls the robot to each waypoint
in reverse.

7 Implementation

All sketch recognition and robot control software
was implemented in C++ to provide good perfor-
mance. ARToolKitPlus was used to provide identi-
fication of the fiducial marker in the camera image.
ARDev interprets the camera calibration data and
handles projections between the image plane and
robot plane as well as controlling the rendering of
all objects in OpenGL. ImageMagick++ was used
for conversion between image file formats. Player,
a robot control interface, is used to communicate
with the robot and control its sensors and systems.

8 User Evaluation and Results

To adequately assess whether the implemented
design satisfies the specified requirements, eight
subjects were asked to perform a series of tasks
representative of real world applications. Five
of the subjects were male, three female, all were
aged between 21 and 22. Half had a robotics or
programming background. The subjects were only
provided with a list of shapes and their associated
behaviour, no details on how to draw the shapes
were provided.

The tasks included guiding the robot around its
environment, including through an imaginary ob-
stacle, selecting an area to patrol, taking a picture,
stopping and pausing the robot during a task and
manipulating the robotic arm to pick up a foam
square. Examples are shown in figure 4. The
subjects were then asked to assess the system using
a 5-level Likert scale as well as to provide general

Figure 4: Examples of sketch-based robot program-

ming: (a)-(c) patrolling an area, (d)-(f) path following,

(g) camera shot, (h) indicating obstacles/danger areas,

(i) target point, (j)-(m) picking up an object.

feedback. The results of the quantitative questions
asked are presented in figure 5.

Figure 5: Results of our usability study. Answers

are on a 5-level Likert scale ranging from 1 “strongly

disagree” to 5 (“strongly agree”).

The results of the user study indicate that most
functionalities were intuitive and easy to achieve
(4.375 out of 5). The functionalities patrolling and
stop, pause and resume also achieved very high
scores of 4.75 and 4.4, respectively. The main
problem were the tasks related to manipulating
the robot arm - especially “picking up an object”
which received a score of only 2.431 out of 5. The
robotic arm was incorporated into the design as
it is advantageous in industrial and educational
applications. A common user complaint about
the robotic arm was that it was difficult to gain
feedback on where the arm was relative to the
object. This occurred because the movement had
to be visually monitored and sketch behaviour
did not match expectations due to the trackball

movement not feeling natural. These problems
could be overcome in future by providing real time
camera feedback of the area in front of the robot. A
principal problem with the robot arm is that it has
many axes resulting in multiple possible motions
for an action. Furthermore its manipulation is
in 3D rather than on a 2D plane, i.e., the arm
has 6 degrees of freedom (3 for position and 3 for
orientation, of the end of the hand). This could
be resolved with a more abstract design where
users sketch the “semantic” of an action, rather
the motion of its components. An example would
be to circle the object to be picked up and to sketch
a line from the gripper to the object. An inbuilt
algorithm would then compute the optimal arm
motion.

Users also commented that the sketch recognition
was not as robust as they would have hoped. For
instance several subjects drew squares or triangles
with multiple strokes, or a scribble as a loose
crossed motion. The sketch recognition should
be extended to support recognition of shapes with
multiple strokes. Furthermore, it would be useful
to perform a large scale survey investigating how
users draw our proposed sketched robot control
symbols and use this to improve our sketch recog-
niser.

9 Conclusion and Future Work

Sketching is a promising approach to allow in-
experienced people to design simple robot pro-
grams. We identified five typical applications and
derived three common tasks: moving a robot,
patrolling an area and picking/dropping objects.
A range of sketch symbols were presented and
implemented for performing these tasks. User
evaluation concluded that this type of system was
intuitive and easy to use, thus this type of interface
could provide a solution to the complexity seen
in current human robot interfaces. The robotic
arm component presented some challenges to users,
highlighting the need for further development in
this area. In future work we want to define
more high-level behaviour, which requires more
intelligent robot control software and sensors, and
we want to explore sketch-based interfaces without
ceiling mounted camera, e.g., by using SLAM
algorithms.

References

[1] M. Urban and P. Bajcsy, “Fusion of voice, ges-
ture, and human-computer interface controls
for remotely operated robot,” in Proceedings
of International Conference on Information
Fusion, Jul. 2005, p. 8.

[2] M. D. Gross and E. Y.-L. Do, “Ambiguous
intentions: a paper-like interface for creative
design,” in UIST ’96: Proceedings of the 9th
annual ACM symposium on User interface
software and technology. ACM, 1996, pp.
183–192.

[3] Y. Y. Wong, “Rough and ready prototypes:
lessons from graphic design,” in CHI ’92:
Posters and short talks of the 1992 SIGCHI
conference on Human factors in computing
systems. ACM, 1992, pp. 83–84.

[4] M. Shiomi, D. Sakamoto, T. Kanda, C. T.
Ishi, H. Ishiguro, and N. Hagita, “A semi-
autonomous communication robot: a field
trial at a train station,” in Proceedings of the
3rd ACM/IEEE international conference on
Human robot interaction (HRI ’08). New
York, NY, USA: ACM, 2008, pp. 303–310.

[5] T. Takahashi, S. Nakanishi, Y. Kuno, and
Y. Shirai, “Human-robot interface by verbal
and nonverbal behaviors,” in Proceedings of
Intelligent Robots and Systems, Oct. 1998,
pp. 924–929.

[6] T. H. Song, J. H. Park, S. M. Jung, and J. W.
Jeon, “The development of interface device
for human robot interaction,” in Proceedings
of the International Conference on Control,
Automation and Systems (ICCAS ’07), Oct.
2007, pp. 640–643.

[7] S. G. Hill and B. Bodt, “A field experiment
of autonomous mobility: operator workload
for one and two robots,” in Proceedings of
the ACM/IEEE international conference on
Human-robot interaction (HRI ’07). New
York, NY, USA: ACM, 2007, pp. 169–176.

[8] M. W. Kadous, R. K.-M. Sheh, and C. Sam-
mut, “Effective user interface design for
rescue robotics,” in Proceedings of the
1st ACM SIGCHI/SIGART conference on
Human-robot interaction (HRI ’06). New
York, NY, USA: ACM, 2006, pp. 250–257.

[9] D. F. Glas, T. Kanda, H. Ishiguro, and
N. Hagita, “Simultaneous teleoperation of
multiple social robots,” in Proceedings of the
3rd ACM/IEEE international conference on
Human robot interaction (HRI ’08). New
York, NY, USA: ACM, 2008, pp. 311–318.

[10] E. Steger, “Sketch-based animation
language,” http://www.cs.toronto.edu/
∼esteger/sketchlang/index.html, 2004.

[11] M. Thorne, D. Burke, and M. van de Panne,
“Motion doodles: an interface for sketch-
ing character motion,” ACM Transactions on

Graphics (TOG), vol. 23, no. 3, pp. 424–431,
2004.

[12] Q. L. Li, W. D. Geng, T. Yu, X. J. Shen,
N. Lau, and G. Yu, “Motionmaster: author-
ing and choreographing kung-fu motions by
sketch drawings,” in Proceedings of the 2006
ACM SIGGRAPH/Eurographics symposium
on Computer animation (SCA ’06). Aire-la-
Ville, Switzerland, Switzerland: Eurographics
Association, 2006, pp. 233–241.

[13] S. Takahashi, Y. Kato, and E. Shibayama,
“A new static depiction and input technique
for 2d animation,” in 2005 IEEE Symposium
on Visual Languages and Human-Centric
Computing, 2005, pp. 296–298.

[14] J. Davis, M. Agrawala, E. Chuang,
Z. Popović, and D. Salesin, “A sketching
interface for articulated figure animation,”
in Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium
on Computer animation (SCA ’03), 2003, pp.
320–328.

[15] M. Skubic, C. Bailey, and G. Chronis,
“A sketch interface for mobile robots,” in
Proceedings of the International Conference
on Systems, Man and Cybernetics, Oct. 2003,
pp. 919–924.

[16] M. Skubic, D. Anderson, S. Blisard,
D. Perzanowski, W. Adams, J. G. Trafton,
and A. C. Schultz, “Using a sketch pad
interface for interacting with a robot team,”
in AAAI’05: Proceedings of the 20th national
conference on Artificial intelligence. AAAI
Press, 2005, pp. 1739–1740.

[17] D. Sakamoto, K. Honda, M. Inami, and
T. Igarashi, “Sketch and run: a stroke-
based interface for home robots,” in CHI
’09: Proceedings of the 27th international
conference on Human factors in computing
systems. ACM, 2009, pp. 197–200.

[18] T. Collett, “ARDev homepage,” 2010, http:
//sourceforge.net/projects/ardev/.

[19] J. Hultquist, “A virtual trackball,” in
Graphics gems. San Diego, CA, USA: Aca-
demic Press, 1990, pp. 462–463.

[20] E. Billauer, “peakdet: Peak detection using
MATLAB,” 2008, http://www.billauer.co.il/
peakdet.html.

[21] R. Shucksmith, “Sketch-based robot control
and training,” Department of Electrical &
Computer Engineering, University of Auck-
land, New Zealand, Part IV Research Project
Report, Sep. 2010.

