Usability Testing

- Not exact science (but we try!!)
- Want to evaluate users
 - performance
 - preference
 - feedback
- Goals
 - learn about individual UI techniques
 - learn about applications
 - learn about hardware
Basic Strategy

- “What do I want to learn?”
 - based on observations, theory, etc…
- Generate hypotheses (if applicable)
- Determine how to test the hypotheses
 - experimental setup and design
- Pilot studies
 - confirm study is sound
- Conduct study
- Analyze data
 - use statistics
- Report findings

Experimental Strategies

- Formative – gather feedback on evolving system, set of techniques, etc…
 - examine prototypes to refine system
 - improve UI techniques
- Summative – learn about system as a whole
 - does it do what it is designed to do
- Qualitative approaches
 - survey data, preference data, open ended questions
- Quantitative data
 - time to completion, error, number of clicks. etc…
Experimental Setup

- Want to make user comfortable
- Allow moderator to observe without getting in the way

Experimental Design

- Difficult task
 - need to remove as much variability as possible
 - always want to err on the side of more data collection
 - art more than science
 - conditions (4 x 2, 2 x 2 x 2, etc…)
- Between subjects
 - subjects broken up into groups
 - each group gets one condition
 - requires more subjects
- Within subjects
 - every subject gets every condition
 - less subjects but have to deal with ordering effects
 - slightly harder to analyze
- Mixed
 - combines both between and within
Experimental Procedure

- How is the experiment carried out?
- Need to come up with plan for running subjects
- How does the experiment get administered?
- Need to ensure procedure is the same for all subjects

Pre- and Post-questionnaires

- Pre-questionnaire
 - Want to find about subject background
 - age, gender, handedness
 - particulars about experiment
 - experience with similar software
 - experience in particular area
- Post-questionnaire
 - valuable tool
 - used to gather qualitative data
 - used for qualitative data quantitatively
 - Lickert scale
 - open ended questions
Pilot Studies

- Run one or two subjects through experiment
- Why?
 - make sure experiment is sound
 - make last minute changes to design
 - convince yourself hypotheses make sense

Analyzing Data

- Look for trends, patterns, and statistical significance
- Understanding statistical tests and procedures is crucial
- Need to know
 - what kind of data (nominal, scale, ordinal)?
 - what tests to perform (T-Test, ANOVA, Friedman)?
 - what corrections to make (Bonferroni, Tukey)?
 - how to interpret results (α, confidence intervals, mean, median)?
- Statistical packages are your friend
 - SAS, SPSS, Matlab, etc…
- Sometimes there is no statistical test to apply
Example Experiment

- Not pen-UI related but techniques still apply
- Exploration of non-isomorphic rotation in VE

Example Experiment – Goals

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE
 - head tracking
 - stereoscopic vision
Example Experiment - Design

- 16 subjects (13 male, 3 female)
- Conducted in Brown “Cave”
- Based on Poupyrev 2000 → Hinckley 1997 → Chen 1988
- 4 x 2 x 2 balanced, within-subjects design (16 conditions)
- Independent variables
 - amplification (1,2,3,4)
 - rotation amplitude (20-60, 70-180 degrees)
 - Error threshold (6, 18 degrees)
- Dependent variables
 - completion time
 - orientation error

Example Experiment – Procedure

- Task – rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized
- Post-questionnaire
Example Experiment – Results

- Repeated measures, three way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>Time</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$F_{3,13}=3.26, p=0.056$</td>
<td>$F_{3,13}=4.8, p<0.05$</td>
</tr>
<tr>
<td>T</td>
<td>$F_{1,15}=13.66, p<0.05$</td>
<td>$F_{1,15}=22.96, p<0.05$</td>
</tr>
<tr>
<td>A</td>
<td>$F_{1,15}=55.46, p<0.05$</td>
<td>$F_{1,15}=0.001, p=0.98$</td>
</tr>
<tr>
<td>S x T</td>
<td>$F_{3,13}=0.29, p=0.83$</td>
<td>$F_{3,13}=1.575, p=0.243$</td>
</tr>
<tr>
<td>S x A</td>
<td>$F_{3,13}=0.87, p=0.523$</td>
<td>$F_{3,13}=0.562, p=0.649$</td>
</tr>
<tr>
<td>T x A</td>
<td>$F_{1,15}=5.03, p<0.05$</td>
<td>$F_{1,15}=0.573, p=0.46$</td>
</tr>
<tr>
<td>S x T x A</td>
<td>$F_{3,13}=0.73, p=0.55$</td>
<td>$F_{3,13}=0.97, p=0.436$</td>
</tr>
</tbody>
</table>

S = scaling factor T = error threshold A = angle

Example Experiment – Results: Post Hoc Analysis

- Pairwise comparisons on scaling factor using Holm’s sequential Bonferroni adjustment

Significant differences between S1 and S2 and S1 and S3

Significant difference between S1 and S4
Example Experiment – Results: Subject Preferences

<table>
<thead>
<tr>
<th>Preference</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>10</td>
</tr>
<tr>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>

Mean = 2.8175
Std. Dev. = 0.35
N = 16

Example Experiment – Summary

- Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy.
- Appears to be correlation between subject preferences and mean completion time:
 - scaling factor of 3 is preferable amplification coefficient.
Readings