Features Extraction for Sketch-Based Recognition

Lecture #9: Feature Extraction
Joseph J. LaViola Jr.
Fall 2012

Recall Pen-Based Interface Dataflow

- Raw Stroke Data
- Preprocessing
- Segmentation
- Sketch Understanding
- Ink Parsing
- Classification
- Make Inferences
- Feature Extraction and Analysis
Feature Extraction and Analysis

- What came first, the feature or the machine learning algorithm?
- Want to distinguish sketch components from one another
- Good features are critical
- Extract important information
 - geometrical, statistical, contextual
- Examples include
 - arc length, histograms, cusps, aspect ratio
 - self-intersections, stroke area, etc…

Finding Features

- Challenging problem
 - need fast algorithms for gathering information
 - features must be good discriminators
- Often trial and error
- Can be domain specific
Geometric Features (1)

- **Number of strokes**
 - if you know how many strokes a symbol has, you can break up your recognizer into pieces (i.e., recognizer for 1 stroke symbols, recognizer for 2 stroke symbols …)

- **Cusps**
 - smooth vs. jagged strokes
 - distance between cusps
 - useful for when cusps are close together/far apart

Geometric Features (2)

- **Aspect ratio (width / height)**
 - tall vs. flat

- **Self Intersections**
 - loops vs. no loops
 - strokes with write over
 - distance between self intersections also useful
 - use line segment intersection algorithm

loops

write over
Geometric Features (3)

- First and last distance
 - Strokes where first and last points are close together vs. far apart
 - Simple computation – \(\| p_n - p_1 \| \)
- Arc length
 - Many different symbols have varying arc lengths
 - Simple computation as well –
 \[
 l = \sum_{i=2}^{n} \| p_i - p_{i-1} \|
 \]

Geometric Features (4)

- Stroke area
 - Area defined by the vectors created with the initial stroke point and consecutive stroke points.
 - Good discriminator for straight vs. curved lines
 - Given \(\vec{u}_i = p_{i+1} - p_i \) and \(\vec{v}_i = p_{i+2} - p_i \)
 \[
 s_{area} = \sum_{i=1}^{n-2} \frac{1}{2} (\vec{u}_i \times \vec{v}_i) \cdot \text{sgn}(\vec{u}_i \times \vec{v}_i)
 \]
 - Where \(\vec{u}_i \times \vec{v}_i \) is a scalar
Geometric Features (5)

- **Fit line feature**
 - sophisticated approach to finding how close a stroke is to a straight line
 - finds a least-squares approximation to a line using principal components and then uses this approximation to find the distance of the projection of the stroke points onto the approximated line
 - outputs a value in [0, 1]

- What is another name for this approach?

Fit Line Feature Implementation

Input: A set of stroke points \(P \).

Output: A distance measure

FitLine(P)

(1) \[x_1 = \sum_{i=1}^{n} X(P_i) \]

(2) \[y_1 = \sum_{i=1}^{n} Y(P_i) \]

(3) \[x_2 = \sum_{i=1}^{n} X(P_i)^2 \]

(4) \[y_2 = \sum_{i=1}^{n} Y(P_i)^2 \]

(5) \[xy_1 = \sum_{i=1}^{n} X(P_i)Y(P_i) \]

(6) \[x_3 = x_2 - x_1^2/n \]

(7) \[y_3 = y_2 - y_1^2/n \]

(8) \[xy_2 = xy_1 - (x_1y_1)/n \]

(9) \[\text{rad} = \sqrt{(x_3 - y_3)^2 + 4xy_2^2} \]

(10) \[\text{error} = (x_3 + y_3 - \text{rad})/2 \]

(11) \[\text{min} = \sqrt{\text{error}/n} \]

(12) if \(x_3 > y_3 \)

(13) \[a = -2xy_2 \]

(14) \[b = x_3 - y_3 + \text{rad} \]

(15) else if \(x_3 < y_3 \)

(16) \[a = y_3 - x_3 + \text{rad} \]

(17) \[b = -2xy_2 \]

(18) else

(19) if \(xy_2 = 0 \)

(20) \[a = b = c = 0 \]

(21) \[\text{error} = +\infty \]

(22) else

(23) \[a = 1 \]

(24) \[b = -1 \]

(25) \[\text{mag} = \sqrt{a^2 + b^2} \]

(26) \[c = (ax_1 + by_1)/n \]

(27) \[a = \frac{\text{mag} a}{\text{mag}} \]

(28) \[b = \frac{\text{mag} b}{\text{mag}} \]

(29) \[\text{min} = +\infty \]

(30) \[\text{max} = -\infty \]

(31) for \(i = 1 \) to \(n \)

(32) \[\text{err} = aX(P_i) + bY(P_i) + c \]

(33) \[pX = X(P_i) - a \cdot \text{err} \]

(34) \[pY = Y(P_i) - b \cdot \text{err} \]

(35) \[\text{ploc} = -b \cdot pX + b \cdot pY \]

(36) \[\min = \min(\text{min}, \text{ploc}) \]

(37) \[\text{max} = \max(\text{max}, \text{ploc}) \]

(38) return \[\frac{\text{100*mag}}{\text{max} - \text{min}} \]
Statistical Features (1)

- Side ratios
 - first and last point of strokes have variable locations with respect to the bounding box
 - Approach
 - take the x coordinates of the first and last point of a stroke
 - subtract them from the left side of the symbol’s bounding box (i.e., the bounding box’s leftmost x value)
 - divide by the bounding box width.

1st and last point on right side of bbox

Statistical Features (2)

- Top and Bottom ratios
 - similar to side ratios except we are dealing with y coordinate
 - approach
 - take y coordinate of the first and last point of a stroke
 - subtract from the top of the symbol’s bounding box (i.e., the bounding box’s topmost y value)
 - these values are divided by the bounding box height.
Statistical Features (3)

- **Point Histogram**
 - distribution of point locations in stroke bounding box
 - discrimination where point concentrations are high
 - approach
 - break up box into $n \times m$ grid
 - Count number of points in each sub box
 - divide by total number of points

Statistical Features (4)

- **Angle Histogram**
 - similar to point histogram except dealing with angles
 - Approach

 \[\alpha_j = \arccos \left(\frac{\vec{x} \cdot \vec{v}_j}{\|\vec{v}_j\|} \right) \]

 - put angles into bins of n degrees
The Rubine Feature Set (Rubine 1991)

- Part of Rubine’s gesture recognition system
 - we will see this next class
- Stroke
 - \(P \) = total number of points
 - \(p \) = middle point
 - first point \((x_0, y_0, t_0)\)
 - last point \((x_{P-1}, y_{P-1}, t_{P-1})\)
 - compute \(x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}} \)

Feature \(f_1 \)

- Cosine of starting angle

\[
f_1 = \cos(\alpha) = \frac{(x_2 - x_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}
\]
Feature f_2

- Sine of starting angle

$$f_2 = \sin(\alpha) = \frac{(y_2 - y_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}$$

Feature f_3

- Length of diagonal of bounding box (gives an idea of the size of the bounding box)

$$f_3 = \sqrt{(x_{\text{max}} - x_{\text{min}})^2 + (y_{\text{max}} - y_{\text{min}})^2}$$
Feature f_4

- Angle of diagonal
- Gives an idea of the shape of the bounding box (long, tall, square)

$$f_4 = \arctan \left(\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \right)$$

Feature f_5

- Distance from start to end of stroke

$$f_5 = \sqrt{(x_{p-1} - x_0)^2 + (y_{p-1} - y_0)^2}$$
Feature f_6

- Cosine of ending angle

$$f_6 = \cos(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$

Feature f_7

- Sine of ending angle

$$f_7 = \sin(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$
More Definitions (before we continue)

Let $\Delta x_p = x_{p+1} - x_p$ and $\Delta y_p = y_{p+1} - y_p$

Let $\theta_p = \arctan \frac{\Delta x_p \Delta y_{p-1} - \Delta x_{p-1} \Delta y_p}{\Delta x_p \Delta x_{p-1} + \Delta y_p \Delta y_{p-1}}$

Directional angle

Let $\Delta t_p = t_{p+1} - t_p$

Time delta

Feature f_8

- Total stroke length

$$f_8 = \sum_{p=0}^{P-2} \sqrt{\Delta x_p^2 + \Delta y_p^2}$$
Feature f₉

- Total rotation (from start to end point)
- (not the same as β-α – think of spirals)

\[
f_9 = \sum_{p=1}^{p-2} \theta_p
\]

Feature f₁₀

- Absolute rotation
- How much does it move around

\[
f_{10} = \sum_{p=1}^{p-2} |\theta_p|
\]
Feature f_{11}

- Rotation squared
- How smooth are the turns?
- Measure of sharpness

\[f_{11} = \sum_{p=1}^{P-2} \theta_p^2 \]

Feature f_{12}

- The maximum speed reached (squared)

\[f_{12} = \max_{p=0}^{P-2} \frac{\Delta x_p^2 + \Delta y_p^2}{\Delta t_p^2} \]
Feature f_{13}

- Total time of stroke

$$f_{13} = t_{P-1} - t_0$$

Readings