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a b s t r a c t

We present SpeedSeg, a technique for segmenting pen strokes into lines and arcs. The technique uses pen

speed information to help infer the segmentation intended by the drawer. To begin, an initial set of

candidate segment points is identified. This set includes speed minima below a threshold, and curvature

maxima at which the pen speed is also below a threshold. The ink between each pair of consecutive

segment points is then classified as either a line or an arc, depending on which fits best. Next, a feedback

process is employed, and segments are judiciously merged and split as necessary to improve the quality of

the segmentation. In user studies, SpeedSeg performed accurately for new users. The studies also

demonstrated that SpeedSeg’s accuracy is surprisingly insensitive to the values of many of the empirical

parameters used by the technique. However, it is still possible to quickly tune the system to optimize

performance for a given user. Finally, SpeedSeg outperformed a state-of-the-art segmentation algorithm.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the power and sophistication of modern engineering
software, engineers often delay using it until late in the design
process. Instead, they do much of their early design work on paper,
using sketches extensively. After essential design issues have been
resolved, the sketched designs are then recreated on the computer,
so that design software can be used. This problem is due, in part, to
the cumbersomeness of traditional user interfaces. When designs
are in flux, the inconvenience of traditional user interfaces places
too much overhead on the creative process.

In our research, we are working to change this by creating
interfaces that allow users to operate software by means of familiar
sketching skills. The ultimate goal is to create software that is as
easy to use as paper and pencil, yet is as powerful as traditional
software. Rather than the user having to learn how to use software,
software should be able to read, understand, and use the kinds of
sketches people ordinarily draw. For example, an engineer should
be able to operate an analysis tool by drawing the same kinds of
simple sketches that he or she would draw when solving problems
by hand [18,19,9].

When implementing sketch-based computer interfaces, care
must be taken to avoid placing constraints on the drawing process.
For example, some existing sketch-based systems require that each
pen stroke represent a single shape, such as a single line or arc
segment [44,15,6,7,35]. Other systems allow pen strokes to have
ll rights reserved.

: +1 951 827 2899.
more complicated shapes, but each stroke must constitute a single
symbol or gesture [31,8,22,39]. While these kinds of drawing
constraints facilitate shape recognition, they can result in a less
than natural drawing environment.

The work presented here concerns the low level processing of
pen strokes necessary to overcome some of these kinds of cons-
traints. In particular, we present SpeedSeg, a technique for auto-
matically segmenting pen strokes into the intended geometric pri-
mitives. SpeedSeg enables one to draw a shape with as few or as
many stokes as desired. For example, one can draw a triangle with
one, two, or three pen strokes. Likewise, SpeedSeg enables one to
include parts of different shapes or symbols in the same pen stroke.
Shape recognizers, such as those described in [2,10,9,24] are required
for assembling the segments into larger shapes. In Section 6 we pre-
sent results obtained using SpeedSeg in combination with the recog-
nizer in [24].

The challenge in segmenting a pen stroke is deciding which
bumps and bends are intended, and which are accidents. We have
found it difficult to determine this by considering shape alone. The
size of the deviation from an ideal line or arc is not a reliable
indicator of what was intended.

Our approach to segmentation relies on examining the motion
of the pen tip as the pen strokes are created. We have observed that
it is natural to slow the pen when making many kinds of intentional
discontinuities in a shape. Consider, for example, the square shown
in Fig. 1. Although it is not drawn as four precise lines, the intended
corners can be easily identified as points at which the pen speed is a
local minimum.

SpeedSeg’s first task is to examine the pen stroke to identify the
segment points, the points that divide the stroke into different
primitives. The initial set of candidate segment points includes
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Fig. 1. A square drawn with one pen stroke, and the corresponding pen speed profile. Intended corners correspond to points of minimum speed.
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speed minima below a threshold, where the threshold is computed
from the average pen speed. Points at which the absolute value of
the curvature is a maximum are also included, but only if there is
corroborating pen speed information. (For convenience, we will use
the term ‘‘curvature’’ to refer to the ‘‘absolute value of the curvature.’’
In cases where the sign matters, we use the term ‘‘curvature sign.’’)
The ink between each pair of consecutive segment points is called a
segment, and is classified as a line or an arc, depending upon which
best fits the ink. Although the initial segmentation is reasonably
accurate, feedback can often be used to improve the accuracy. During
the feedback process, the initial segmentation is examined, and seg-
ments are judiciously merged and split as necessary to correct any
detected problems.

The SpeedSeg algorithm employs 12 tunable parameters, such
as the speed threshold for identifying speed-based segment points,
and an error tolerance for merging neighboring line segments that
are nearly collinear. Our user studies have demonstrated that our
default parameter values work well for a variety of users, even
those with no experience using the system. The studies also demon-
strated that SpeedSeg’s accuracy is relatively insensitive to the values
of many of the parameters. Nevertheless, it is still possible to quickly
tune the system to optimize performance for a given user.

While speed and curvature have long been used for pen stroke
segmentation (e.g., [11,1,43,32]), our work makes several important
contributions. First, we provide a systematic study of the influence of
the processing parameters on segmentation accuracy. Second, we
report the first segmentation technique that can automatically tune
itself for individual users. Third, we demonstrate that our approach
achieves better accuracy than a state-of-the-art algorithm.

The next section places this work in context by discussing
related work. This is followed in Section 3 by a detailed description
of the SpeedSeg technique. Section 4 describes details of SpeedSeg’s
implementation, including the gesture-based interface for manu-
ally correcting segmentation errors, and an automated tuning techni-
que to optimize performance for individual users. Section 5 presents
the results of three user studies evaluating SpeedSeg’s accuracy under
a variety of conditions. Section 6 provides a discussion of the results,
including an analysis of the influence of the processing parameters
on segmentation accuracy. This section also includes performance
results obtained with two sketch-based applications built using Speed-
Seg. Finally, Section 7 presents conclusions.
2. Background

Segmentation of pen strokes is similar to the problem of corner
detection in digital curves, a field that has attracted the efforts of
numerous researchers. Algorithms for this problem typically locate
corners by searching for points at which curvature is a maximum.
To suppress noise and false corners, the data must be smoothed.
The main difficulty is selecting a reliable ‘‘observation scale’’ or
amount of smoothing. Too little smoothing leads to superfluous
corners, whereas excessive smoothing causes the disappearance of
true corners. Early approaches (see [38] for an overview) relied on a
single scale, which created difficulties for curves containing both
large and small features.

Later work addressed the problem of individual curves containing
features at various scales. For example, Rattarangsi and Chin [30]
developed a scale-space approach for corner detection. A digital
Gaussian filter is repeatedly applied to the curvature data, and the
maxima of curvature are identified for each scale. Curvature maxima
that persist across multiple scales indicate corner points. Although the
method can find features at multiple scales, it is still necessary to define
the range of scales to be considered. Also, the approach produces false
corners when there is quantization error. For example, corner points
may be found on accurate digital circles. Lee et al. [23] developed a
multi-scale corner detection algorithm based on the wavelet transform.
This approach produces fewer false corners than Rattarangsi and Chin’s,
and is less computationally expensive. Sezgin has applied a multi-scale
approach to sketches [33]. As described below, his work suggests that
curvature data alone is inadequate for segmenting hand-drawn pen
strokes.

Yu has applied a curvature-based method to the problem of
segmenting hand-drawn pen strokes [42]. The method is based on a
‘‘mean shift’’ technique in which the curvature and tangent angle are
simultaneously smoothed. The resulting segmentation is com-
pared to the original ink, and if the fit is not precise, the stroke is
recursively subdivided until a precise fit is achieved. In a post-pro-
cessing phase, lines and arcs are merged, but the criteria for this are not
defined. Yu and Cai [43] present a related method that first attempts to
fit a stroke with a single primitive. If the fit is poor, the stroke is
segmented at the point of highest curvature, and the two pieces are
recursively processed. Again, segments are merged in a post-processing
phase, but the criteria for doing this are not specified. As described in
Section 6, our approach is substantially more accurate than this one.

Wolin and Hammond [40] present ShortStraw, a segmentation
technique based on the notion of ‘‘straw’’ distance. The straw dis-
tance at a point is defined at the distance between the endpoints of
a window of points centered on that point. Corners are identified as
points with minimum straw distances. The technique is limited to
pen strokes comprised solely of line segments. In more recent work,
Xiong and LaViola [41] have built upon this technique to improve
its accuracy and extend it to strokes with curves and arcs. As descri-
bed in Section 6, our approach is more accurate than both of these
state-of-the-art approaches.

The earliest report of using pen speed for segmenting that we
have been able to find is the work of Herot [11]. His system found
corners by identifying points at which pen speed was a minimum.
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The author reported that the system did not work well for all users
and he concluded that the program contained a ‘‘model of human
sketching behavior that fit some users more closely than others.’’

Agar and Novins [1] have developed a segmenter for polygons.
The system identifies segment points as a polygon is drawn, and
provides immediate feedback to the user. The approach is based on
examining the time intervals between mouse movement events. If
the mouse is stationary for more than 30 ms, the location is taken to
be a segment point. This approach is analogous to our pen speed
approach. However, because it requires that the mouse be paused
at each corner, the approach is likely to work well only at very sharp
corners. Additionally, the approach can handle only line segments
and not arcs.

Sezgin et al. [32] presented a technique that used speed and
curvature to segment hand-drawn pen strokes. Segment points
were located at points of minimum speed and maximum curvature.
This work demonstrated the usefulness of speed data for segment-
ing, and demonstrated that curvature data alone is inadequate. The
technique is suitable for segmenting pen strokes into sequences of
line segments, but cannot handle arcs. Curved regions of the pen
stroke are not segmented, but rather are represented by b-splines.
The approach presented here can handle pen strokes consisting of
both lines and arcs. Also, the technique in [32] iteratively adds
segment points until the error of fit between the line segments and
the raw ink is less than a threshold. Our approach is far less con-
cerned with the error of fit, as a tight fit to the ink may not be what
was intended. Finally, the method in [32] lacks the ability to refine
the segmentation through segment merging. As described in Section
6, our approach is substantially more accurate than this one.

As a variant of the approach in [32], Sezgin explored the use of
multi-scale methods for selecting speed minima and curvature
maxima [33]. However, he found that unless the pen strokes were
exceptionally noisy, there was little benefit in doing so.

Qin et al. [29] have also developed a curvature-based approach
that makes use of pen speed information. Segment points are
identified as points of maximum discontinuity of the smoothed
tangent angle. Very large discontinuities are always considered
segment points. Smaller discontinuities must exceed an adaptive
threshold that is inversely proportional to pen speed. Thus, the
threshold is higher for low pen speed. With our approach, by contrast,
slower pen speed provides increased evidence of a segment point.
While their method identifies segment points as points of maximum
curvature, ours identifies them as points of minimum pen speed. Their
segment points are thus a subset of the dominant-points produced
by methods such as [38], while ours are not. Also, our method uses
merging and splitting to refine the segmentation, while their method
has only limited refinement capabilities: segment points are elimi-
nated if they are too close together.

Kim and Kim [21] present a more recent algorithm that uses
curvature and pen speed information to segment pen strokes. Pen
strokes are resampled to produce uniformly spaced data points.
Curvature is initially computed in terms of the angle between con-
secutive data points. An examination of the local geometry is then
used to determine a larger region of support for the curvature at a
point. Segment points are identified as maxima (in absolute value)
of curvature above a threshold determined by the pen speed. As
described in Section 6, our approach is substantially more accurate
than this one.

Simhon and Dudek [36] use a hidden Markov model to refine the
shape of a pen stroke to match geometric constraints learned from
training examples. The approach does not compute explicit segmen-
tation, but instead refines a hand-drawn shape to make it ‘‘look’’ like
one used to train the system.

Hse et al. [12] use two kinds of templates to segment pen strokes.
One kind specifies the number of line and elliptical segments that
comprise a shape, the other also includes the order of those segments.
Dynamic programming is used to optimally segment a stroke to
match a specified template. Hse and Newton [13] combine this
approach with a shape recognizer to automatically select the correct
template. The approach is accurate, but is limited to shapes with
predefined templates and requires that pen strokes can be recognized
prior to segmentation. Deufemia and Risi [4] present a related
approach in which a grammar and LR parser are used to dynamically
select templates to segment the strokes in a sketch.

Most of the above approaches operate by first locating segment
points, and then defining the segments between them. Dudek and
Tsotsos [5] have turned the problem around by first looking for the
segments. Their approach is called ‘‘curvature-tuned smoothing.’’
The method uses energy minimization to compute an approxima-
tion curve that best matches the input curve while at the same time
attempting to maintain a desired curvature. If an approximation
with sufficiently low energy cannot be found, the approximation
curve is subdivided and the process is iterated. This process can be
performed with different values of the desired curvature to find
regions of the input curve that have various curvatures. Each such
region constitutes a segment. A given data point in the input curve
may belong to different segments having different values of the
curvature, resulting in overlapping segments. This approach may
not be suitable for sketch understanding, as most shape recognition
techniques assume that segments do not overlap.

SpeedSeg is intended to support shape recognizers that rely on
structural shape descriptions such as those in [2,10,9,24]. Such
recognizers are particularly useful in applications in which it is
necessary to identify the individual parts of a shape. For other types
of applications, there are recognizers that do not require segmen-
tation. For example, some recognizers use feature-based repre-
sentations of shape (e.g., [31,8]). However, because classification
relies on aggregate features of the pen strokes, these approaches
sometimes have difficultly differentiating between similar shapes.
Image-based recognizers (e.g., [39,20]) also do not require seg-
mentation, but they have difficulty when the relative sizes of the
different parts of a shape vary.

Because SpeedSeg is intended for use in constructing structural
shape descriptions to support recognition, we segment into line
and arc segments. This is appropriate for many shapes and symbols
that are commonly used in science and engineering. For applica-
tions with more complex geometric primitives, the technique in
[27] can be used to recognize a variety of primitive shapes such as
spirals and helixes. This approach does not perform segmentation, but
instead assumes that each pen stroke comprises a single primitive.

There is a growing body of work in the area of sketch beautifi-
cation [25,16,15]. For example, Igarashi et al. [15] have developed a
system that can infer geometric constraints, such as perpendicu-
larity and congruency, and can automatically adjust the sketch so
that the constraints are satisfied. SpeedSeg can be viewed as having
limited beautification capabilities because it transforms raw ink
into straight lines and round arcs. Furthermore, it can serve as a
foundation for tools that do focus on beautification. For example,
Igarashi’s system assumes that each pen stroke is a single line
segment, but in principle could be extended to operate on the seg-
ments computed by SpeedSeg.
3. Segmenting technique

Segmentation is the process of decomposing a pen stroke into
the constituent geometric primitives. For the domains of interest to
us, the primitives consist of lines and arcs. Our SpeedSeg technique
relies extensively on pen speed information for identifying the
locations of intended segment points. It also considers the final
shape of the ink, by using curvature information to find other segment
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we adjust the angle by adding or subtracting multiples of 2p until it differs in

absolute value by less than 2p from the angle of the previous point.
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points. To achieve high accuracy, SpeedSeg monitors its own perfor-
mance and improves the segmentation when necessary.

To begin the segmentation process, an initial set of candidate
segment points is identified. This set includes the points on the pen
stroke at which speed is a minimum or curvature is a maximum
(the complete criteria are described below). The ink between each
pair of consecutive segment points is called a segment, and is
classified as a line or an arc, depending on which best fits the ink.

Although the initial segmentation is often reasonably accurate,
feedback can be used to improve the accuracy. If the initial
segmentation does not accurately match the original ink, segments
are either merged or split to improve the fit. For example, if two
adjacent segments form pieces of the same arc, it is likely that they
were intended to be so. In this case, the two are merged into a single
arc segment. Conversely, if a particular line or arc is a poor fit for the
ink, additional segment points are considered. This situation often
occurs when there is a smooth change in the sign of curvature, for
example, when moving from one lobe of an ‘‘S’’ shape to the other as
shown in Fig. 6. This kind of transition can be made without slowing
the pen, and thus is not detected as a speed minimum. Consequently,
if a segment is a poor fit for the ink, points at which the curvature
changes sign are considered as additional candidate segment points.
Curvature sign is an unreliable indication of a segment point, thus
such points are considered only when there is evidence that extra
points are needed.

The sections that follow describe the various steps of the
segmentation process including: initial processing of the ink, identi-
fication of segment points, fitting of the segments, and merging and
splitting.

3.1. Initial processing of the ink

SpeedSeg is designed to work with a digitizing tablet and stylus
or other similar device that provides time-stamped coordinates.
For example, we have used Wacom Cintiq and Intous II tablets, and
Tablet PCs. During the initial processing phase, we use the time-
stamped coordinates to compute pen speed and curvature. The first
step is to construct the arc length coordinate of each point. Arc length
is measured along the path of the pen stroke, and is computed in the
obvious way by summing straight line distances:

di ¼
Xi

j ¼ 1

J~Pj�
~Pj�1J ð1Þ

where ~Pj is the coordinates of the jth data point. The first data point
has index j¼0 and d0 ¼ 0.

We then use a centered finite difference approach to compute
pen speed:

si ¼
diþ1�di�1

tiþ1�ti�1
ð2Þ

where ti is the time-stamp of the ith point. The speed at the first and
last point of a pen stroke is taken to be equal to the speed at the
second and penultimate points, respectively. Often, there is noise in
the pen speed signal. To correct this, we apply a simple smoothing
filter. The speed at each point is averaged with that of the two
points on either side. After averaging, the first two and last two
points in the pen stroke are assigned speeds equal to those of the
third and third to last points, respectively.

There are various ways of computing signed curvature. (Note
that SpeedSeg uses the absolute value of the curvature to locate
candidate segment points.) For example, one could use the
standard formula from analytic geometry [26]:

C ¼
_x €y� €x _y

½ _x2
þ _y2
�3=2

ð3Þ
where the dot indicates differentiation with respect to the arc
length, s. For digital data, the derivatives are typically evaluated
using a finite difference technique. For the purposes of identify-
ing segment points, however, the resulting curvature data would
require a significant amount of smoothing, for example, by means
of a Gaussian filter [30].

As an alternative approach, we compute curvature as the
derivative of the tangent angle, y, with respect to arc length:

C ¼
@y
@s

ð4Þ

We use this approach for several reasons. First, our system already
computes an accurate tangent, which is used for other purposes.
Second, this method naturally smoothes the data, so that no
additional smoothing is needed.

To construct the tangent at a given point, we first construct a
least squares line fit to a window of data points centered on that
point. Using a window of points has the effect of smoothing noise.
Some of the noise comes from minor fluctuations in the drawing,
while other noise comes from the digitizing error of the input
device. The larger the window, the greater the smoothing effect. We
have found that a window of 11 points (five on other side of the
point in question) provides adequate smoothing without loss of
essential information about the shape.

If the least squares line fit is an accurate fit for the window
of points, the line is used as an approximation of the tangent.
Accuracy is defined as the average distance from the points to the
line. If this is less than 10% of the arc length of the window of points,
the line fit is deemed acceptable. Otherwise, a least squares circle fit
is constructed, and the tangent is taken from the circle. In either
case, the tangent direction is selected so as to align with the local
direction of the pen motion. (The line fit is attempted first to avoid
numerical issues that occur when computing a least squares circle
fit to data forming a nearly straight line.)

To compute the rate of change of the tangent angle, we could
numerically differentiate the tangent angle data, but this would again
require smoothing. Thus, we again use a least squares line fit. In this
case, we consider the graph of the tangent angle vs. the arc length.1

The slope of the least squares line gives the curvature in units of
radians per pixel. Here again, when computing the least squares line,
we use a window of 11 points as a means of smoothing the data.

Fig. 2 shows signed curvature data computed with our techni-
que and the traditional approach from Eq. (3). (The data is for the
square in Fig. 1.) Comparison of traces A and B shows that our
approach produces significantly smoother curvature data. To esti-
mate the amount of smoothing our approach achieves, we repeat-
edly applied a Gaussian filter to the data from Eq. (3) (trace B) until
the smoothing was comparable to that of our data (trace A). In each
application of the filter, the new value at a data point was taken to
be 0.5477 times the current value plus 0.2236 times the current
value on either side [3]. We found that between 5 (trace C) and 10
(trace D) applications of the filter resulted in an equivalent amount
of smoothing.

We have found that our approach for calculating curvature
works well in practice. In fact, this approach is similar in spirit to
the way draftspersons used to compute graphical derivatives in the
era before computers [37]. In some sense, we are smoothing the
way a draftsperson would by eye. As Fig. 2 shows, however, our
approach is comparable to the traditional calculation (Eq. (3))
combined with Gaussian smoothing. Thus, if desired, one could
directly implement our segmentation approach using the more
traditional technique.
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Table 1
Parameters controlling the generation of segment points.

Parameter Symbol Default value

Speed threshold PST 25%

Curvature threshold PCT 0.751/pixel

Curvature-speed threshold PCST 80%

Curvature-sign (zero) threshold PCZT 0.11/pixel

Point merge trigger PPMR 7

Fig. 3. A hand-drawn pivot symbol. (a) Raw ink. (b) Segmented ink. (c) Raw and

segmented ink overlaid.
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3.1.1. Least squares line and arc fitting

Least squares line and arc fitting is used for multiple purposes in
our system. As described above, it is used for computing both
tangents and curvature. It is also used for fitting lines and arcs to the
segmented ink. For completeness, this section provides a review of
the least squares techniques we use.

For sake of efficiency and simplicity, we use a linear least squares
fit. A line is defined as

y¼ AxþB ð5Þ

Minimizing
Pn

i ¼ 1ðAxiþB�yiÞ
2 results in the usual regression

equation:

n
P

xiP
xi

P
x2

i

" #
A

B

� �
¼

P
yiP

xiyi

" #
ð6Þ

where n is the number of data points and the (xi,yi) are the coordinates
of the data points. The linear least squares technique fails if the line is
nearly vertical, because error is defined as the vertical distance from a
data point to the line. To avoid this, if the data points have little
variation in x, we instead fit the data to the line x¼ AyþB. We could
have used a non-linear least squares fit in which the error is defined as
the minimum (perpendicular) distance from a data point to the line.
Such an approach would be more accurate and would not require
special treatment of vertical lines, but would be more expensive
computationally.

For fitting circles, we again use a linear least squares approach.
A circle is defined as

x2þy2þ2axþ2byþc¼ 0 ð7Þ

where (�a,�b) is the center of the circle, and the radius is
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2�c
p

. Minimizing the total squared error computed asPn
i ¼ 1ðx

2
i þy2

i þ2axiþ2byiþcÞ2 results in the regression equation:

2
P

x2
i 2

P
xiyi

P
xi

2
P

xiyi 2
P

y2
i

P
yi

2
P

xi 2
P

yi n

2
664

3
775

a

b

c

2
64
3
75¼

P
�ðx2

i þy2
i ÞxiP

�ðx2
i þy2

i ÞyiP
�ðx2

i þy2
i Þ

2
664

3
775 ð8Þ

If the ink is nearly straight, the matrix becomes ill conditioned.
As a remedy, we solve Eq. (8) using singular value decomposition
[28]. An alternative approach would be to use a more sophisticated
least squares circle fitting technique as described in [34].

When evaluating the quality of fit, we use an average error. For
non-vertical lines (those described by Eq. (5)), the error of fit is

e¼
1

n

Xn

i ¼ 1

jAxiþB�yij ð9Þ
For vertical lines, or those that are nearly so, the absolute value
term becomes: AyiþB�xi. For circles, the error of fit is

e¼
1

n

Xn

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþaÞ2þðyiþbÞ2

q
�r

����
���� ð10Þ
3.2. Candidate segment points

Once the initial processing of the ink is completed, the next step
is to compute the set of initial candidate segment points. The first
and last points on a pen stroke are always included in the initial set.
The remaining segment points are identified by examining speed
and curvature data. This process depends on the five parameters
listed in Table 1. As discussed here, and described in detail in
Section 6, the accuracy of SpeedSeg is relatively insensitive to three
of these five parameters (PST, PCT, and PCZT). The table includes the
default values of the parameters, which were obtained empirically.

Pen speed has proven to be an effective indicator of intended
segmentation, as segment points often occur at locations at which
pen speed is a local minimum. Consider, for example, the sketch of a
pivot in Fig. 3(a). This sketch, which was drawn as a single pen
stroke, was intended to be three lines and an arc (Fig. 3(b)). Fig. 4
shows the speed profile for the pen stroke. The intended segment
points correspond to local speed minima as indicated by circles.
There are, of course, other speed minima that do not correspond to
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intended segment points, but these are distinguishable by their
higher speed.

Our approach, therefore, is to locate segment points at speed
minima that are slower than a threshold, PST. We select the threshold
as a fraction of the average speed along the pen stroke. Average speed
is computed in the usual way as the total arc length divided by the
total elapsed time. In practice, a threshold between 25% and 100% of
the average speed works well. In fact, in User Study 1 presented in
Section 5.1 there was little variation in the overall accuracy when the
threshold was varied over this range. Larger values of the threshold
decrease the number of intended segment points that are missed,
while smaller values decrease the number of unintended segment
points that are selected. (The ordinate in Fig. 4 directly corresponds to
possible values of PST.)

We typically, use a small threshold (25%) because very low pen
speed is a clear indication of an intended segment point. If a speed
minimum is above the threshold, the point may still be a segment
point, but additional information is required to be certain. In this
case, we rely on the curvature of the ink. In Fig. 4, for example,
segment points (i) and (ii) are detected with a threshold of 25%.
Segment point (iii) is above this threshold, but as shown in Fig. 5,
this point corresponds to a maximum of curvature, which provides
additional evidence about the existence of a segment point.

One approach for locating segment points would be to identify
points that are both a minimum of speed and maximum of
curvature. In practice, we have found it adequate to simply select
points that: (a) are a maximum of curvature, (b) have speed less
than threshold PCST, which is defined as a fraction of the average
speed along the pen stroke, and (c) have curvature greater than
threshold PCT. The last condition eliminates false segment points
resulting from small curvature peaks. For example, the curvature of
a nearly straight line often fluctuates in sign, resulting in many
small curvature peaks. The third condition prevents such points
from being selected as segment points. We have found that a value
of 80% for PCST and a value of 0.751/pixel for PCT work well. As
described in Section 6, PCST does have a strong influence on accuracy
but PCT does not.

The speed-based and curvature-based segment points are
always included in the initial set of segment points. There is a
third class of segment points that is not considered initially. These
are the points at which the curvature changes sign. We define three
qualitative ‘‘signs’’ for curvature: positive if the magnitude is greater
than PCZT, negative if the magnitude is less than �PCZT, and zero
otherwise. The default value for PCZT is 0.11/pixel.

A change in curvature sign is an unreliable indication of an
intended segment point, thus such points are considered only when
the other segment points do not result in a good fit for the ink. For
example, it is common for there to be a change in curvature sign on
each side of a 901 corner as shown in Fig. 7. It is clear that such
changes in curvature sign do not correspond to intended segment
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Fig. 5. Ink curvature for the pivot in Fig. 3.
points. Consequently, segment points based on curvature sign are
not part of the set of initial candidate segment points. Instead, they
are considered during the splitting process described in Section 3.4.
In essence, a change in the sign of curvature is insufficient evidence
to decide that a segment point was intended. Instead, additional
information about the gross shape of the ink is needed. This
information comes from examining how well the initial segmenta-
tion fits the ink.

Due to noise, it is possible for there to be small clusters of closely
located segment points. For example, there may be two speed
minima that are separated by only a few data points, or there may
be a speed minimum near a curvature maximum. Thus, once the
speed and curvature segment points are identified, the data is
filtered to eliminate nearly coincident segment points. If a point is
within PPMR (default value 7) data points of a subsequent segment
point, it is eliminated.

3.3. Fitting segments

Once the initial set of candidate segment points has been
identified, the next step is to fit primitives to the segments. Least
squares line and circle fits are constructed for the segment between
each pair of consecutive segment points. The segment is typically
classified by whichever shape fits it with the smallest error of fit
(Section 3.1.1). In practice, it is common for nearly straight lines to
be accurately fit by an arc with a large radius. In fact, even a straight
line can be perfectly fit by an arc with infinite radius. Thus, even if a
segment is best fit by an arc, it is classified as such only if it would
represent at least one tenth of a circle (363).

If a segment is classified as a line segment, the end points of that
line segment are determined by constructing perpendiculars from
the first and last data points to the least squares line. Similarly, for
arcs, the end points are determined by constructing radial lines
through the first and last data points. This approach may result in
gaps between segments where no gaps existed in the original ink.
For the purposes of recognition, however, this typically does not
pose a problem because tolerances are often used when evaluating
topology. (Section 6 presents recognition accuracy results for a
shape recognizer that uses SpeedSeg.) For beautification, by con-
trast, it would be necessary to adjust the end points so as to
preserve the original connectivity of the segments.

3.4. Merging and splitting

Once the initial segments have been computed, a quality control
process is initiated. The segments are compared to the original ink,
and are then merged, split, and deleted as necessary. In this fashion,
feedback is used to improve the accuracy. This post-processing
depends on seven parameters listed in Table 2. The table includes
the default values of these parameters, which were obtained empiri-
cally. As discussed in Section 6, the accuracy of SpeedSeg is relatively
insensitive to the specific values of most of these parameters.

If there is a very short segment adjacent to a long one, frequently
the short one was unintended. Thus, if a segment is shorter than
Table 2
Parameters controlling splitting and merging of segments.

Parameter Symbol Default value

Segment merge length trigger PSMLR 20%

Segment merge error threshold PSMET 110%

Parallelism threshold PPT 0.75

Relative end length trigger PRELR 10%

Absolute end length trigger PAELR 15 pixel

Segment split error trigger PSSER 7 pixel

Segment split error threshold PSSET 65%



Fig. 6. (a) Candidate segment points for an ‘‘s-curve’’. Circle¼speed segment point,

square¼curvature (magnitude) segment point, triangle¼ curvature-sign segment

point. (b) Final segmentation—two arc segments.

Fig. 7. (a) Candidate segment points for a square wave. Circle¼speed segment

point, square¼curvature (magnitude) segment point, triangle¼ curvature-sign

segment point. (b) Final segmentation—nine line segments.
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a fraction PSMLR (default value 20%) of the length of an adjacent
segment, SpeedSeg attempts to merge them. The program con-
structs a new segment containing all of the data points of the two
original segments. The type of this new segment is forced to be the
same as that of the longer of the original two. For example, if a short
line segment is adjacent to a long arc, the program attempts to join
them into a single arc segment. If the error of fit (Section 3.1.1) of
the new segment is no greater than PSMET (default value 110%) times
the sum of the fit errors of the original two segments, they are
discarded and replaced with the new one. Otherwise, the new segment
is discarded.

A special case of this procedure is applied to the ends of each pen
stroke to eliminate ‘‘hooks,’’ discontinuities that occur as the stylus
gains or loses contact with the drawing surface. If the first or last
segment in a stroke is shorter than PAELR (default value 15) pixels, it
is discarded. Similarly, if the first or last segment is shorter than a
fraction PRELR (default value 10%) of the average length of the first or
last three segments, respectively, it is discarded. An alternative
approach would be to ‘‘dehook’’ strokes prior to segmentation using
an algorithm such as the one in [17].

If adjacent segments are of the same type, SpeedSeg examines if
they might reasonably be interpreted as the same segment. For
example, if two arcs are adjacent, the program computes a new arc
containing the data points from the two original arcs. Here again,
the merge is accepted only if the new error of fit is no greater than
PSMET times the sum of the original errors of fit. (Note that the same
parameter PSMET governs all segment merging computations.) The
program considers merging two segments only if their drawing
directions are consistent. For arcs, the requirement is that they both
be drawn in the same sense, i.e., both clockwise or both counter-
clockwise. Similarly, for line segments, the program constructs unit
vectors from the lines, and attempts a merge only if the dot product
of these unit vectors is greater than PPT (default value 0.75).

If a particular least squares line or arc does not fit the ink well,
SpeedSeg attempts to improve the fit by introducing a segment
point based on a change in the sign of the curvature. The program
splits a segment in this fashion if the fit error is greater than PSSER

pixels. In other words, if on average the data points are at least PSSER

pixels from the least squares line or arc, the program attempts to
split the segment. The default value of PSSER, which is seven pixels,
was empirically determined to work with our hardware for digitizer
resolutions of 1024�768 and 2048�1536, and would likely require
tuning for different hardware.

Typically there are only a few curvature-sign segment points in any
given segment. Thus, it is feasible to exhaustively consider each of
them. The program considers splitting the segment with each of the
curvature-sign segment points, one at a time. The best choice is the one
in which the sum of the fit errors for the two new segments is mini-
mum. If this minimum is less than a fraction PSSET of the original fit
error, the new segmentation is retained, otherwise it is rejected. The
default value of PSSET is 65%, which is designed to require significant
improvement in the fit before a new segment point is added.

Fig. 6 shows an example of how curvature-sign points are used.
In the initial segmentation, curvature-sign points are excluded, and
the stroke is segmented into a single arc segment. Because the fit is
poor, the program tests both curvature-sign points in the middle of
the curve and finds that an improved segmentation can be
achieved. The result is shown in Fig. 6b.

Fig. 7 shows why curvature-sign points are not considered unless
the initial segmentation is poor. Fluctuations in approximately straight
portions of the pen stroke result in a large number of curvature-sign
changes. These are clearly not intended to be segment points.

Post-processing begins with an application of the merging
routine that fixes hooks at the start and end of each stroke. The
general routine for merging segments is then applied, followed by
an application of the splitting routine. A small gain in accuracy is
typically achieved with a second application of the splitting routine
followed by the merging routine.
4. Using the system

We have used SpeedSeg with a Wacom Intous II tablet, a Wacom
Cintiq LCD tablet, and a Wacom-based Tablet PC. (SpeedSeg, which
is implemented in C++, directly communicates with the Wacom
driver to acquire data at the maximum possible sampling rate.)
With the latter two devices, the user draws directly on the display,
and virtual ink is rendered directly under the stylus tip. With the
Intous II, the user draws on the tablet, and virtual ink is rendered on
the display. As a means of providing better feedback to the user, the
Intous II can also be used with an ‘‘inking’’ stylus. In this case, paper
is placed over the tablet and the stylus tip leaves physical ink.
SpeedSeg provides an option for displaying the raw ink, the
segmented ink, or both. For the latter two cases, the current pen
stroke remains in its raw form until the stylus is lifted, and then the
segmented ink is instantly displayed.

SpeedSeg provides editing gestures enabling the user to correct
segmentation errors by adding and removing segment points. Seg-
ment points are added by pressing the button on the barrel of the
stylus and drawing a line across the ink at the desired location of the
new segment point. Similarly, with the button pressed, drawing a
circle around a set of segments will merge them together. Circling the



Fig. 8. The 10 shapes used in the user studies: triangle, square, omega, sigma, square

root, spring, star, wave, stepped-block, pivot. (a) Raw ink from one of the user study

participants. Dots indicate the locations of the computed segment points.

(b) Segmented ink.
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beginning or ending of a stroke will restore ink removed by dehooking.
Using the eraser end of the stylus, the user can also erase individual
segments or entire pen strokes. A few strokes of the eraser remove a
segment, while many strokes remove the entire pen stroke.

Although the default parameter values produce acceptable
results for many users, it is possible to tune the system to achieve
optimal performance for a specific user. (Except were explicitly
indicated, all accuracy results reported in this article were obtained
without tuning.) To do this, the user first draws a set of shapes and
uses the editing gestures to correct any segmentation errors.
Because the default parameters usually achieve good accuracy,
little editing is typically needed. SpeedSeg then uses hill climbing to
adjust the parameter values to maximize the number of perfectly
segmented shapes. When comparing the computed segmentation
to the manually edited correct segmentation, segment points are
said to match if the distance between them is 20 pixels or less. This
threshold is needed because different parameter values may result
in slightly different locations for the same segment point. This may
occur, for example, at rounded corners where the segment point can
move slightly along the corner depending on the particular values used.

Optimization over a 12-dimensional search space is computa-
tionally expensive. Fortunately, SpeedSeg’s accuracy is only weakly
dependent on most of the processing parameters. To reduce compu-
tation, we optimize over only five parameters, which include: the
curvature-speed threshold (PCST), the segment merge error threshold
(PSMET), the point merge trigger (PPMR), the absolute end length trigger
(PAELR), and the speed threshold (PST). As demonstrated in Section 6,
the first four parameters are the ones that have the most influence on
accuracy. The speed threshold affects accuracy only weakly, but was
included to provide additional opportunities for tuning.

To construct the starting point for hill climbing, SpeedSeg com-
putes the locally optimal value for each parameter. This is accom-
plished by evaluating the accuracy as each parameter is varied
between one fourth and four times its default value, with the other
11 parameters held at their default values. In this fashion, SpeedSeg
samples the accuracy for 11 values of each parameter. The set of
locally optimal values constitutes the starting point. On each iteration
of hill climbing, SpeedSeg randomly selects one of the five optimized
parameters to change. A computational coin flip then determines if
the parameter should be increased or decreased by 2.5%.

In our experiments, working from the locally optimal starting
point, the hill climbing typically converged in 20 or fewer itera-
tions. Thus, a total of 152 iterations are needed to tune SpeedSeg for
a given user: 132 iterations to obtain the starting point, followed by
20 iterations of hill climbing. On a training set of 50 shapes, the
tuning process takes about 75 s (excluding file I/O) on an HP
TC4400 Tablet PC with a 2.0 GHz Intel T7200 Core 2 Duo Processor
and 2 GB of memory. (On average, it takes about 10 ms to process a
pen stroke once.)
5. User studies

We conducted three user studies to test SpeedSeg’s accuracy. In
each study, participants were asked to draw the set of shapes
shown in Fig. 8. The pivot and omega symbols were designed to test
SpeedSeg’s accuracy on shapes that include both line and arc
segments, while the wave symbol tests accuracy on sequences of
arcs. The remaining symbols evaluate accuracy on shapes contain-
ing line segments of various relative lengths and vertex angles.

The first user study examined the sources of segmentation errors
as the speed threshold is varied. The second study evaluated the
effect of symbol size and input device resolution on accuracy. The
third study evaluated the algorithm as an interactive sketch input
technique. In particular, this study examined how visual feedback
of the pen stroke segmentation influences accuracy. In all studies,
the participants had no prior experience with SpeedSeg, and thus
these studies represent a worst-case test of the system’s accuracy.

5.1. Study 1

The first study evaluated the types of segmentation errors that
occur as the speed threshold (PST) is varied. The study included five
participants who had no experience with SpeedSeg, but at least
some experience using a PDA or digitizing tablet. The participants
were asked to draw the 10 symbols in Fig. 8 four times each at a size
of approximately 3 cm. (User Study 2, described below, explored
accuracy as a function of symbol size.) The participants were
instructed to draw accurately but naturally, and were informed
that the experiment was intended to evaluate the accuracy of our
segmenter. Because the participants were allowed to draw natu-
rally, some drew some of the shapes (mostly pivots, but other
shapes as well) using multiple strokes. Overall, 15.5% of the shapes
were multi-stroke.

Data was collected using an Intous II tablet with a paper overlay
and an inking stylus (see Section 4). The digitizer resolution was set
to 1024�768 pixels. To avoid biasing the participants, they were
given no feedback about how well SpeedSeg performed. They could
view the physical ink on the paper overlay and the virtual ink on the
computer display, but the segmentation results were not displayed.
Participants were given a few minutes to become familiar draw-
ing with the digitizing tablet and stylus before providing data for
the study.

There were variations in the way participant drew the various
shapes. For example, the number of intended ‘‘wiggles’’ in the
spring symbol varied from one participant to the next. Table 3
tabulates the number of intended segment points (‘‘num segment
points’’) for each participant, which was typically about 233 for the
complete set of 40 examples.

Table 3 summarizes the types of segmentation errors that
occurred using SpeedSeg’s default parameter values. Errors are



Table 3
Study 1—accuracy for a speed threshold of 25%. False negatives¼missing candi-

dates + mistakenly merged + mistakenly dehooked.

Participant 1 2 3 4 5 Average

Num segment points 230 229 244 229 233 233

Missing candidates 11 5 17 0 2 7

Mistakenly merged 2 1 2 0 0 1

Mistakenly dehooked 0 1 3 0 0 0.8

False negatives 13 7 22 0 2 8.8

False positives 0 3 0 0 2 1

True positives 217 222 222 229 231 224.2

Precision (%) 100.0 98.7 100.0 100.0 99.1 99.6

Recall (%) 94.4 96.9 91.0 100.0 99.1 96.3

F-measure 0.971 0.978 0.953 1.0 0.991 0.97.9

All-or-nothing (%) 82.5 82.5 67.5 100.0 90.0 84.5

Table 4
Study 1—accuracy for a speed threshold of 100%. False negatives¼missing

candidates + mistakenly merged + mistakenly dehooked.

Participant 1 2 3 4 5 Average

Num segment points 230 229 244 229 233 233

Missing candidates 0 0 0 0 0 0

Mistakenly merged 2 0 1 0 0 0.6

Mistakenly dehooked 0 1 4 0 0 1

False negatives 2 1 5 0 0 1.6

False positives 12 13 3 1 5 6.8

True positives 228 228 239 229 233 231.4

Precision (%) 95.0 94.6 98.8 99.6 97.9 97.1

Recall (%) 99.1 99.6 98.0 100.0 100.0 99.3

F-measure 0.970 0.970 0.984 0.998 0.989 0.982

All-or-nothing (%) 72.5 75.0 87.5 97.5 90.0 84.5
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expressed in terms of the number of false negatives and false
positives. False negatives can occur for one of three reasons: (1) no
candidate segment point was found, (2) a candidate was found but
was later eliminated by merging of the two adjacent segments,
or (3) a candidate was found but was later eliminated during the
removal of hooks at the ends of the pen stroke. False positives are
points that were not intended as segment points, but which were
labeled as such by the program.

We characterize overall segmentation accuracy in terms of
precision, recall, and f-measure.2 Precision is the fraction of the
hypothesized segment points that are true segment points:

Precision¼
True positives

True positivesþFalse positives
ð11Þ

Recall is the fraction of the actual (intended) segment points that
were correctly located:

Recall¼
True positives

True positivesþFalse negatives
ð12Þ

F-measure is the simple harmonic mean of precision and recall:

F-measure¼
Precision�Recall

1
2ðPrecisionþRecallÞ

ð13Þ

Most of the segmentation errors occurred because no candidate
segment point was identified. On average, there were seven such
errors for each set of 40 examples. Far fewer points were missed
because of segment merging or dehooking; there was on average
1.8 such errors for each set of 40 examples. The dehooking errors
typically occurred when participants drew the square root and
sigma symbols with very small serifs.

We also characterize performance in terms of ‘‘all-or-nothing’’
accuracy, which is the fraction of the symbols that had no segmen-
tation errors of any kind. As indicated in Table 3, SpeedSeg achieved
an average all-or-nothing accuracy of 84.5%. Symbols contained an
average of about six segment points, thus there are multiple ways
for there to be an error in a given symbol. Consequently the all-or-
nothing accuracy is lower than the f-measure, which is based on the
number of correct segment points. When the algorithm did err, there
was often more than one error per symbol. In the data in Table 3, for
example, there were typically 1.6 segmentation errors (false negatives
and false positives) per incorrectly segmented symbol.

To evaluate the influence of the speed threshold on accuracy, we
recomputed the segmentation using a larger value of the speed
threshold, with all other parameters held to their default values. In
Table 3, a threshold value of 25% of the average speed was used, but
in Table 4 the threshold was increased to 100%. With the lower
2 While these accuracy measures have not been commonly used for pen stroke

segmentation, they are widely used for other segmentation tasks, such as speech

segmentation [14].
threshold, there were on average 8.8 false negatives and one false
positive for each set of 40 examples. With the higher threshold,
there were on average 1.6 false negatives and 6.8 false positives. As
one would expect, as the threshold increased, the number of false
negatives decreased and the number of false positives increased.

For four of the participants, there was at most a small decrease
in the all-or-nothing accuracy for the larger speed threshold. For
the third participant, however, there was a large increase in all-or-
nothing accuracy. During the debriefing after the data collection,
that participant revealed that he was a calligrapher and was skilled
at maintaining uniform pen speed so as to avoid ink blotches. Because
the increase in all-or-nothing accuracy for the third participant offset
the decreases for the other participants, the average all-or-nothing
accuracy was the same for both speed thresholds (p¼1.0).3 Likewise,
the difference in average f-measure for the two cases was not statis-
tically significant at po0:05 (p¼0.6).
5.2. Study 2

The second user study was designed to evaluate segmentation
accuracy as a function of the size of the symbols and the digitizer
resolution. This study employed five participants, one of whom was
a participant in the first study. Each participant was asked to draw
each of the 10 symbols from Fig. 8 at sizes of approximately 1, 2, and
4 cm. As in the first study, data was collected using an Intous II
tablet with a paper overlay and an inking stylus, but the digitizer
resolution was doubled to 2048�1536 pixels. Again, to avoid
biasing the participants, they were given no feedback about how
well SpeedSeg performed. To explore the impact of digitizer
resolution, each participant also drew a second set of 4 cm symbols
with the digitizer set to a resolution of 1024�768 pixels. Because
the participants were allowed to draw naturally, some drew some
of the shapes (mostly pivots) using multiple strokes. Overall, 9.5%
of the shapes were multi-stroke shapes.

Table 5 summarizes the results of this study. For a digitizer
resolution of 2048�1536, the average f-measure and all-or-
nothing accuracy increased only slightly with symbol size. How-
ever, these differences were not significant at po0:05 (f-measure:
p¼0.2; all-or-nothing: p¼0.3). Similarly, the average accuracies for
the 4 cm symbols drawn with the high resolution setting were
statistically the same as with the low-resolution setting (f-mea-
sure: p¼0.9; all-or-nothing: p¼1.0). Thus, there were no statisti-
cally significant variations in accuracy with variations in symbol
size or digitizer resolution. However, because of the small sample
size — there were only five participants in the study — additional
data is needed to confirm this conclusion.
3 All of our statistical analyses were computed with the SPSS (PASW) repeated

measures analysis of variance.



Table 5
Study 2—accuracy for a speed threshold of 85%. Resolution: high¼2048�1536,

low¼1024�768. False negatives¼missing candidates + mistakenly merged +

mistakenly dehooked.

Symbol size 1 cm 2 cm 4 cm 4 cm

Tablet resolution High High High Low

Num seg points, ave. 58 57.8 58.4 57

Missing candidates, ave. 2 0.2 0 0.4

Mistakenly merged, ave. 0.2 0.2 0.4 0

Mistakenly dehooked, ave. 1.2 0.4 0.2 1

False negatives, ave. 3.4 0.8 0.6 1.4

False positives, ave. 1 2 2 1

True positives, ave. 54.6 57.0 57.8 55.6

Precision, ave. (%) 98.2 96.6 96.7 98.2

Recall, ave. (%) 94.1 98.6 99.0 97.5

F-measure, ave. 0.961 0.976 0.978 0.979

All-or-nothing, ave. (%) 68.0 76.0 80.0 80.0
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Fig. 9. All-or-nothing accuracy for Study 3. Left three columns: accuracy computed

using default parameter values for Exercises 1–3. Rightmost column: accuracy for

Exercise 1 using parameter values tuned for each individual user.

Table 6
Study 3, Exercise 1—accuracy with default parameter values. Pts¼number of

segment points; Fn¼false negatives; Fp¼false positives; Tp¼true positives;

P¼precision (%); R¼recall (%); F¼f-measure; AoN¼all-or-nothing accuracy (%);

AoNI¼ all-or-nothing accuracy ignoring hooks (%).

Participant Pts Fn Fp Tp P R F AoN AoNI

1 336 19 1 317 99.7 94.3 0.969 78.3 81.7

2 347 23 3 324 99.1 93.4 0.961 78.3 80.0

3 370 3 19 367 95.1 99.2 0.971 75.0 81.7

4 350 16 11 334 96.8 95.4 0.961 70.0 70.0

5 358 3 9 355 97.5 99.2 0.983 80.0 85.0

6 359 0 4 359 98.9 100.0 0.994 93.3 95.0

7 347 9 15 338 95.8 97.4 0.966 65.0 68.3

8 341 18 1 323 99.7 94.7 0.971 83.3 86.7

9 359 1 1 358 99.7 99.7 0.997 98.3 98.3

10 327 28 7 299 97.7 91.4 0.945 68.3 75.0

11 326 43 20 283 93.4 86.8 0.900 56.7 58.3

12 373 2 18 371 95.4 99.5 0.974 80.0 80.0

13 369 3 6 366 98.4 99.2 0.988 88.3 91.7

14 349 11 8 338 97.7 96.8 0.973 80.0 81.7

Average 350.8 12.8 8.8 338.0 97.5 96.2 0.968 78.2 81.0

Table 7
Study 3, Exercise 2—accuracy with default parameter values. Pts¼number of

segment points; Fn¼false negatives; Fp¼false positives; Tp¼true positives;

P¼precision (%); R¼recall (%); F¼f-measure; AoN¼all-or-nothing accuracy (%);

AoNI¼all-or-nothing accuracy ignoring hooks (%).

Participant Pts Fn Fp Tp P R F AoN AoNI

1 352 7 4 345 98.9 98.0 0.984 86.7 86.7

2 355 11 6 344 98.3 96.9 0.976 86.7 86.7

3 365 1 10 364 97.3 99.7 0.985 85.0 86.7

4 351 11 6 340 98.3 96.9 0.976 78.3 80.0

5 357 1 5 356 98.6 99.7 0.992 90.0 93.3

6 357 3 9 354 97.5 99.2 0.983 86.7 90.0

7 356 5 15 351 95.9 98.6 0.972 78.3 83.3

8 343 19 7 324 97.9 94.5 0.961 73.3 80.0

9 360 1 1 359 99.7 99.7 0.997 96.7 100.0

10 338 19 1 319 99.7 94.4 0.970 78.3 90.0

11 328 37 10 291 96.7 88.7 0.925 53.3 55.0

12 361 7 24 354 93.7 98.1 0.958 68.3 70.0

13 358 3 2 355 99.4 99.2 0.993 96.7 98.3

14 356 6 7 350 98.0 98.3 0.982 80.0 90.0

Average 352.6 9.4 7.6 343.3 97.8 97.3 0.975 81.3 85.0
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5.3. Study 3

The third study involved three exercises, designed to evaluate
how accuracy varies as users are provided with increasing amounts
of feedback about the segmentation results. In all exercises, an HP
TC4400 Tablet PC with a resolution of 1024�768 pixels was used
for data collection. In each exercise, the participants were asked to
draw each of the ten symbols from Fig. 8 six times, using a single
pen stroke for each shape.

In the first exercise, the participants were informed that the
purpose of the study was to collect data to evaluate the perfor-
mance of an algorithm. Participants were instructed to ‘‘draw
naturally with ordinary accuracy,’’ and to not attempt to ‘‘trick or
break the system.’’ The participants received no feedback about the
system’s performance; only the raw ink was displayed. Prior to
beginning the exercise, each participant was given a few minutes to
practice drawing on the Tablet PC.

In the second exercise, participants were informed that the
purpose of the software is to segment pen strokes into lines and
arcs. Each participant was then instructed as follows: ‘‘Guided by
the program’s feedback, we would like you to draw so as to achieve
the intended segmentation.’’ After each stroke was drawn, the
ink was immediately replaced with the computed segmentation.
Participants could choose to display both the raw ink and the
segmented ink, but most chose not to. Again, prior to beginning the
exercise, each participant was given a few minutes to practice
drawing.

In the third exercise, participants were informed that: ‘‘One of
the ways that the program finds the corners in a pen stroke is by
monitoring the speed of the pen, because the hand naturally slows
down at corners.’’ The participants were then asked to repeat the
second exercise.

The study involved a total of 14 participants, including nine
undergraduates and five graduate students. Four participants were
left-handed. The participants comprised five Computer Science
majors, three Electrical Engineering majors, and six Mechanical
Engineering majors. Two participants reported using pen-based
devices (e.g., smart phones, gaming devices, and Tablet PCs) often,
while the rest reported using such devices rarely if ever. Only one
participant reported drawing frequently, while the rest reported
drawing rarely if ever.

The results from the three exercises are summarized in Fig. 9.
The detailed results from Exercise 1 are summarized in Table 6. The
average f-measure across all 14 participants was 0.968. Likewise,
the average all-or-nothing accuracy was 78.2%. Because dehooking
errors are common and do not significantly affect the interpreta-
tion of a shape, Table 6 includes the symbol accuracy ignoring the
first and last 20 pixels of each stroke. This accuracy is reported
under the title ‘‘AoNI.’’ On average, this accuracy was 81.0%.

The results from Exercise 2 are summarized in Table 7. Compared
to Exercise 1, the average f-measure increased by 0.0072 to 0.975
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(p¼0.05). Similarly, the average all-or-nothing accuracy increased by
3.1 percentage points to 81.3% (p¼0.2). Likewise, the average all-or-
nothing accuracy ignoring hooks increased by 4.0 percentage points
to 85.0% (p¼0.07). Enabling participants to view the segmenter’s
output resulted in a statistically significant increase in accuracy
ðpo0:05Þ only for f-measure.

Finally, the results from Exercise 3 are summarized in Table 8.
Compared to Exercise 1, the average f-measure increased by 0.0094
to 0.977 (p¼0.07). Similarly, the average all-or-nothing accuracy
increased by 4.1 percentage points to 82.3% (p¼0.2). Likewise, the
average all-or-nothing accuracy ignoring hooks increased by
3.3 percentage points to 84.3% (p¼0.2). The information provided
to the participants about how the segmenter works resulted in no
statistically significant increase in accuracy at po0:05.

We also evaluated SpeedSeg’s accuracy for Exercise 1 using
parameter values tuned for each individual participant. The results
are presented in Table 9. Tuning was performed using the hill
climbing technique described in Section 4. Sixfold cross-validation
was used to obtain an average tuned accuracy for each participant.
In each fold of cross-validation, one of the participant’s sets of 10
symbols was used for testing, and the other five sets were used for
training. The all-or-nothing accuracy, averaged across all partici-
pants, increased from 78.2% with the default parameter values, to
Table 8
Study 3, Exercise 3—accuracy with default parameter values. Pts¼number of

segment points; Fn¼false negatives; Fp¼false positives; Tp¼true positives;

P¼precision (%); R¼recall (%); F¼f-measure; AoN¼all-or-nothing accuracy (%);

AoNI¼ all-or-nothing accuracy ignoring hooks (%).

Participant Pts Fn Fp Tp P R F AoN AoNI

1 349 9 7 340 98.0 97.4 0.977 86.7 90.0

2 355 9 4 346 98.9 97.5 0.982 85.0 85.0

3 364 0 5 364 98.6 100.0 0.993 91.7 95.0

4 350 14 19 336 94.6 96.0 0.953 63.3 63.3

5 358 0 3 358 99.2 100.0 0.996 95.0 95.0

6 353 6 2 347 99.4 98.3 0.989 90.0 90.0

7 356 4 4 352 98.9 98.9 0.989 88.3 90.0

8 342 17 8 325 97.6 95.0 0.963 70.0 71.7

9 356 2 1 354 99.7 99.4 0.996 95.0 96.7

10 344 12 4 332 98.8 96.5 0.976 76.7 83.3

11 327 32 3 295 99.0 90.2 0.944 68.3 71.7

12 375 2 21 373 94.7 99.5 0.970 70.0 76.7

13 363 7 15 356 96.0 98.1 0.970 86.7 86.7

14 356 4 6 352 98.3 98.9 0.986 85.0 85.0

Average 353.4 8.4 7.3 345.0 98.0 97.5 0.977 82.3 84.3

Table 9
All-or-nothing accuracy for Study 3, Exercise 1. ‘‘With tuning’’¼accuracy with

parameters tuned for each participant (the per-user accuracy is averaged over

sixfolds of cross-validation). ‘‘Without tuning’’¼accuracy with default parameter

values.

Participant With tuning (%) Without tuning (%)

1 88.3 78.3

2 91.7 78.3

3 83.3 75.0

4 70.0 70.0

5 93.3 80.0

6 98.3 93.3

7 85.0 65.0

8 88.3 83.3

9 98.3 98.3

10 86.7 68.3

11 78.3 56.7

12 95.0 80.0

13 96.7 88.3

14 86.7 80.0

Average 88.6 78.2
88.6% with the tuned values, which is statistically significant at
po0:001.

The affects of tuning were most dramatic for participant 11,
whose accuracy increased from 56.7% to 78.3%. This participant
drew substantially slower and with less variation in speed than
nearly all of the other participants. (Drawing at this participant’s
average speed, it would take about seven seconds to make a line
across the width of the tablet display.) However, tuning enabled
SpeedSeg to accommodate this particular drawing style.
6. Discussion

To compare SpeedSeg’s performance to that of existing algo-
rithms, we evaluated its accuracy on the ShortStraw data set from
[40] consisting of 244 polyline shapes (there are no arcs) drawn by
six different users. These shapes include 12 acute angles, 37 right
angles, and 16 obtuse angles. Testing on the ShortStraw data set
provides additional evidence of SpeedSeg’s generality, as nine of
the 11 shapes are not in our data sets. SpeedSeg’s performance on
this data set was evaluated using default parameter values;
SpeedSeg was not tuned for the ShortStraw shapes.

SpeedSeg’s accuracy on the ShortStraw data set is summarized
in Table 10. The table also includes accuracy results reported in [40]
for the ShortStraw algorithm [40], the algorithm of Sezgin et al. [32]
which we call ‘‘SSD’’, and the algorithm of Kim and Kim [21] which
we call ‘‘KK’’. SpeedSeg’s f-measure is comparable to ShortStraw’s
and much better than that of SSD and KK.4 More importantly,
however, SpeedSeg’s all-or-nothing accuracy of 86.0% is substan-
tially better than that of all three other algorithms — ShortStraw
achieved 74.1%, SSD 27.8%, and KK 29.7%. Thus, while ShortStraw
and SpeedSeg achieved comparable performance measured in
terms of the number of correct segment points, SpeedSeg per-
formed substantially better in terms of the number of completely
correct symbols, which is the most stringent measure of accuracy.
Furthermore, SpeedSeg has an additional advantage in that it can
handle strokes with arc segments, while ShortStraw cannot.

To provide another benchmark, we used the data from Exercise
1 of study 3, which contains shapes with both lines and arcs, to
compare SpeedSeg’s performance to that of other algorithms. Speci-
fically, we compared SpeedSeg’s accuracy to that of SSD, which is an
early approach based on speed and curvature, and iStraw [41], which
is a state-of-the-art algorithm. We used the SSD implementation from
the authors of [40] and the iStraw implementation available from the
website5 of the authors of [41].6 Because the algorithms vary in where
they place the segment point for a given corner, we used a 20 pixel
threshold in evaluating the accuracy of SSD and iStraw — if the
algorithm identified a segment point within 20 pixels of the correct
location, as determined by manual labeling of the data, the segment
point was considered to be correct. Using a threshold was particularly
important for iStraw, which segments a resampled version of the
stroke, rather than the original stroke data points.

The results are shown in Table 11. SSD, which is the oldest of the
three algorithms, performed the worst on all accuracy measures,
achieving an f-measure of 0.882 and all-or-nothing accuracy of
only 14.4%. SpeedSeg’s all-or-nothing accuracy is significantly
better than SSD’s (po0:001). Even using default parameter values,
SpeedSeg outperformed iStraw on both f-measure (0.969 vs. 0.958)
4 In [40] it is reported that the data set has 1842 segment points, while our

interpretation suggests that there are 1851. We use the latter value as the basis for

computing SpeedSeg’s accuracy.
5 http://www.eecs.ucf.edu/isuelab/
6 We also implemented the algorithm of Yu and Cai [43]. However, it achieved

poor performance on our data set: recall¼91.9%, precision¼51.2%, f-measure¼

0.658, and all-or-nothing¼4.1%. This may be due to the omission of implementation

details in the article.

http://www.eecs.ucf.edu/isuelab/


Table 11
Comparison of segmentation accuracy of various algorithms on the data set from

User Study 3, Exercise 1. ‘‘SpeedSeg default’’¼results using default parameter

values. ‘‘SpeedSeg tuned’’¼results using parameter values tuned for each individual

participant. During the tuning process, only all-or-nothing accuracy was saved, thus

only this accuracy measure is reported for the tuned version of SpeedSeg.

Participant SSD iStraw SpeedSeg

default

SpeedSeg

tuned

All-or-nothing

1 18.90% 71.10% 78.30% 88.3%

2 20.60% 62.80% 78.30% 91.7%

3 11.70% 80.00% 75.00% 83.3%

4 15.00% 40.60% 70.00% 70.0%

5 15.00% 92.20% 80.00% 93.3%

6 15.60% 83.90% 93.30% 98.3%

7 17.80% 77.20% 65.00% 85.0%

8 7.20% 66.10% 83.30% 88.3%

9 22.20% 67.20% 98.30% 98.3%

10 19.40% 58.90% 68.30% 86.7%

11 5.60% 67.20% 56.70% 78.3%

12 7.20% 56.10% 80.00% 95.0%

13 13.30% 98.40% 88.30% 96.7%

14 11.70% 66.10% 80.00% 86.7%

Overall

False positives 833 355 123

False negatives 380 69 179

True positives 4530 4841 4735

Precision 84.5% 93.2% 97.5%

Recall 92.3% 98.6% 96.4%

F-measure 0.882 0.958 0.969

All-or-nothing 14.4% 69.9% 78.2% 88.6%

Table 12
All-or-nothing accuracy ignoring hooks for User Study 3, in percent. Tri¼triangle,

Sqr¼square, Om¼omega, Sig¼sigma, Sqrt¼square root, Star¼star, Wave¼wave,

SBlk¼stepped-block, Piv¼pivot.

Exercise Tri Sqr Om Sig Sqrt Spr Star Wave SBlk Piv

1 92.9 91.7 91.7 84.5 69.0 59.5 88.1 85.7 71.4 75.0

2 94.0 91.7 92.9 88.1 73.8 71.4 96.4 90.5 69.0 82.1

3 92.9 85.7 90.5 85.7 72.6 77.4 97.6 82.1 78.6 79.8

Ave 93.3 89.7 91.7 86.1 71.8 69.4 94.0 86.1 73.0 79.0

Table 10
Comparison of segmentation accuracy of various algorithms on the data set from

[40]. The results for ShortStraw [40], SSD [32], and KK [21] are taken from [40].

Algorithm ShortStraw SSD KK SpeedSeg

Num seg pts 1842 1842 1842 1851

False positives 38 324 387 58

False negatives 32 42 76 21

True positives 1810 1800 1766 1830

Precision (%) 97.9 84.7 82.0 96.9

Recall (%) 98.3 97.7 95.9 98.9%

F-measure 0.981 0.908 0.884 0.979

All-or-nothing (%) 74.1 27.8 29.7 86.0

Fig. 10. Although stars are typically drawn with only line segments, this example

includes an arc. (a) Raw ink. (b) Segmented ink. (c) Raw and segmented ink overlaid.
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and all-or-nothing accuracy (78.2% vs. 69.9%). The latter difference
is significant at po0:1 but not at po0:05 (p¼0.09). Using tuned
parameter values, SpeedSeg’s all-or-nothing accuracy is signifi-
cantly better than iStraw’s (po0:001).7

SpeedSeg is intended to segment pen strokes into line and arc
segments. To provide insight about its performance on these two
types of segments, we tabulated the all-or-nothing accuracy ignoring
hooks for each type of shape from Study 3. The results, listed in
Table 12, indicate that SpeedSeg performed accurately for all 10
shapes, including those comprised solely of line segments, and those
that included arcs. SpeedSeg’s performance was best for the star and
worst for the square root symbol.

To provide a more detailed evaluation of performance on the two
types of segments, we computed the accuracy with which the
program located line and arc segments in Study 3. To provide the
benchmark, we manually labeled the segment points for each stroke
and then labeled the resulting segments as lines or arcs based on a
7 As the goal of tuning is to optimize all-or-nothing accuracy, we did not save

the f-measure data for the tuned algorithm. Thus, we did not perform ANOVA for

f-measure.
least squares fit as described in Section 3.3. We assigned segment
type in this fashion, rather than considering what might be expected
for a given kind of shape, because of the variations in how individual
participants drew particular shapes. For example, while stars are
often drawn solely with line segments, the star in Fig. 10 contains
one segment that is best described as an arc. We measured accuracy
by determining how many of the benchmark segments were
actually located by the program. For Study 3, 83.3% of the segments
were in fact lines, while 16.7% were arcs. SpeedSeg correctly located
93.6% of the lines and 87.6% of the arcs. Any segment that is correctly
located is automatically assigned the correct segment type. Thus,
the program performed well for both types of segments.

Comparison of the all-or-nothing accuracy with and without
hooks in Study 3 suggests that about 3% of symbols are incorrectly
segmented solely due to errors in the processing of the hooks.
Because hooks are by definition small features, these errors may not
significantly affect downstream applications, such as shape recog-
nizers. Nevertheless, dehooking methods such as the one in [17] may
provide a means of preventing this kind of error.

The three user studies were designed to explore different
aspects of SpeedSeg’s performance. However, all studies included
a similar experimental protocol. Specifically, Study 1, the low-
resolution portion of Study 2, and Exercise 1 of Study 3 all used
1024�768 digitizer resolution for unbiased data collection in
which study participants could not view the computed segmenta-
tion. Combining this data provides a data set comprised of 1090
shapes drawn by 23 distinct participants — studies 1 and 2 had one
participant in common. On this combined set, SpeedSeg achieved a
precision of 97.8%, a recall of 96.3%, an f-measure of 0.970, and an
all-or-nothing accuracy of 80.0%.

We also used this combined data set to investigate the influence
of SpeedSeg’s 12 tunable parameters (Tables 1 and 2) on accuracy.
Fig. 11 shows the variation in all-or-nothing accuracy as para-
meters are varied over a range from 1/2 to two times their default
values. Each trace on the graph represents variation of a single
parameter, with the other parameters held at their default values.
The abscissa of the graph represents the log2 of a parameter’s value
normalized by its default value, and thus ranges from �1 to 1. From
inspection of Fig. 11, it is apparent that accuracy is relatively
insensitive to the speed threshold (PST), the curvature threshold
(PCT), the curvature-sign (zero) threshold (PCZT), the segment merge
length trigger (PSMLR), the parallelism threshold (PPT), the relative
end length trigger (PRELR), the segment split error trigger (PSSER), and
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the segment split error threshold (PSSET). Note that the ‘‘bend’’ in the
graph of the parallelism threshold occurs because this parameter
has only a small range of meaningful values. This threshold
represents the dot product of two unit vectors, which ranges from
zero to one. Note that the variations in accuracy in Fig. 11 are
statistically significant at po0:05 only for PST and PPT.

Fig. 12 is similar to Fig. 11 but describes the remaining para-
meters, the ones that have the most influence on SpeedSeg’s
accuracy. These parameters include: the curvature-speed thresh-
old (PCST), the point merge trigger (PPMR), the segment merge error
threshold (PSMET), and the absolute end length trigger (PAELR). The
variations in accuracy for these parameters are highly statistically
significant (po0:001). The curvature-speed threshold is the most
influential. For this data, the default value of this parameter is in
fact a local optimum. The segment merge error threshold is the next
most influential parameter, but even this parameter can be doubled
in value with a decrease in accuracy of only 20 percentage points.
The point merge trigger and the absolute end length trigger have
smaller influences in that both can be halved or doubled without
reducing the accuracy by more than 13 percentage points.

SpeedSeg’s robustness to variations in the parameter values is
due, in part, to the system’s feedback loop. Errors in the initial
enumeration of candidate segment points are detected and cor-
rected by the subsequent merging and splitting processes.

The sensitivity analysis in Figs. 11 and 12 is intended to demon-
strate the overall robustness of the SpeedSeg approach: the algorithm
achieves good performance over a wide range of parameter values.
However, within this large range, there may be particular combina-
tions of parameter values that are optimal for a given user. This is
evidenced by the results in Table 9, which demonstrate that the
average all-or-nothing accuracy in Study 3, Exercise 1 could be incre-
ased by more than 10 percentage points by tuning the parameters for
each user. Our tuning process performs very limited search: only 152
search states are considered. It is possible that additional search
would result in even better accuracy. (This might be facilitated by
using a more effective search strategy such as simulated annealing or
a genetic algorithm.)

Our goal in segmenting ink is not to match the ink precisely, but
rather to match the drawer’s intent. Fig. 3 shows a typical example
in which the intended segmentation is actually a poor fit for the ink.
We believe that this necessitates the use of empirical parameter
values, like those SpeedSeg uses. These parameters are, in essence,
a model of what a person would perceive as important in a hand-
drawn sketch. We do not believe that intrinsic properties of a curve
alone are adequate to indicate the drawer’s intent. Empirically
determined parameter values are essential. We take an engineering
perspective on this issue: if our program can provide a natural
drawing environment, then we have achieved our goals.

Study 2 suggests that SpeedSeg is accurate for a range of digitizer
resolutions and symbol sizes. Because this result is based on data from
only five participants, it is inconclusive. In Study 3, participants were
allowed to draw at whatever size they found comfortable. Thus, Study
3 confirms SpeedSeg’s accuracy for conditions in which there are no
constraints on symbol size. However, using SpeedSeg with drawing
hardware substantially different from the types of hardware we have
used may require parameter tuning, which can be done with the
tuning technique described in Section 4.

All of the studies evaluated segmentation accuracy under con-
ditions in which the participants did not observe the segmentation
results. The fact that high accuracy was achieved under these con-
ditions suggests that the SpeedSeg approach is consistent with natural
drawing. Study 3 also examined accuracy when the segmentation was
displayed to the participants. This did result in a small, but statistically
significant increase in f-measure, suggesting that even after only a
brief exposure to the system, users can intuitively control the segmen-
tation process, if only to a small extent. When participants were pro-
vided with minimal information about how SpeedSeg computes
segmentation, there was no statistically significant gain in accuracy.
This may suggest that being informed of how the system works does
not matter because the system naturally matches the way most users
draw. It is also possible that our explanation to the participants did not
provide enough information. At the completion of the study, one
participant did realize that he had misunderstood the explanation and
applied the reverse strategy of speeding up at the intended corners. As
our goal is to create a system that is natural to use, we crafted our
explanation so as to provide guidance without explicitly telling parti-
cipants how to use the system. It may be useful to conduct a future
study evaluating performance under conditions in which participants
are explicitly told how to use the system most effectively.

Because SpeedSeg is intended to be used in interactive sketching
applications, runtime performance is critical. SpeedSeg has proven to
be quite fast. Segmentation of a typical pen stroke from the user study
takes only about 10 ms on an HP TC4400 Tablet PC with a 2.0 GHz Intel
T7200 Core 2 Duo Processor and 2 GB of memory. (Pen strokes were
recorded at the maximum sampling rate of the hardware by directly
addressing the Wacom tablet driver.) Likewise, tuning the system on a
training set of 50 shapes takes only about 75 s of processor time,
excluding file I/O to load and save the training data.

The purpose of a segmenter is to support shape recognizers.
Thus one measure of the performance of a segmenter is the accuracy
of a recognizer built upon it. We have used SpeedSeg as part of a
graph-based shape recognizer [24]. In user studies reported in [24],
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this recognizer achieved a top-one accuracy (correct class is the
top choice) of 93.6% and a top-three accuracy (correct class is in the
top-three choices) of 99.0%. This suggests that a shape recognizer can
overcome the occasional false negative and false positive segment
points. This, in fact, provides an opportunity for error correction. Once
a recognizer has identified a shape, knowledge of the shape can then
be used to correct segmentation errors, should that be desirable.

We have also used SpeedSeg to build AC-SPARC [9], a sketch-
based interface for the SPICE electric circuit simulator. In user
studies with this system, SpeedSeg correctly segmented 91% of the
symbols. The particular version of SpeedSeg used in AC-SPARC had
some small differences from the version described above. Thus, the
91% accuracy cannot be directly compared to the results of the
three user studies reported in Section 5.

The two speed thresholds (PST and PCST) are computed from the
average pen speed along the entire pen stroke. While this works
well, we expect it may be possible to obtain even better results by
considering only a portion of the pen stroke. For example, the speed
thresholds could be based on the average speed within a window of
points that slides along the stroke. In this way, the thresholds at any
given point would be more strongly influenced by the local properties
of the pen stroke. This may be particularly useful for long strokes.
7. Conclusion

The challenge in segmenting a pen stroke is to identify the geo-
metric primitives intended by the drawer. Frequently, the intent is not
a literal interpretation of the stroke. Thus, segmentation techniques
that aim for a precise match to the ink are likely to produce poor
results. As an alternative, our approach uses pen speed to help infer
intent. The approach is based on the observation that it is common for
the drawer to slow the pen tip at points of intended discontinuities.

Based on this observation, we have developed a technique for
segmenting hand-drawn pen strokes into lines and arcs. To begin, an
initial set of candidate segment points is identified. This set includes
speed minima below a threshold, where the threshold is computed
from the average pen speed along the stroke. The set also includes
curvature maxima at which the pen speed is again below a threshold.
Once the initial set of candidates has been generated, the ink between
each pair of consecutive segment points is classified as either a line or
an arc, depending on which fits best. A feedback process is then
employed, and segments are judiciously merged and split as necessary
to improve the quality of the segmentation.

We conducted three formal user studies to evaluate SpeedSeg’s
performance. These studies considered the unbiased case in which the
participants could not view the computed segmentation. We found
the system to be accurate even for new users: on the combined data
from the three studies, SpeedSeg achieved an f-measure of 0.970 and
an all-or-nothing accuracy of 80.0% using default parameter values.
Allowing participants to view the computed segmentation resulted in
a small but statistically significant increase in f-measure, suggesting
that even after only a brief exposure to the system, users can begin to
intuitively control the segmentation process.

Our studies have also shown that SpeedSeg performs well for both
small (1 cm) and large (4 cm) shapes, and that the system can be used
with a range of digitizer resolutions. The system has proven to be fast,
requiring only about 10 ms to segment a typical pen stroke. SpeedSeg
uses several empirical parameters, but accuracy is strongly sensitive
to only one of them. Nevertheless, it is still possible to quickly tune the
system to optimize performance for a given user. In our experiments,
75 s of optimization on a set of 50 shapes resulted in an average
increase in all-or-nothing accuracy of 10 percentage points.

In summary, this work has demonstrated the utility of pen
speed for inferring the intended segmentation of pen strokes. While
there are still opportunities to improve SpeedSeg’s performance,
our studies have demonstrated that the technique is sufficiently
reliable for use in practical systems.
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