
Copyright 2001 IEEE. Published in the Proceedings of 2003 IEEE Human-Centric Computing Conference, Auckland, New Zealand, October 2003. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

An E-whiteboard Application to Support Early Design-Stage Sketching of UML
Diagrams

Qi Chen1, John Grundy1, 2 and John Hosking1

Department of Computer Science1 and Department of Electrical and Electronic Engineering2,

University of Auckland, Private Bag 920, Auckland, New Zealand
{qche013@ec.|john-g@cs.|john@cs.}auckland.ac.nz

Abstract

We describe a Unified Modelling Language (UML)
diagramming tool that uses an E-whiteboard, pen-based
sketching interface to support collaborative design. Our
tool allows designers to sketch UML visual modelling
language constructs, mixing different UML diagram
components, free-hand annotations and hand-written text.
A key novelty of our approach is the preservation of hand-
drawn diagrams and support for manipulation of the
diagrams using pen-based actions. UML sketches can be
“formalized” to computer-recognised and drawn
diagrams, and exported to a 3rd party CASE tool.

1. Introduction

One of the most common tools used by software
designers when doing collaborative design work is a
whiteboard. This is used to collaboratively sketch
software design ideas (for example as whole or partial
UML diagrams), explore architectural solutions, capture
high level code fragments, organise design teams,
schedule events, etc, as shown in Figure 1 [5, 11].

Three partial UML diagram types are shown in the
whiteboard sketches on the right – (1) “use cases” (stick
figure and oval), describing actors (users) interacting with
a system; (2) “classes” (box with horizontal lines inside
and arrowed lines between), describing classes of types
and their relationships; and (3) “sequences” (boxes with
vertical lines underneath and horizontal arrowed lines
between), denoting message sequence flow between
objects. Some key advantages of using whiteboards for
sketching such UML (and other) designs include:
• Immediacy: there is very little effort required to make

a whiteboard “available”, and it is very easy to create
diagrams, capture text, delete or extend information.

• Versatility: a whiteboard can be used to sketch
diagrams of multiple (even mixed) notations, as well
as supporting a variety of secondary notations, such
as comments, arrows, highlighting, and colour.

Sketches do not have to be precise nor complete in
any formal manner.

• Size: a whiteboard is generally big enough to hold
several significant sketches and to allow several
people to easily collaborate.

• Collaboration: a whiteboard allows multiple
designers to gather around and discuss evolving
designs, including taking turns at sketching and
annotating designs on the whiteboard

Disadvantages of conventional whiteboards for such tasks
are a lack of data persistency, an inability to readily
transfer information to electronic design tools (eg CASE
tools), difficulty making some changes (eg repositioning
parts of diagrams), lack of collaboration support at a
distance, and ink dust on your clothing. For these reasons
much recent work has focussed on the development and
use of large electronic whiteboards [19, 15, 3, 11].

We describe an electronic whiteboard-based early
design phase sketching tool. This allows UML diagrams
to be sketched, recognised, and integrated with a
conventional CASE tool. Key novelties of our approach
include the preservation of hand-sketched design
elements, provision of various pen-based manipulation
facilities on sketches, and ability to formalise sketches to
computer-drawn diagrams for export to CASE tools.

2. Related Work

Electronic whiteboards have become a popular way of
support a wide range of activities. These include meeting
support with collaborative document display, review and
annotation [21]; education [3]; presentation control and
annotation [1]; and (early) design [11]. The previously
listed input advantages of conventional whiteboards are
partially replicated with E-whiteboard applications, with
additional advantages of digital data capture and display,
distributed work support and control via
sketching/gesture-based interfaces [1, 3, 19].

(1)

(2)

(3)

Figure 1. (a) Designers around a white board; (b) an example of sketched UML diagrams.

The Unified Modelling Language [6, 20] has become
a standard visual modelling language for software
specification and design. UML provides several diagram
types, each with more or less independent notations for
specific design tasks e.g. use case diagrams for describing
system interaction, class diagrams for static object type
structures, sequence diagrams for dynamic message flow
between objects. Many computer-aided software
engineering (CASE) tools have been developed to support
UML modelling, with almost all of these tools adopting
conventional mouse and keyboard input and standard
monitor display of information [16, 17]. However, many
HCI studies have pointed out that developers prefer
sketching designs by hand rather than using a
keyboard/mouse and a computer screen, especially in the
early stage of software design.[5, 10, 15]. Empirical
studies of CASE tool usage have show that designers find
these overly restrictive during early design, often leading
to poor utilisation of the tools [9, 11, 5].

A number of systems have been developed using pen-
based interfaces to support a sketch-based approach to
software design. One of the earliest was SILK [10] which
allows software designers to sketch an interface using an
electronic pad and stylus. SILK attempts to recognize user
interface widgets and other interface elements as soon as
they are drawn, though it is not intrusive and users are
only made aware of the results when they choose to
exercise the widgets. The recognition uses Rubine’s
single stroke gesture recognition algorithm [18]. When
the designer is satisfied with the early prototype, SILK
can transform the sketches into standard Motif widgets
and graphical objects. At each stage of the process, the
designer can switch the sketch into run mode to test the
interface by manipulating it with the mouse, keyboard, or
stylus. SILK stores the history of all drawings for later
use. Annotation and editing are also supported in the tool.
Silk only recognizes a few ways of drawing each widget
and does not support specification of widget behaviour.

FreeForm [15] is a Visual Basic (VB) Add-In for the
design of VB forms. It adopts the same metaphor of the
SILK , but uses an electronic whiteboard and pen input to
support hand-drawn sketching. There are five major parts

to the software: the sketch space, storyboard, run mode,
recognition engine and VB form converter. The sketch
space allows the user to draw multiple sketches each
depicting a different form, while the storyboard shows
miniature views of all the form sketches and allows the
user to add links between forms. In the run mode the
sketch is shown but can not be altered. The user can
navigate between the forms by touching ‘hotspots’. The
recognition of shapes and characters are also based on
Rubine’s [18] algorithm with shape/letter library and rule
mapping techniques. Plimmer discovered that retention of
the sketch based format while doing user testing improved
the quality of testing over conversion to VB forms and
hence the quality of the software design.

Knight [5] is the work closest to our research,
although other Knight-style UML tools exist [11, 8].
Knight supports collaborative UML modelling using
gestures on an electronic whiteboard with pen input. To
achieve intuitive interaction, Knight uses compound
gestures and eager recognition. Compound gestures
combine gestures that are either close in time or space to
form one drawing element. Eager recognition, again based
on Rubine’s algorithm, tries to classify gestures (shapes)
while they are being drawn. Text input is supported by
normal keyboard, on-screen Virtual Keyboard, Stylus-
based Gestures (as on PDA’s), Cirrin, and Quikwrite.
Most UML sketching tools like Knight adopt immediate
recognition and computer-drawing of information.
However, to support informality incomplete elements can
be recognized at a later time and a separate “freehand”
mode can be used for arbitrary sketches and annotations.
However, there is no association between a “freehand”
element and a “formal” (recognized) element. Other
related work includes work done on recognition of UML
shapes from glyphs [11], web interface design in Denim
[12], and gesture-based document manipulation [1, 14].

3. Our Approach

Our primary motivation in developing a new, E-
whiteboard, sketching-based UML design tool was to

explore the retention of the hand-drawn sketch “look and
feel” of real whiteboards with UML sketches, while
retaining the ability to recognise and convert the sketches
to more formal diagrams. In particular we are influenced
by Plimmer’s observations in her Freeform work that
retaining a sketch form encourages more experimentation
with design. Our approach, therefore, is an electronic-
whiteboard based sketching tool that recognises UML
constructs as they are drawn.

Figure 2. Our SUMLOW design tool in use.

This is very different to Knight and other approaches
taken to UML sketching to date [5, 8, 11]. In our tool the
look and feel of the hand-drawn constructs are retained as
much as possible, while still allowing constructs to be
moved, copied, replaced, deleted, etc via pen-based input
techniques. Rich, user-defined secondary notation is
supported in a seamless way by use of textual annotations,
sketch constructs that are not recognisable as UML
constructs, colour, etc. Our tool is also unusual in that we
allow constructs from different UML diagram types to be
mixed together in ways that may violate a particular
diagram semantics, but which may be of value during
conceptual design. Diagrams or parts of diagrams can be

progressively formalised when desired then checked for
feedback on semantic constraints, and exported to a
standard UML design tool for further work.

Figure 2 shows our system, SUMLOW (Sketched
UML On Whiteboard), in use. The electronic whiteboard
we have used is a LIDS (Large Image Display Surface)
unit [1] which has a large backlit display (eliminating
shadowing) combined with a Mimio [13] ultrasonic
system for pen location, but the approach is potentially
applicable to other pen based systems. The SUMLOW
application is implemented using Visual Basic.

Figure 3 shows two screen dumps from SUMLOW in
use. Figure 3 (a) shows SUMLOW’s sketch board, where
several UML constructs, together with some annotations
(text and arrow), have been sketched. Constructs can be
moved and copied; the right hand class construct was
copied from the left one. Note that dotted text entry lines
have been added to constructs that have been recognised
to indicate where to add names, attribute information, etc.
Figure 3 (b) shows SUMLOW’s diagram view which
displays the recognised shapes in formalised form. Note
that in this SUMLOW view the annotations have been
omitted as they are not formally recognised constructs.
When exporting such formalised UML diagrams to a
CASE tool, diagram elements belonging to particular
UML diagram types are filtered and included in multiple
UML diagrams in the tool.

A Time-out technique is used to process pen input for
manipulating diagrams, whereby if a pen is rested on a
component for a brief period, this indicates a pen
operation, such as moving the construct, is to be
undertaken. Single gesture recognition, using Rubine’s
algorithm, is used for text recognition. Multiple gesture
recognition is used to recognise shapes.

Figure 3. SUMLOW in use illustrating various recognised UML constructs (a) sketch view (b) diagram view.

4. An Example

To illustrate use of SUMLOW we describe the
collaborative design of a simple on-line video rental
system for a video store. Designers John and Michael use
SUMLOW to develop early-phase UML designs together
and then formalise their designs and export them to a
CASE tool, to support detailed design and system
implementation.

Figure 4. Use case model sketch in SUMLOW.

John begins by using SUMLOW to sketch out the
main “use cases” (groups of user-system interaction
requirements) using UML use case diagram elements. He
draws on the E-whiteboard surface with a stylus (pen
without ink) and SUMLOW draws connected pixels as
John moves the stylus. John draws one shape after another
(“Actors”, which are stick-figures and “use cases”, which
are named ovals), connecting them with interaction
relationships.

Shapes are recognised by the multi-stroke gesture
recognition algorithm as the designer makes changes to
the sketch . Once the shape is identified as an actor or use
case, this is recorded and a text entry area (dotted line) is
added for entering the construct’s name. Unrecognised
sketches become secondary diagram annotations.

Shapes are manipulated with pen gestures to indicate
movement, and deletion. SUMLOW carries out a simple
redrawing algorithm to redraw sketched connector lines
between shapes. Figure 4 shows the resulting use case
diagram in SUMLOW, with some custom annotations.
Both John and Michael have added some annotations e.g.
box around Customer actor, cross through unused use
case oval and custom arrow to line, during their
discussions of the system requirements.

After John has sketched out these use cases, Michael
takes over to sketch out some initial classes (object types)
and relationships. Class shapes are quite complex, being

rectangles (that a user may sketch as multiple line strokes)
and two horizontal internal lines separating class name
(top part), list of class attributes (middle part) and list of
class operations (bottom part). Our multi-stroke
recognition algorithm is used to recognise these and add
three text entry areas to the sketched shape, one for each
kind of text item the user can draw. Figure 5 shows his
first class. As Michael writes names for attributes and
operations on the attribute name and operation name text
entry lines in SUMLOW, the insertion point moves to
accommodate additional entries. In this example, it can be
seen that Michael has drawn his class too small for the
additional textual data. Rather than supporting a
conventional resize operation, a replace paradigm is used,
whereby the bounds of a construct are redrawn by the user
to indicate the size of the replacement, and sub-elements
of the sketch are transferred across to the new shape, as
shown in the bottom view in Figure 5.

Figure 5. Sketching class icons in SUMLOW.

A more complete UML class diagram sketch is shown

in Figure 6, with several classes, associations (lines
between two classes) and generalizations (lines with a
triangle arrow). In this example, Michael has named the
classes and added attributes and operations to three of
them so far. Michael has added an extra use case sketch at
the top left (boxed off using secondary annotation).
During design he and John have also added textual
annotation, arrows, and shape highlights which are not
recognised as UML constructs and hence regarded as
secondary notation.

Figure 6. UML class diagram sketch in SUMLOW.

After discussing and modifying the initial class
diagram sketch in SUMLOW, John and Michael focus on
one of the complex message flows in the proposed video
system design. They sketch a UML sequence diagram in
SUMLOW to try and capture and discuss this dynamic
system behaviour. Figure 7 shows this sketching, with
objects (rectangles plus names), vertical lines from
objects, operation timing (rectangles on vertical lines),
and operation invocation (arrowed lines between
operation timing rectangles). In this example John and
Michael have also used Actor shapes instead of object
rectangles for two objects, customer and staff. This
violates the UML diagramming convention, but is here
useful for John and Michael in discussing their design
sketch.

As sequence diagrams are quite complex and require
considerable space, other diagram types are not able to be
mixed with a sequence diagram sketch. Initiation of a
sequence diagram sketch is done by drawing a horizontal
line across the top of the sketch board. At that point, any
other existing sketches on the whiteboard are saved or
discarded by user choice, and the horizontal line
converted to a solid blue line. Actors or objects drawn in
the sketch board will be relocated at the top of the
sequence diagram and a timeline (dotted blue line) added
associated with that component. Calls and timing
elements are sketched on these timelines. Copying,
moving or deleting an actor or object will also reposition
the timelines, calls, and timing elements as appropriate.

As John and Michael perform their design sketching
on the sketch board sketches are formalised in a
background process and rendered into formalised UML
diagrams in the design view. The results for some of these

sketches are shown in Figure 8. Note that some
information is discarded from the sketches e.g. informal
secondary notation like highlights that have no UML
notation equivalent.

Figure 7. UML sequence diagram sketching.

The two views are completely integrated; except for
drawing new objects in the diagram view, objects in the
diagram view can be moved, copied and deleted and the
manipulations will be reflected in the sketch views. The
formalised UML diagrams can be exported to a 3rd party
CASE tool using an XML-based design model encoding
XMI.

Figure 8. "Formalised' UML diagrams from previously illustrated sketches in SUMLOW.

5. Design and Implementation

Figure 9 shows the basic components of our
SUMLOW UML E-whiteboard design tool. The LIDS E-
whiteboard provides a data projector, for displaying the
SUMLOW user interface, that is back-projected onto an
opaque surface. A Mimio data capture device provides
pen input for the application. The SUMLOW application
is written in VisualBasic and uses VB user interface
libraries to provide the sketching interface and application
management. The MimioMouse application is used to
convert the pen input into simulated mouse movements,
used to drive the application’s VB controls. This allows
conventional VB UI controls to be used but also provides
fine-grained sketching tool support via the Mimio stylus
pen, used for most of the sketch manipulation. One
disadvantage of this input approach is that no right-mouse
button is supported, limiting some interaction styles in our
interface design (e.g. use of pen-tap on modality buttons
rather than in-context pop-up menus).

The multi-stroke algorithm for shape recognition, we
adapted from Apte et al. [2], has the advantages that more
complex shapes can be handled than with a single stroke
algorithm, drawings are more natural, and no training is

required, at the expense of being able to recognise only
combinations of simple geometric shapes and the need to
order appropriately the way in which complex shapes are
put together. Recognition is very efficient with all shapes
recognised within 2 milli-seconds.

As mentioned previously, Rubine’s single stroke
algorithm has been used so far in SUMLOW for text
recognition. This is not ideal, due to the need for
considerable per-user training to provide acceptable
recognition accuracy. We see this algorithm as an interim
solution until more robust algorithms, such as that used by
Microsoft’s Tablet PC extensions, have readily accessible
APIs that we can make use of easily from SUMLOW.
SUMLOW design sketches are saved and loaded using
custom XML encodings. SUMLOW also supports saving
formalised UML diagrams to XMI encodings for export
to 3rd party CASE tool usage. We do not currently support
the import of XMI-encoded UML diagrams from CASE
tools. However, this might be provided in future to allow
the use of SUMLOW for discussion, annotation and
modification of existing UML designs from within the E-
whiteboard design environment.

M ulti-stroke recognition

Single Stroke
Recognition

<<pen interaction capture>>

<<drawing>> <<m anipulation>>

Visual Basic
UI Libraries

UM L Sketch Data
Structures

XM L Save
Form at

Pojector
screen Pen input

Training
Guesture
Database

XM L

Figure 9. An overview of our SUMLOW tool’s architecture.

6. Discussion

We have carried out two evaluations of SUMLOW:
one a survey of six experienced UML designers and
whiteboard users and to gain subjective feedback on the
tools suitability for UML-based software design. The
second a Cognitive Dimensions [7] evaluation of
SUMLOW to gauge its performance characteristics
compared to conventional UML design tools.

Our end-user evaluation did not address the text
recognition component, due to the known deficiencies in
the approach taken, and concentrated instead on 1)
assessing the accuracy of the shape recognition
component and 2) utility for UML diagram production.
Results of the accuracy evaluation are shown in Table 1.

Constructs Recognition rate
Actor 100%
Use case (after actor drawn) 80%
Use case (alone) 70%
Class 100%
Object 100%
Component 90%
Node 80%
Note 90%
Activation 100%
Package 100%
Association 100%
Dependency 100%
Generalization 100%
Aggregation 80%
Message 90%

Table 1. Accuracy of SUMLOW shape recognition.

This analysis shows acceptable performance for most
components. Some diagram types are more distinctive
than others, resulting in higher recognition rates. For
example, use cases being simple ovals are more difficult
to accurately recognise than classes and components,
which are quite distinctive.

Results of the usability evaluation are still being
analysed, but preliminary anecdotal feedback provided
by our users indicates the following general
characteristics of SUMLOW:
 The system is easy to learn and pen manipulations of

diagrams provides efficient use of time
 Good feedback is provided to the users for pen

manipulations while in progress and when finished
 The GUI follows a user friendly design

 The ability to annotate sketched diagrams in flexible
ways is important

 The tool encourages collaborative UML design
 The lack of enforcement during sketching of UML

diagram constraints encourages exploratory design
 The text recognition component was unsatisfactory

We carried out a Cognitive Dimensions (CD)

assessment [7] to gauge the support of SUMLOW for
exploratory UML design compared with conventional
UML CASE tools. We plan to carry out an Attention
Investment evaluation [4] to further assess its efficiency
and effectiveness compared to traditional UML design
tools. We summarise our CD usability results below:
• Viscosity. Some aspects of SUMLOW sketches require

less effort to change e.g. redraw over top to resize, than
conventional UML tools, while others require more
effort e.g. movement is change mode/select/drag vs
click-and-drag in most mouse-based tools.

• Secondary notation. The user has great freedom to
sketch whatever secondary notation they desire in
SUMLOW and to mix notational elements.

• View support. Multiple views are supported in
SUMLOW, both sketched and formalised. Users can
also mix notations within a view and sketch incomplete
UML designs, providing greater modelling flexibility
during early design work.

• Closeness of mapping. SUMLOW’s sketched diagram
elements must have a degree of similarity to computer-
drawn UML elements in order to be recognised. This
constrains the user to a degree and resolving mis-
recognition can adversely impact on usability.

• Terseness/diffuseness. An almost infinite range of
sketched shapes can be recognised as the same UML
element due to the use of hand-sketching. This allows
users to employ a wider range of symbols than CASE
tools with fixed shape computer-drawn models e.g. the
user can use size, variations in slope and minor
annotations to distinguish elements if desired.

• Hard mental operations. Ambiguous sketches cause
confusion for the tool and user. The learning curve of
text recognition and some complex shape
sketching/recognition make learning to use the tool in
some respects more difficult to (simple) mouse-driven
conventional UML CASE tools.

• Hidden dependencies. The shape recognition
algorithms employed by SUMLOW connect hand-
sketched design elements to “assumed” formal UML
elements within diagrams with limited user feedback.

• Progressive evaluation. The shape recognisers and
user-demanded formalisation of SUMLOW design
sketches support progressive evaluation within the tool.

In summary, our SUMLOW E-whiteboard UML
design tool provides an efficient and effective sketching-
based user interface on a large screen E-whiteboard. Both
design sketch elements and text are constructed and
manipulated using pen-based input. The freedom from
heavily-enforced modelling constraints and flexible
annotation facility in this environment encourages
exploratory and collaborative UML-based software
design. Disadvantages at present include recognition
problems with some shape elements but particularly with
the single-stroke text recognition algorithm. The learning
curve for some gestures and current support for one-
directional i.e. sketch to formalised UML model design
are limitations we plan to address in future. Future work
plans include the provision of distributed collaboration
support utilising multiple E-whiteboards, support for bi-
directional sketch to formal UML model and formal
model to sketch transformation. The later will also
support import of models from existing UML design tools
and support sketch-based manipulation and annotation of
these UML models for design review and re-engineering
tasks. We aim to put our gesture-based sketching and E-
whiteboard presentation support into a meta-CASE tool
we are developing, making it much easier to “E-
whiteboard” enable a very wide range of design tools in
the future.

7. Summary

We have developed SUMLOW, a sketching-based
UML design tool for E-whiteboard technology. Users
collaboratively sketch UML software design elements,
with sketched-based design elements recognised and
hand-drawn shapes preserved. Users can flexibly annotate
these sketches with their own sketched secondary notation
and gesture-based manipulation of design sketches and
single-stroke text recognition are supported. Users may
mix UML design constructs in SUMLOW and may
formalise their design sketches and have them exported to
existing UML CASE tools as desired. Evaluation of
SUMLOW indicates that this is a very promising
approach to supporting exploratory, collaborative design.

8. References

1. Apperley et al (2002): Lightweight capture of presentations
for review, In Proceedings of IHM-HCI, Lille, France,
ACM Press

2. Apte, A. Vo, V. Kimura T. D. Recognizing Multistroke
Geometric Shapes: An Experimental Evaluation. In
Proceedings of the 6th annual ACM symposium (1993) on
User interface software and technology, ACM Press, pp.
121-128.

3. Berque, D., Johnson, D.K., Jovanovic, L. Teaching theory
of computation using pen-based computers and an

electronic whiteboard, ACM SIGCSE. Bulletin, vol. 33, no.
3, September 2001, ACM Press, pp.169-172.

4. Blackwell, A.F. First steps in programming: A rationale for
Attention Investment models. In Proceedings of the 2002
IEEE Symposia on Human-Centric Computing Languages
and Environments, IEEE CS Press, pp. 2-10.

5. Damm, C. H. Hansen, K. M. Thomsen, M. Tool Support
for Cooperative Object-Oriented Design: Gesture Based
Modeling on an Electronic Whiteboard. In Proceedings of
CHI 2000 on Human factors in computer systems: the
future is here, ACM Press, pp. 518-525.

6. Fowler, M., Scott, K. UML Distilled: A Brief Guide to the
Standard Object Modeling Language, 2nd Edition, Addison-
Wesley, August 1999.

7. Green, T.R.G. & Petre, M. Usability analysis of visual
programming environments: a ‘cognitive dimensions’
framework. Journal of Visual Languages and Computing
1996 (7), pp. 131-174.

8. Ideogramic, Pervasive UML, http://www.ideogramic.com/.
9. Iivari, J. Why are CASE tools not used? Communications

of the ACM, vol. 39, no. 10, October 1996, 94-103.
10. Landay, J. A. SILK: sketching interfaces like krazy. In

Proceedings of CHI’96 on Human factors in computer
systems: common ground, ACM Press, pp. 518-525.

11. Lank, E., Thorley, J., Chen, S., Blostein, D. On-line
recognition of UML diagrams, Proceedings of the Sixth
International Conference on Document Analysis and
Recognition, IEEE CS Press, 2001, pp.356-360.

12. Lin, J., Newman, M.W., Hong, J.I. and Landay, J. A.
(2000): Denim: Finding a tighter fit between tools and
practice for web design, Proceedings of CHI’2000, ACM
Press, pp. 510-517.

13. Mimio® home page: from http://www.mimio.com (Last
Visited Tuesday, March 26, 2003).

14. Myers, B.A. (1997): The Amulet Environment: New
Models for Effective User Interface Software Development,
IEEE Transactions on Software Engineering, vol. 23, no. 6,
347-365, June 1997.

15. Plimmer, B. Apperley, M. Computer-aided sketching to
capture preliminary design. In Proceedings of the Third
Australasian Conference (2002) on User interfaces,
Australian Computer Society, Inc, pp. 9-12.

16. Quatrani, T. Visual Modeling with Rational Rose 2002 and
UML, 3rd Edition, Addison-Wesley, October 2002.

17. Robbins, J. and Redmiles, D. Cognitive Support, UML
Adherence, and XMI Interchange in Argo/UML,
Information and Software Technology, 2000.

18. Rubine, D. Specifying Gesture by Examples. In
Proceedings of the 18th annual conference (1991) on
Computer graphics and interactive techniques, ACM Press,
pp. 329-337.

19. Smart Technologies Inc. (2002): SMART Board,
www.smarttech.com.

20. UML™ Home Page, OMG (Object Management Group), available
from http://www.uml.org/ (Last Updated Wednesday, March 19,
2003).

21. Voida, S., Mynatt, E.D., MacIntyre, B., Corso, G.M.
Integrating virtual and physical context to support
knowledge workers. IEEE Pervasive Computing, vol. 1, no.
3, July-Sept. 2002, IEEE CS Press, pp.73-79.

