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ABSTRACT 

Digital ink features drive recognition engines. Intuitively, we understand that particular features are of more value 
for some problems than others. Likewise, inclusion of poor features may be detrimental to recognition success. 
Many different ink features have been proposed for ink recognition, and most work well for the context that they are 
employed. However given a new problem it is not clear which of the already defined features will be most useful. 
We have assembled and categorized a comprehensive feature library and use this with attribute selection algorithms 
to choose the best features for a specified problem. To verify the effectiveness of this approach the selected features 
are used to train a Rubine’s recognizer. We show that a set of complementary features is most effective: poor 
features adversely affect recognition as do two or more aliases of good features. We have composed a variant of a 
Rubine recognizer for 3 different datasets and compared these with the Rubine’s original features, a variant on this 
InkRubine and $1. The results show that feature selection can significantly improve recognition rates with this 
simple algorithm thus verifying our hypothesis that the right combination of features for a problem is one key to 
recognition success. 
 
Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and 
interpretation, I.4.7 [Image Processing and Computer Vision]: Feature Measurement - feature representation  

 
1. Introduction 

Gesture, or single stroke, recognizers are a core 
component of most digital ink recognition. Even geometric 
based recognizers such as [PH08, YC03] employ single 
stroke recognition techniques to differentiate primitives 
such as lines and curves. Such recognizers join or fragment 
strokes before or after the single stroke recognition is 
applied. The process of joining and fragmenting strokes we 
therefore considered a separate problem from single stroke 
recognition.  

Computable features of the ink stroke are at the heart of 
most gesture recognizers. Johnson et al [JGH*09] group the 
techniques for sketch recognition into hard coded 
recognizers, visual matching algorithms and those based on 
textual descriptions. Visual matching is further separated 
into feature based approaches and those based on graphical 
templates. Paulson et al [PH08] categorize recognition 
techniques as feature based or geometrically based 
approaches. Although all techniques are not explicitly 
regarded as feature based, they all rely on information 
provided by various measurements of the digital ink strokes 
[FPJ02, HD02, HCE*97, PH08, PF07, Rub91, SD05, 
SSD01, YC03], as well as specific algorithms to combine 
and select the appropriate features. 

Many features have been proposed for many different 
recognition problems. Each problem, (diagram type, gesture 
set etc) has its own peculiarities. There are many examples 
of people adding and removing features from recognition 

algorithms which have been designed for different 
problems to improve the recognition rate for their specific 
problem. Variations of Rubine’s [Rub91] recognizer is an 
example of this [LNH*00, Pli04]. Trainable recognition 
algorithms, such as Rubine’s seek to optimize to the best 
features and ignore poor features. However there is a 
computational cost for each feature; therefore reducing the 
number of features employed will increase the efficiency of 
recognition. 

To explore the effects of different features we have 
composed a comprehensive library of ink features from 
previous work in sketch recognition, as well as formulating 
new features that we believe could measure important 
characteristics of strokes. The features have been carefully 
scrutinized to develop a taxonomy of feature types.  In total 
there are 114 features in the library, each with code to 
calculate the feature. 

The importance of features is well established in AI 
community, but has had little attention in respect of digital 
ink features. To explore the effect of feature selection we 
use attribute selection algorithms in Weka [WF05] to 
identify the best features for single stroke recognition in a 
particular context. The features are then used in Rubine’s 
algorithm to compare recognition rates across datasets. 
Rubine’s algorithm is popular because of its simplicity and 
computational efficiency. However reported recognition 
rates are usually around 86% [Pli04]. We will show that 
selecting a set of effective features, and using these in 
Rubine’s algorithm significantly improves accuracy rates. 
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2. Related work 

The choice of features is critical to the success of 
recognition, yet heuristics currently form the basis of most 
selections. Little rigorous analysis has been applied when 
identifying the features used in each recognition technique. 
Typically feature and algorithm selection is made 
heuristically [LC02, PH08, Rub91, SSD01, YC03]. Fonseca 
et al [FPJ02] report using percentile graphics for each 
possible feature which show the statistical distribution of 
feature values for different shape classes. Long et al 
[LLR*00] uses multi dimensional scaling analysis and 
regression to identify distinguishing features for 
determining the similarity of gestures. 

There are many features used by these recognition 
systems, but the question is which ones are really 
significant to the recognition problem at hand? Various 
studies of ink features have attempted to answer this 
question, one for a writing drawing divider [PPG07] and the 
others for basic shape and gesture recognition [PRD*08, 
WNG*09, ZS07]. 

The writing-drawing divider developed in [PPG07] used 
a decision tree with a library of 46 potential ink features. 
These features were from previous work and included their 
own additions. The features were categorized into seven 
categories: pressure, time, intersections, size, curvature, 
tablet OS recognition (probabilities generated by the 
Microsoft Tablet OS recognition engine), and inter-stroke 
gaps (includes features measuring spatial and temporal 
context). It was found that features measuring inter-stroke 
gaps, size and curvature were important for distinguishing 
between writing and drawing. This was demonstrated by 
the accuracy of the new divider using these features in 
comparison to two other dividers. 

Paulson et al [PRD*08] conducted a small study of 
geometric features versus gesture based features for basic 
shape recognition. Geometric features are considered as 
those measuring the shape of strokes whereas gesture based 
features concentrate on how strokes are drawn. They 
compiled 44 features from PaleoSketch [PH08] and 
Rubine’s work [Rub91] (used for basic shape and gesture 
recognition). Two quadratic classifiers were trained using a 
50/50 split of the data, where one used the full feature set 
and the other a selected subset. Another two quadratic 
classifiers were trained using 25-fold cross validation on the 
full feature set and the selected subset. The subset of 
features was chosen using a 10-fold greedy sequential 
forward selection technique using the quadratic classifier as 
a wrapper. The results showed that the quadratic classifiers 
using the selected feature subset performed better than 
those using the full feature set. The results also showed that 
geometric features were more successful for basic shape 
recognition than gesture based features. Only one gesture 
based feature (total rotation) was found to be optimal. 

Willems et al. [WNG*09] conducted a study to evaluate 
the effect of different feature sets for multi-stroke gesture 
recognition. Three groups of features were used: one had 48 
features from previous research which contains geometric 
features; another extended those 48 features by finding the 
mean and standard deviation of various stroke groups to 
generate a total of 758 features; the last contained features 

used extensively in character recognition. They report the 
extended feature set improves the accuracy between 10% 
and 50% compared with only the 48 geometric features; 
and between 25% and 39% when compared with two 
previous recognition techniques. This demonstrates that the 
use of a good feature set can produce improvements in 
recognition accuracy. 

Zhang and Sun [ZS07] conducted a small study 
comparing features with three algorithms. The features they 
tested were mostly from previous work in sketch 
recognition and included Rubine’s features [Rub91], 
centroid radius, curvature, normalized curvature, 
compositional features (include dynamic features, and 
means and standard deviations of other features), speed and 
a modified turning function. They tested the accuracy of 
three algorithms; support vector machine (SVM), hidden 
Markov model (HMM), and a Bayesian belief network 
(BN); when each feature is used as input to see how 
successful each feature (or group of features) is at 
recognizing their data. The data they used for training and 
testing came from electrical diagrams and consisted of 10 
different graphical symbols of varying degrees of 
complexity collected from four participants. Unfortunately 
the data was highly biased as participants were asked to 
draw symbols in specific styles. The study found that speed 
and turning features produced high recognition results for 
all algorithms. For BN the compositional features had 
optimal results. For SVM, curvature was very successful. 
The centroid radius and Rubine’s features did not produce 
good results for any algorithms. Overall BN was found to 
be the most suitable algorithm for multi-stroke recognition 
as was able to achieve over 92% correct with only 100 
samples and had the shortest training time of all. 

None of the above feature studies have a feature library 
that is as comprehensive and wide ranging as ours. 
Although Willems et al [WNG*09] had a feature set of 758 
features, these were simply extensions of a base set of 48 
features. We have also developed a taxonomy to 
complement our library – organizing things into categories 
and naming the groups is a well proved method for 
providing new ways to think about the object. To our 
knowledge there are no comprehensive studies exploring 
the application of multiple feature selection algorithms to 
improve sketch recognizers. 

3. Feature Library 

The feature library consists of 114 features; the complete 
list is presented in appendix 1 together with a reference to 
its source. In order to better understand the type of things 
that the features are measuring we have developed the 
taxonomy shown in table 1. In some cases a feature reflects 
more than one entry in the taxonomy, for example the 
entropy feature is considered to be a measure of density, 
however it can also be a part of the divider results as it was 
developed as a one feature divider by Bhat et al [BH09]. 

In an approach derived from grounded theory [GS67], we 
developed the taxonomy by first grouping features 
measuring similar characteristics of ink. Once groups were 
formed, category names were assigned to each group 
according to the types of features that belonged to that 
group. By categorizing features in this way we tried not to 
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fit features into a particular group but form the group 
around the features that shared similarities. 

This taxonomy helps us to gain a better understanding of 
the information we can gain from ink by providing a clear 
overview of various characteristics of ink. When we 
examine the subsets chosen by feature selection methods, 
having a taxonomy to refer to is a valuable tool. Grouping 
the feature subset using the taxonomy helps us gain a more 
intuitive understanding of the features that are significant to 
the problem rather than overwhelming us with each 
individual feature’s characteristics. With this knowledge we 
learn more about the types of features that are important to 
the problem at hand, therefore helping us to better solve the 
problem in the future. It may also help us identify 
characteristics of ink that are not measured and thus devise 
new features. 
Table 1. Summary of stroke feature categories. 
1. Curvature (e.g. the line 
above has a greater curvature 
than the line 
below). 

6. Pressure (measure the 
pressure applied to the screen 
when drawing a stroke. 
Pressure is dependent on the 
capabilities of the hardware). 

2. Density (e.g. the spiral below 
has a higher density of points 
than the line). 

7. Size 

3. Direction (this is related to 
the overall slope 
of the stroke). 

8. Spatial context (with sub 
categories: curvature, density, 
divider results, intersections, 
location and size). 

4. Divider Results (these 
features provide the results of 
text/shape 
divider 
algorithms). 

9. Temporal context (with sub 
categories: curvature, density, 
divider results, length, 
location/distance and 
time/speed). 

5. Intersections (e.g. the 
diagram below shows 
intersecting 
strokes). 

10. Time / speed (includes 
total, average, maximum and 
minimum times or speed). 

Table 2. Dataset descriptions 
Shape Graph Class

Example 

 

 
 

Collection 
method 

Isolated In-situation In-situation 

Rectangle 80 - 170 
Ellipse 80 146 - 

Triangle 80 - 57 
Line  

(arrow shaft) 80 172 215 

Arrowhead 80 173 96 
Diamond 80 - 60 

Total 480 491 598 

4. Datasets 

Three datasets have been used as exemplars of different 
types of single stroke data. Shape consists of basic shapes 
drawn in isolation (see examples in table 2). These are 

representative of simple drawing artefacts or functional 
gestures. Graph and Class are drawn as diagrams where 
each shape has spatial and temporal relationships, and they 
differ in the number of shape classes. In each case data was 
drawn by 20 participants. They were instructed to draw 
each class in a single stroke, any multi-stroke classes are 
excluded from the dataset. The breakdown of the number of 
instances of each class in each dataset is shown in table 2. 

5. Data Mining for Feature Selection 

In effect we undertake a two step training process: the 
first is to select the best feature subset through the feature 
selection functionalities supported by Weka. However, 
Weka supports many feature selection methods, each 
performing the selection by focusing on different aspects of 
a feature subset. We have evaluated the performance of 
eight feature selection algorithms by training Rubine’s 
algorithm with each feature subset and observing the 
recognition accuracy. For our purpose Rubine has the 
advantage of being a simple statistical method without the 
sophistication to fully ignore poor features or aliases. 

For each stroke in the datasets all 114 features were 
computed. For each dataset with features calculations, we 
firstly applied each feature selection method chosen from 
Weka [WF05]: ChiSquared, Filtered, GainRatio, InfoGain, 
OneR, ReliefF, Significance and SymmetricalUncert. The 
selected attributes are then used to train Rubine’s algorithm 
by gradually increasing the size of the feature subset from 
one to the maximum number selected. The results in figure 
1 show incremental increase in accuracy, as the feature set 
size increases, and also shows the number of attributes 
where sub-optimal features begin to be selected, reflected 
by significant drops in accuracy. To choose a good feature 
selection method, we decided the priority is that it should 
not select sub-optimal features and can select the most 
important features which increase accuracy with a minimal 
number of features. 

All algorithms apply a ranked search, which weights the 
features. Among these algorithms we found through testing, 
ReliefF gives near optimum performance without decrease 
if the weight is set to 0.3, which means the features of little 
importance are not used. The steep drops in figure 1 are 
because of Rubine’s sensitivity to bad features. We found it 
is also very sensitive to inappropriate feature combinations. 
For example, table 3 shows the results of different feature 
combinations and the accuracy of the trained classifier. The 
feature numbers in table 3 correspond to the full feature list 
in the appendix. Comparing the first two combinations, the 
only difference is the use of feature 1.16, which suggests 
that this feature is detrimental to recognition. However, 
combination 3 also uses feature 1.16 but gives a good 
result. With further analysis, we observe that the removal of 
either feature 2.2 or 2.5 as shown in 4 and 5 can produce 
good results. This shows that feature selection not only has 
to consider the individual importance of features, but also 
the relationships between them. While most other attribute 
evaluation algorithms assume the independence of the 
attributes, ReliefF considers the dependencies between the 
participating attributes. This gives it a strong advantage. 
ReliefF, when configured to use weight higher than 0.3, 
always produces good results. The 0.3 weighting was  
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Dataset

 
Figure 1. The accuracy of each feature selection algorithm for different feature set size

Table 3. Accuracy of different feature combinations (features in 
appendix 1) 
 Feature combination % Correct 
1 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 2.2, 1.17 97.3
2 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 2.2, 1.17, 

1.16 
3.63 

3 1.6, 1.11, 1.15, 1.3, 1.22, 2.6, 2.8, 3.1, 3.2, 3.3, 7.7, 
1.16 

98.6 

4 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 1.17, 1.16 97.3
5 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.2, 1.17, 1.16 97.3
Table 4. Top 20 features found with ReliefF for each dataset 
(features in appendix 1) 
Dataset Top 20 features 
Shape 1.12, 2.8, 2.6, 1.16, 7.16,  5.1, 7.17, 7.2, 7.7, 7.13, 7.10, 1.3, 

1.1, 1.9, 7.5, 1.7, 1.17, 7.11, 4.1, 1.23 

Graph 1.12, 2.8, 2.6, 7.16, 1.6, 1.11, 1.18, 1.21, 1.4, 1.23, 7.7, 7.2, 
4.1, 5.1, 1.13, 1.16, 7.17, 1.9, 1.19, 7.10 

Class 1.12, 5.1, 2.8, 1.16, 2.6, 7.16, 7.13, 7.2, 7.7, 7.14, 7.11, 1.7, 
7.17, 7.10, 1.13, 1.3, 1.17, 1.4, 10.5, 1.11 

decided by trialing values between 0.1 and 0.9. 
Generally the more features used the higher the accuracy. 

As the accuracy never decreases under our setting, we 
decided to select all features with a weight of more than 
0.3. We also observe that approximately 20 features can 
guarantee high performance. The top 20 features selected 
using ReliefF with each dataset independently is shown in 
table 4. We have only listed the top 20 features as we have 
observed that the top 20 features produce optimal results 
for ReliefF as illustrated in figure 1. The features shown in 
bold are those that are common between all three datasets. 
Half of the top 20 features for each dataset are common to 
all subsets; however there may be further common features 
if we look at those ranked below the top 20. 

6. Evaluation 

To train the recognizers, we split each dataset in half and 
trained on one half and tested on the other and then 
reversed the sets to perform a second run. This ensures the 
testing process will have different participants from the 
training process. The three datasets shown in table 2 are 
used in the evaluation process. 

Three trainable recognizers are used for comparison: $1 
recognizer [WWL07], the original Rubine algorithm 
[Rub91], and InkRubine [PF07]. Table 5 shows the 
evaluation results of each algorithm trained and tested with 
each dataset. The Data Manager Evaluator [SPB09] is used 
to perform the evaluations. 

The attribute selected Rubine algorithm shows a much  

higher average accuracy than all other algorithms tested. A 
z-test was conducted between the attribute selected Rubine 
and InkRubine, with n = 1569. It shows a standard error of 
0.006 and a p-value of 4 ൈ 10ିଵହ. This shows that the 
attribute selected Rubine algorithm is significantly better 
than InkRubine and all other algorithms used as they have 
lower average accuracies. 

Table 5. Evaluation results 

Algorithm 
% Correct 

Shape Graph Class Average 
Rubine (AttribSelected) 97.70 98.40 94.50 96.87 

InkRubine 95.00 96.40 85.90 92.43 

Rubine (Original) 85.60 97.90 80.60 88.03 

$1 85.40 94.00 84.20 87.87 

7. Discussion 

Many features have been proposed for sketch recognition. 
The taxonomy presented here clarifies the types of measures 
that have been used. When developing the taxonomy we 
used a method derived from grounded theory [GS67] where 
we grouped the features first into those that have 
similarities, and then formed categories around those 
groups. This method was chosen so that we could avoid 
having preconceived ideas of how the taxonomy should be 
formed. In essence we wanted a taxonomy that would fit the 
feature library rather than trying to fit the features into a 
pre-categorized system. 

By looking at the taxonomy we can see that the top 20 
features in table 4 are overwhelmingly from the curvature 
(1) and size (7) categories. There are also features from 
density (2), divider results (4) intersections (5) and 
time/speed (10). Some categories are not used at all in the 
top 20, and from some only one feature is used. Given the 
range of recognition problems that are yet to be fully 
investigated and the relative similarity of our datasets it is 
too soon to come to any conclusions on the overall 
usefulness of particular features. However with the use of 
our taxonomy we can begin to form a greater understanding 
of the types of features that are important for this problem, 
therefore promoting further development of features in these 
areas. 

Our results show that feature selection is valuable. It can 
select good features and reduce the number of features 
required for an algorithm without compromising on 
accuracy. Reducing the number of features to only those 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20 25 30

%
  c

or
re

ct
 (A

ve
ra

ge
 o

f S
ha

pe
, 

G
ra

ph
 a

nd
 C

la
ss

)

Number of Features Selected

ChiSquared

Filtered

GainRatio

InfoGain

OneR

ReliefF

Significance

SymmetricalUncert



R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids 

© The Eurographics Association 2010. 

that are significant can save on computation time, which is 
especially important for eager recognition applications. 
However, feature selection should be carried out with care 
to ensure that accuracy is preserved when discarding 
features. For example when presented with a set of good 
features, the best features may be selected and the less 
important ones discarded. Yet, in many cases these less 
important features may work in combination with other 
features to produce good results. We found that the ReliefF 
algorithm gave consistently good results with our data sets. 

The same attribute selection method can select different 
subsets when training with different datasets due to the 
nature of each dataset. Our analysis found that although 
features tend to have different rankings, there is a large 
overlap of common features between the subsets. Some 
consistently good features appear in all versions of our 
algorithm: Table 4 shows that half of the top 20 features are 
common to all datasets. This highlights the importance of 
these common features. We still find features that are 
unique to a particular problem, for example features 6.3 
(minimum pressure) and 1.5 (sum of the angles2) only 
appear in the selected feature subset for the Shape dataset, 
although they are ranked below the top 20. 

Attribute selection is beneficial for simple algorithms 
such as Rubine, or algorithms which consider all inputs 

without a means to remove bad features. More sophisticated 
algorithms use voting techniques or tree generating 
algorithms as a mechanism for performing attribute 
selection themselves therefore the independent application 
of feature selection techniques do not result in gains in 
accuracy. However, because attribute selection is fast, an 
extra filter may still save on the computational cost of 
recognition. 

Overall, adding good features is an important way to 
improve recognizer performance. With the existence of 
more features, calculation time may increase therefore 
attribute selection is a promising approach to prune these 
attributes and generate highly accurate algorithms. 

8. Conclusion 

The taxonomy of features presented here aids 
understanding the types of features useful for recognition 
problems and is likely to promote the discovery of more 
good quality features. Selecting appropriate features for the 
problem is also important. We have shown that automatic 
selection of those features using data mining techniques 
produces highly accurate results. An evaluation of our 
attribute selected classifiers against three other trainable 
recognizers shows significantly more accurate results. 

Appendix 1
 Feature Description & Origin

1 Curvature (23) 
1 # Bezier cusps Number of bezier cusps [PPG*07]
2 # Direction Changes Number of changes in the direction of a stroke. (New)
3 # Polyline cusps Number of polyline cusps [PPG*'07]
4 ∑ |angle at each point| Sum of the absolute value of the angle at each point of the stroke. [Rub91]
5 ∑(angle at each point)2 Sum of the squared value of the angle at each point of the stroke. [Rub91]
6 Abs Curve Larg. Frag. The total absolute curvature of the largest fragment. [BSH04]
7 Angle of bbox diagonal Angle of the bounding box diagonal. [Rub91]
8 Avg Curvature Average curvature (total angle / number of stroke points). [PRD*08]
9 Cos from 1st to last pt. Cosine of the angle between the first and last point of the stroke. [Rub91]
10 Cos of initial angle Cosine of the initial angle of the stroke. [Rub91]
11 Curviness ∑ abs value of the angle at each stroke pt below 19o threshold. [LLR*00]
12 Distance frm 1st - last pt Distance from the 1st point of the stroke to the last point of the stroke[Rub91] 
13 Least Squares Error Orthogonal distance squared between the least squares fitted line and the stroke points / stroke length. 

[PRD*08, SSD01] 
14 Max Curvature Maximum curvature of the stroke. [PRD*08]
15 NDDE Normalised distance between direction extremes. [PH08]
16 Number of Fragments # of fragments in a stroke (fragmented according it’s to corners) [BSH04]
17 Openness Distance from 1st -last pt of the stroke / size of the stroke’s b. box. [LLR*00] 
18 Overtracing Total angle / 2π . [PH08]
19 Sin from 1st to last pt Sine of the angle between the first and last point of the stroke. [Rub91]
20 Sin of initial angle Sine of the initial angle of the stroke. [Rub91]
21 Total angle Total angle traversed by the stroke. [Rub91]
22 Total Angle & Lgth Ratio Total angle / stroke length. [LLR*00]
23 Total Angle Ratio Total angle / ∑ |angle at each point|. [LLR*00]
2 Density (8) 
1 Amount of ink inside Amt of ink inside the strokes b. box (count the # of pts inside b. box) [You05] 
2 Density 1 Stroke length / distance between first & last point. [LLR*00]
3 Density 2 Stroke length / area of bounding box. [LLR*00]
4 Entropy Stroke information density [BH09]
5 Length Ratio Cumulative distance between stroke points/ length from stroke start to end point. Adapted from [Rub91]
6 Length:Perimeter ratio Stroke length / perimeter of the stroke’s convex hull. [FPJ02]
7 Point Ratio # of points in the stroke’s convex hull / # of points in the stroke. [LC02]
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8 Total length/bounding box 
diagonal length 

Length of the stroke divided by the length of the bounding box diagonal. Adapted from [Rub91] 

3 Direction (4) 
1 DCR Maximum change in direction / average change in direction. [PH08]
2 Direction Direction of the stroke (eigenvector of the largest eigen value) [BSH04]
3 Eigen value ratio The largest eigen value/ smallest eigen value. [BSH04]
4 Largest Frag. Direction Direction of largest fragment (eigenvector of the largest eigen value.[BSH04] 
4 Divider Results (2) 
1 Divider Result Results of our text/shape divider on the current stroke. [PPG*07]
2 Tablet OS text prob.  Tablet OS text recognizer probability of the stroke being text.[Mic05] 
5 Intersections (3) 
1 # Endpt self intersections # of self intersections at the endpts of the stroke. Adapted from [Qin05]
2 # Other self intersections # of self intersections that are not at the stroke’s endpt. Adapted frm [Qin05] 
3 # Self intersections Number of points where the stroke intersects itself. Adapted from [Qin05]
6 Pressure (4) 
1 Average pressure Mean average pressure of the stroke. Adapted from [NSS*02]
2 Max pressure Maximum pressure value for the stroke. Adapted from [NSS*02]
3 Min pressure Minimum pressure value for the stroke. Adapted from [NSS*02]
4 # Pressure minima # of minima in pressure values for the stroke. [PPG*07]
7 Size (19) 
1 Arc Fit Radius The radius of an arc fitted to the stroke. [PRD*08]
2 Aspect |45π/180 – angle of the bounding box diagonal |. [LLR*00]
3 Bounding box area Area of the bounding box of the stroke. Adapted from [FPJ02, HD02]
4 B. box diagonal length Length of the bounding box diagonal line. [Rub91]
5 Bounding box height Height of the bounding box of the stroke. Adapted from [FPJ02, HD02]
6 Bounding box width Width of the bounding box of the stroke. Adapted from [FPJ02, HD02]
7 Convex hull area ratio Ratio of area of convex hull to area of the enclosing rect of the stroke.[FPJ02] 
8 Enclosing Rect. ratio Ratio of strokes enclosing rectangle width to height. [FPJ02]
9 Largest Frag. Length Arc length of the stroke’s largest fragment. [BSH04]
10 Length Total length of the stroke. [Rub91]
11 Log Area Log of the stroke’s bounding box area. [LLR*00]
12 Log Aspect Log of the aspect feature. [LLR*00]
13 Log Length Log of the total length of the stroke. [LLR*00, MFN93] 
14 Log Longest Side Rect Log of the length of the longest side of the stroke’s bounding box. [MFN93]
15 Long Side of Enclosing Rect 

of Largest Frag. 
The longest length of the largest fragment’s enclosing rectangle. [BSH04]

16 Perimeter Efficiency 2 √ (π stroke’s convex hull area) / stroke’s convex hull perimeter. [LC02]
17 Perimeter to area Ratio of perimeter to area of the stroke’s convex hull. [FPJ02]
18 Thinness ratio Perimeter2 of stroke’s convex hull / area of stroke’s convex hull [FPJ02]
19 Width to height ratio Ratio of the stroke’s bounding box width to height. Adapted from [FPJ02]
8  Spatial Context 
8.1 Curvature (2) 
1 Avg Curvature of Close End 

Pt Strokes 
Average curvature (using total angle) of strokes close at end points to current stroke. [AWJ*07] 

2 Avg Curvature of Close 
Strokes 

Average curvature (using total angle) of strokes close to current stroke. [AWJ*07] 

8.2 Density (2) 
1 Avg Density of Close End Pt 

Strokes 
Average density ( stroke length / bounding box diagonal length) of strokes close at end points to the 
current stroke. [AWJ*07] 

2 Avg Density of Close Strokes Average density ( stroke length / bounding box diagonal length) of strokes close to the current stroke. 
[AWJ*07] 

8.3 Divider Results (1) 
1 Divider Closest Stroke Results of our text/shape divider for the closest stroke to the current [AWJ*07] 
8.4 Intersections (5) 
1 # Other intersections Number of points of intersection of the current stroke with other strokes (excluding self intersections). 

Adapted from [CSK*02] 
2 # Other strokes intersecting Number of other strokes that intersect the current stroke (excluding itself). Adapted from [FPJ02, HD02]
3 # Strokes Vert Overlapping The number of strokes vertically overlapping the current stroke. [BSP09]
4 Total # intersections  Total # of intersections (includes self intersections). Adapted from [CSK*02]
5 Total # strokes intersecting Number of strokes that intersect the current stroke (including itself) [FPJ02, HD02] 
8.5 Location (9) 
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1 # Close End Pt Strokes # of strokes whose endpts are close to endpt of the current stroke. [AWJ*07] 
2 # Close Strokes The number of close strokes to the current stroke. [AWJ*07]
3 # Strokes Contained # of strokes contained in the current stroke. [BSP09]
4 # Strokes Horiz Close #of strokes horizontally close to curr stroke. [BSP09]
5 # Strokes On Same Horiz 

Plane 
The number of strokes on the same horizontal plane as the current stroke. [BSP09] 

6 # Vertically Close The number of strokes vertically close to the current stroke. [AWJ*07]
7 Is Contained If a stroke is contained by another stroke. (New)
8 Smallest Dist Btwn Strokes 

from End Pt 
The smallest distance to another stroke from the current stroke’s end point. (New) 

9 Smallest Dist Btwn Strokes 
from Start Pt 

The smallest distance to another stroke from the current stroke’s start point. (New) 

8.6 Size (4) 
1 # Strokes Similar Height # strokes of similar height to current stroke. [BSP09]
2 Avg Length of Close End Pt 

Strokes 
Average length of strokes close at endpoints to the current stroke. [AWJ*07] 

3 Avg Length of Close Strokes Average length of strokes close to the current stroke. [AWJ*07]
4 Length of Closest Stroke The length of the closest stroke to the current stroke where the closest stroke is found by measuring 

distance between the middle of the b. box.  (New) 
9 Temporal Context 
9.1 Curvature (2) 
1 Curv. of Next Stroke Total angle of next stroke. Adapted from [Rub91]
2 Curv. of Prev. Stroke Total angle of previous stroke. Adapted from [Rub91]
9.2 Density (2) 
1 Density of Next Stroke Length of the next stroke divided by the length of the next stroke’s bounding box diagonal. Adapted from 

[Rub91] 
2 Density of Previous Stroke Length of the previous stroke divided by the length of the previous stroke’s bounding box diagonal. 

Adapted from [Rub91] 
9.3 Divider Results (2) 
1 Next Stroke Divider  Results of our text/shape divider for the next stroke.  [PPG*07]
2 Previous Stroke Divider  Results of our text/shape divider for the previous stroke. [PPG*07]
9.4 Length (2) 
1 Length of Next Stroke Total length of next stroke. [AWJ*07]
2 Length of Prev. Stroke Total length of previous stroke. [AWJ*07]
9.5 Location/Distance (6) 
1 Distance from last stroke   Distance between current stroke and previous stroke. Adapted from [You05] 
2 Distance to next stroke Distance between current stroke and next stroke. Adapted from [You05]
3 X Diff between strokes Difference in X co-ordinate between current stroke and next. [BSH04]
4 X Start point diff Difference in starting X coordinates of current stroke to next stroke. [BSH04] 
5 Y Diff between strokes Difference in Y co-ordinate between current stroke and next. [BSH04]
6 Y Start point diff Difference in starting Y coordinates of current stroke to next stroke. [BSH04] 
9.6 Time/Speed (8) 
1 Log start time from prev Log of time from start of previous stroke to start of current stroke. [BSH04]
2 Log start time to next Log of time from start of current stroke to start of the next stroke. [BSH04]
3 Log time diff from prev Log of the time between the current and previous stroke. [BSH04]
4 Log time diff to next Log of the time between the current stroke and the next stroke. [BSH04]
5 Speed from last stroke Speed (distance/time) between current stroke and previous stroke. [PPG*07] 
6 Speed to next stroke Speed (distance/time) between current stroke and next stroke. [PPG*07]
7 Time from last stroke  The time between current stroke and previous stroke. [PPG*07]
8 Time till next stroke The time between current stroke and next stroke. [PPG*07]
10. Time / Speed (6) 
1 # Speed minima #of extreme minima in the speed values for the stroke. Adapted from[SSD01] 
2 Average Speed Mean average speed when drawing the stroke. Adapted from [Rub91]
3 Max speed Maximum speed when drawing the stroke. Adapted from[Rub91]
4 Max speed squared Maximum speed of the stroke squared. [Rub91]
5 Min speed Minimum speed when drawing the stroke. Adapted from[Rub91]
6 Total duration Total duration of the stroke from pen up to pen down. [Rub91]
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