
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2010)
Marc Alexa & Ellen Yi-Luen Do (Guest Editors)

© The Eurographics Association 2010.

The Power of Automatic Feature Selection:

Rubine on Steroids

Rachel Blagojevic, Samuel Hsiao-Heng Chang, Beryl Plimmer
Department of Computer Science

University of Auckland
Private Bag 92019, Auckland, New Zealand

ABSTRACT

Digital ink features drive recognition engines. Intuitively, we understand that particular features are of more value
for some problems than others. Likewise, inclusion of poor features may be detrimental to recognition success.
Many different ink features have been proposed for ink recognition, and most work well for the context that they are
employed. However given a new problem it is not clear which of the already defined features will be most useful.
We have assembled and categorized a comprehensive feature library and use this with attribute selection algorithms
to choose the best features for a specified problem. To verify the effectiveness of this approach the selected features
are used to train a Rubine’s recognizer. We show that a set of complementary features is most effective: poor
features adversely affect recognition as do two or more aliases of good features. We have composed a variant of a
Rubine recognizer for 3 different datasets and compared these with the Rubine’s original features, a variant on this
InkRubine and $1. The results show that feature selection can significantly improve recognition rates with this
simple algorithm thus verifying our hypothesis that the right combination of features for a problem is one key to
recognition success.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and
interpretation, I.4.7 [Image Processing and Computer Vision]: Feature Measurement - feature representation

1. Introduction

Gesture, or single stroke, recognizers are a core
component of most digital ink recognition. Even geometric
based recognizers such as [PH08, YC03] employ single
stroke recognition techniques to differentiate primitives
such as lines and curves. Such recognizers join or fragment
strokes before or after the single stroke recognition is
applied. The process of joining and fragmenting strokes we
therefore considered a separate problem from single stroke
recognition.

Computable features of the ink stroke are at the heart of
most gesture recognizers. Johnson et al [JGH*09] group the
techniques for sketch recognition into hard coded
recognizers, visual matching algorithms and those based on
textual descriptions. Visual matching is further separated
into feature based approaches and those based on graphical
templates. Paulson et al [PH08] categorize recognition
techniques as feature based or geometrically based
approaches. Although all techniques are not explicitly
regarded as feature based, they all rely on information
provided by various measurements of the digital ink strokes
[FPJ02, HD02, HCE*97, PH08, PF07, Rub91, SD05,
SSD01, YC03], as well as specific algorithms to combine
and select the appropriate features.

Many features have been proposed for many different
recognition problems. Each problem, (diagram type, gesture
set etc) has its own peculiarities. There are many examples
of people adding and removing features from recognition

algorithms which have been designed for different
problems to improve the recognition rate for their specific
problem. Variations of Rubine’s [Rub91] recognizer is an
example of this [LNH*00, Pli04]. Trainable recognition
algorithms, such as Rubine’s seek to optimize to the best
features and ignore poor features. However there is a
computational cost for each feature; therefore reducing the
number of features employed will increase the efficiency of
recognition.

To explore the effects of different features we have
composed a comprehensive library of ink features from
previous work in sketch recognition, as well as formulating
new features that we believe could measure important
characteristics of strokes. The features have been carefully
scrutinized to develop a taxonomy of feature types. In total
there are 114 features in the library, each with code to
calculate the feature.

The importance of features is well established in AI
community, but has had little attention in respect of digital
ink features. To explore the effect of feature selection we
use attribute selection algorithms in Weka [WF05] to
identify the best features for single stroke recognition in a
particular context. The features are then used in Rubine’s
algorithm to compare recognition rates across datasets.
Rubine’s algorithm is popular because of its simplicity and
computational efficiency. However reported recognition
rates are usually around 86% [Pli04]. We will show that
selecting a set of effective features, and using these in
Rubine’s algorithm significantly improves accuracy rates.

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

2. Related work

The choice of features is critical to the success of
recognition, yet heuristics currently form the basis of most
selections. Little rigorous analysis has been applied when
identifying the features used in each recognition technique.
Typically feature and algorithm selection is made
heuristically [LC02, PH08, Rub91, SSD01, YC03]. Fonseca
et al [FPJ02] report using percentile graphics for each
possible feature which show the statistical distribution of
feature values for different shape classes. Long et al
[LLR*00] uses multi dimensional scaling analysis and
regression to identify distinguishing features for
determining the similarity of gestures.

There are many features used by these recognition
systems, but the question is which ones are really
significant to the recognition problem at hand? Various
studies of ink features have attempted to answer this
question, one for a writing drawing divider [PPG07] and the
others for basic shape and gesture recognition [PRD*08,
WNG*09, ZS07].

The writing-drawing divider developed in [PPG07] used
a decision tree with a library of 46 potential ink features.
These features were from previous work and included their
own additions. The features were categorized into seven
categories: pressure, time, intersections, size, curvature,
tablet OS recognition (probabilities generated by the
Microsoft Tablet OS recognition engine), and inter-stroke
gaps (includes features measuring spatial and temporal
context). It was found that features measuring inter-stroke
gaps, size and curvature were important for distinguishing
between writing and drawing. This was demonstrated by
the accuracy of the new divider using these features in
comparison to two other dividers.

Paulson et al [PRD*08] conducted a small study of
geometric features versus gesture based features for basic
shape recognition. Geometric features are considered as
those measuring the shape of strokes whereas gesture based
features concentrate on how strokes are drawn. They
compiled 44 features from PaleoSketch [PH08] and
Rubine’s work [Rub91] (used for basic shape and gesture
recognition). Two quadratic classifiers were trained using a
50/50 split of the data, where one used the full feature set
and the other a selected subset. Another two quadratic
classifiers were trained using 25-fold cross validation on the
full feature set and the selected subset. The subset of
features was chosen using a 10-fold greedy sequential
forward selection technique using the quadratic classifier as
a wrapper. The results showed that the quadratic classifiers
using the selected feature subset performed better than
those using the full feature set. The results also showed that
geometric features were more successful for basic shape
recognition than gesture based features. Only one gesture
based feature (total rotation) was found to be optimal.

Willems et al. [WNG*09] conducted a study to evaluate
the effect of different feature sets for multi-stroke gesture
recognition. Three groups of features were used: one had 48
features from previous research which contains geometric
features; another extended those 48 features by finding the
mean and standard deviation of various stroke groups to
generate a total of 758 features; the last contained features

used extensively in character recognition. They report the
extended feature set improves the accuracy between 10%
and 50% compared with only the 48 geometric features;
and between 25% and 39% when compared with two
previous recognition techniques. This demonstrates that the
use of a good feature set can produce improvements in
recognition accuracy.

Zhang and Sun [ZS07] conducted a small study
comparing features with three algorithms. The features they
tested were mostly from previous work in sketch
recognition and included Rubine’s features [Rub91],
centroid radius, curvature, normalized curvature,
compositional features (include dynamic features, and
means and standard deviations of other features), speed and
a modified turning function. They tested the accuracy of
three algorithms; support vector machine (SVM), hidden
Markov model (HMM), and a Bayesian belief network
(BN); when each feature is used as input to see how
successful each feature (or group of features) is at
recognizing their data. The data they used for training and
testing came from electrical diagrams and consisted of 10
different graphical symbols of varying degrees of
complexity collected from four participants. Unfortunately
the data was highly biased as participants were asked to
draw symbols in specific styles. The study found that speed
and turning features produced high recognition results for
all algorithms. For BN the compositional features had
optimal results. For SVM, curvature was very successful.
The centroid radius and Rubine’s features did not produce
good results for any algorithms. Overall BN was found to
be the most suitable algorithm for multi-stroke recognition
as was able to achieve over 92% correct with only 100
samples and had the shortest training time of all.

None of the above feature studies have a feature library
that is as comprehensive and wide ranging as ours.
Although Willems et al [WNG*09] had a feature set of 758
features, these were simply extensions of a base set of 48
features. We have also developed a taxonomy to
complement our library – organizing things into categories
and naming the groups is a well proved method for
providing new ways to think about the object. To our
knowledge there are no comprehensive studies exploring
the application of multiple feature selection algorithms to
improve sketch recognizers.

3. Feature Library

The feature library consists of 114 features; the complete
list is presented in appendix 1 together with a reference to
its source. In order to better understand the type of things
that the features are measuring we have developed the
taxonomy shown in table 1. In some cases a feature reflects
more than one entry in the taxonomy, for example the
entropy feature is considered to be a measure of density,
however it can also be a part of the divider results as it was
developed as a one feature divider by Bhat et al [BH09].

In an approach derived from grounded theory [GS67], we
developed the taxonomy by first grouping features
measuring similar characteristics of ink. Once groups were
formed, category names were assigned to each group
according to the types of features that belonged to that
group. By categorizing features in this way we tried not to

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

fit features into a particular group but form the group
around the features that shared similarities.

This taxonomy helps us to gain a better understanding of
the information we can gain from ink by providing a clear
overview of various characteristics of ink. When we
examine the subsets chosen by feature selection methods,
having a taxonomy to refer to is a valuable tool. Grouping
the feature subset using the taxonomy helps us gain a more
intuitive understanding of the features that are significant to
the problem rather than overwhelming us with each
individual feature’s characteristics. With this knowledge we
learn more about the types of features that are important to
the problem at hand, therefore helping us to better solve the
problem in the future. It may also help us identify
characteristics of ink that are not measured and thus devise
new features.
Table 1. Summary of stroke feature categories.
1. Curvature (e.g. the line
above has a greater curvature
than the line
below).

6. Pressure (measure the
pressure applied to the screen
when drawing a stroke.
Pressure is dependent on the
capabilities of the hardware).

2. Density (e.g. the spiral below
has a higher density of points
than the line).

7. Size

3. Direction (this is related to
the overall slope
of the stroke).

8. Spatial context (with sub
categories: curvature, density,
divider results, intersections,
location and size).

4. Divider Results (these
features provide the results of
text/shape
divider
algorithms).

9. Temporal context (with sub
categories: curvature, density,
divider results, length,
location/distance and
time/speed).

5. Intersections (e.g. the
diagram below shows
intersecting
strokes).

10. Time / speed (includes
total, average, maximum and
minimum times or speed).

Table 2. Dataset descriptions
Shape Graph Class

Example

Collection
method

Isolated In-situation In-situation

Rectangle 80 - 170
Ellipse 80 146 -

Triangle 80 - 57
Line

(arrow shaft) 80 172 215

Arrowhead 80 173 96
Diamond 80 - 60

Total 480 491 598

4. Datasets

Three datasets have been used as exemplars of different
types of single stroke data. Shape consists of basic shapes
drawn in isolation (see examples in table 2). These are

representative of simple drawing artefacts or functional
gestures. Graph and Class are drawn as diagrams where
each shape has spatial and temporal relationships, and they
differ in the number of shape classes. In each case data was
drawn by 20 participants. They were instructed to draw
each class in a single stroke, any multi-stroke classes are
excluded from the dataset. The breakdown of the number of
instances of each class in each dataset is shown in table 2.

5. Data Mining for Feature Selection

In effect we undertake a two step training process: the
first is to select the best feature subset through the feature
selection functionalities supported by Weka. However,
Weka supports many feature selection methods, each
performing the selection by focusing on different aspects of
a feature subset. We have evaluated the performance of
eight feature selection algorithms by training Rubine’s
algorithm with each feature subset and observing the
recognition accuracy. For our purpose Rubine has the
advantage of being a simple statistical method without the
sophistication to fully ignore poor features or aliases.

For each stroke in the datasets all 114 features were
computed. For each dataset with features calculations, we
firstly applied each feature selection method chosen from
Weka [WF05]: ChiSquared, Filtered, GainRatio, InfoGain,
OneR, ReliefF, Significance and SymmetricalUncert. The
selected attributes are then used to train Rubine’s algorithm
by gradually increasing the size of the feature subset from
one to the maximum number selected. The results in figure
1 show incremental increase in accuracy, as the feature set
size increases, and also shows the number of attributes
where sub-optimal features begin to be selected, reflected
by significant drops in accuracy. To choose a good feature
selection method, we decided the priority is that it should
not select sub-optimal features and can select the most
important features which increase accuracy with a minimal
number of features.

All algorithms apply a ranked search, which weights the
features. Among these algorithms we found through testing,
ReliefF gives near optimum performance without decrease
if the weight is set to 0.3, which means the features of little
importance are not used. The steep drops in figure 1 are
because of Rubine’s sensitivity to bad features. We found it
is also very sensitive to inappropriate feature combinations.
For example, table 3 shows the results of different feature
combinations and the accuracy of the trained classifier. The
feature numbers in table 3 correspond to the full feature list
in the appendix. Comparing the first two combinations, the
only difference is the use of feature 1.16, which suggests
that this feature is detrimental to recognition. However,
combination 3 also uses feature 1.16 but gives a good
result. With further analysis, we observe that the removal of
either feature 2.2 or 2.5 as shown in 4 and 5 can produce
good results. This shows that feature selection not only has
to consider the individual importance of features, but also
the relationships between them. While most other attribute
evaluation algorithms assume the independence of the
attributes, ReliefF considers the dependencies between the
participating attributes. This gives it a strong advantage.
ReliefF, when configured to use weight higher than 0.3,
always produces good results. The 0.3 weighting was

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

Dataset

Figure 1. The accuracy of each feature selection algorithm for different feature set size

Table 3. Accuracy of different feature combinations (features in
appendix 1)
 Feature combination % Correct
1 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 2.2, 1.17 97.3
2 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 2.2, 1.17,

1.16
3.63

3 1.6, 1.11, 1.15, 1.3, 1.22, 2.6, 2.8, 3.1, 3.2, 3.3, 7.7,
1.16

98.6

4 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.5, 1.17, 1.16 97.3
5 1.12, 2.8, 7.17, 2.6, 7.7, 7.18, 7.16, 2.2, 1.17, 1.16 97.3
Table 4. Top 20 features found with ReliefF for each dataset
(features in appendix 1)
Dataset Top 20 features
Shape 1.12, 2.8, 2.6, 1.16, 7.16, 5.1, 7.17, 7.2, 7.7, 7.13, 7.10, 1.3,

1.1, 1.9, 7.5, 1.7, 1.17, 7.11, 4.1, 1.23

Graph 1.12, 2.8, 2.6, 7.16, 1.6, 1.11, 1.18, 1.21, 1.4, 1.23, 7.7, 7.2,
4.1, 5.1, 1.13, 1.16, 7.17, 1.9, 1.19, 7.10

Class 1.12, 5.1, 2.8, 1.16, 2.6, 7.16, 7.13, 7.2, 7.7, 7.14, 7.11, 1.7,
7.17, 7.10, 1.13, 1.3, 1.17, 1.4, 10.5, 1.11

decided by trialing values between 0.1 and 0.9.
Generally the more features used the higher the accuracy.

As the accuracy never decreases under our setting, we
decided to select all features with a weight of more than
0.3. We also observe that approximately 20 features can
guarantee high performance. The top 20 features selected
using ReliefF with each dataset independently is shown in
table 4. We have only listed the top 20 features as we have
observed that the top 20 features produce optimal results
for ReliefF as illustrated in figure 1. The features shown in
bold are those that are common between all three datasets.
Half of the top 20 features for each dataset are common to
all subsets; however there may be further common features
if we look at those ranked below the top 20.

6. Evaluation

To train the recognizers, we split each dataset in half and
trained on one half and tested on the other and then
reversed the sets to perform a second run. This ensures the
testing process will have different participants from the
training process. The three datasets shown in table 2 are
used in the evaluation process.

Three trainable recognizers are used for comparison: $1
recognizer [WWL07], the original Rubine algorithm
[Rub91], and InkRubine [PF07]. Table 5 shows the
evaluation results of each algorithm trained and tested with
each dataset. The Data Manager Evaluator [SPB09] is used
to perform the evaluations.

The attribute selected Rubine algorithm shows a much

higher average accuracy than all other algorithms tested. A
z-test was conducted between the attribute selected Rubine
and InkRubine, with n = 1569. It shows a standard error of
0.006 and a p-value of 4 ൈ 10ିଵହ. This shows that the
attribute selected Rubine algorithm is significantly better
than InkRubine and all other algorithms used as they have
lower average accuracies.

Table 5. Evaluation results

Algorithm
% Correct

Shape Graph Class Average
Rubine (AttribSelected) 97.70 98.40 94.50 96.87

InkRubine 95.00 96.40 85.90 92.43

Rubine (Original) 85.60 97.90 80.60 88.03

$1 85.40 94.00 84.20 87.87

7. Discussion

Many features have been proposed for sketch recognition.
The taxonomy presented here clarifies the types of measures
that have been used. When developing the taxonomy we
used a method derived from grounded theory [GS67] where
we grouped the features first into those that have
similarities, and then formed categories around those
groups. This method was chosen so that we could avoid
having preconceived ideas of how the taxonomy should be
formed. In essence we wanted a taxonomy that would fit the
feature library rather than trying to fit the features into a
pre-categorized system.

By looking at the taxonomy we can see that the top 20
features in table 4 are overwhelmingly from the curvature
(1) and size (7) categories. There are also features from
density (2), divider results (4) intersections (5) and
time/speed (10). Some categories are not used at all in the
top 20, and from some only one feature is used. Given the
range of recognition problems that are yet to be fully
investigated and the relative similarity of our datasets it is
too soon to come to any conclusions on the overall
usefulness of particular features. However with the use of
our taxonomy we can begin to form a greater understanding
of the types of features that are important for this problem,
therefore promoting further development of features in these
areas.

Our results show that feature selection is valuable. It can
select good features and reduce the number of features
required for an algorithm without compromising on
accuracy. Reducing the number of features to only those

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20 25 30

%
 c

or
re

ct
 (A

ve
ra

ge
 o

f S
ha

pe
,

G
ra

ph
 a

nd
 C

la
ss

)

Number of Features Selected

ChiSquared

Filtered

GainRatio

InfoGain

OneR

ReliefF

Significance

SymmetricalUncert

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

that are significant can save on computation time, which is
especially important for eager recognition applications.
However, feature selection should be carried out with care
to ensure that accuracy is preserved when discarding
features. For example when presented with a set of good
features, the best features may be selected and the less
important ones discarded. Yet, in many cases these less
important features may work in combination with other
features to produce good results. We found that the ReliefF
algorithm gave consistently good results with our data sets.

The same attribute selection method can select different
subsets when training with different datasets due to the
nature of each dataset. Our analysis found that although
features tend to have different rankings, there is a large
overlap of common features between the subsets. Some
consistently good features appear in all versions of our
algorithm: Table 4 shows that half of the top 20 features are
common to all datasets. This highlights the importance of
these common features. We still find features that are
unique to a particular problem, for example features 6.3
(minimum pressure) and 1.5 (sum of the angles2) only
appear in the selected feature subset for the Shape dataset,
although they are ranked below the top 20.

Attribute selection is beneficial for simple algorithms
such as Rubine, or algorithms which consider all inputs

without a means to remove bad features. More sophisticated
algorithms use voting techniques or tree generating
algorithms as a mechanism for performing attribute
selection themselves therefore the independent application
of feature selection techniques do not result in gains in
accuracy. However, because attribute selection is fast, an
extra filter may still save on the computational cost of
recognition.

Overall, adding good features is an important way to
improve recognizer performance. With the existence of
more features, calculation time may increase therefore
attribute selection is a promising approach to prune these
attributes and generate highly accurate algorithms.

8. Conclusion

The taxonomy of features presented here aids
understanding the types of features useful for recognition
problems and is likely to promote the discovery of more
good quality features. Selecting appropriate features for the
problem is also important. We have shown that automatic
selection of those features using data mining techniques
produces highly accurate results. An evaluation of our
attribute selected classifiers against three other trainable
recognizers shows significantly more accurate results.

Appendix 1
 Feature Description & Origin

1 Curvature (23)
1 # Bezier cusps Number of bezier cusps [PPG*07]
2 # Direction Changes Number of changes in the direction of a stroke. (New)
3 # Polyline cusps Number of polyline cusps [PPG*'07]
4 ∑ |angle at each point| Sum of the absolute value of the angle at each point of the stroke. [Rub91]
5 ∑(angle at each point)2 Sum of the squared value of the angle at each point of the stroke. [Rub91]
6 Abs Curve Larg. Frag. The total absolute curvature of the largest fragment. [BSH04]
7 Angle of bbox diagonal Angle of the bounding box diagonal. [Rub91]
8 Avg Curvature Average curvature (total angle / number of stroke points). [PRD*08]
9 Cos from 1st to last pt. Cosine of the angle between the first and last point of the stroke. [Rub91]
10 Cos of initial angle Cosine of the initial angle of the stroke. [Rub91]
11 Curviness ∑ abs value of the angle at each stroke pt below 19o threshold. [LLR*00]
12 Distance frm 1st - last pt Distance from the 1st point of the stroke to the last point of the stroke[Rub91]
13 Least Squares Error Orthogonal distance squared between the least squares fitted line and the stroke points / stroke length.

[PRD*08, SSD01]
14 Max Curvature Maximum curvature of the stroke. [PRD*08]
15 NDDE Normalised distance between direction extremes. [PH08]
16 Number of Fragments # of fragments in a stroke (fragmented according it’s to corners) [BSH04]
17 Openness Distance from 1st -last pt of the stroke / size of the stroke’s b. box. [LLR*00]
18 Overtracing Total angle / 2π . [PH08]
19 Sin from 1st to last pt Sine of the angle between the first and last point of the stroke. [Rub91]
20 Sin of initial angle Sine of the initial angle of the stroke. [Rub91]
21 Total angle Total angle traversed by the stroke. [Rub91]
22 Total Angle & Lgth Ratio Total angle / stroke length. [LLR*00]
23 Total Angle Ratio Total angle / ∑ |angle at each point|. [LLR*00]
2 Density (8)
1 Amount of ink inside Amt of ink inside the strokes b. box (count the # of pts inside b. box) [You05]
2 Density 1 Stroke length / distance between first & last point. [LLR*00]
3 Density 2 Stroke length / area of bounding box. [LLR*00]
4 Entropy Stroke information density [BH09]
5 Length Ratio Cumulative distance between stroke points/ length from stroke start to end point. Adapted from [Rub91]
6 Length:Perimeter ratio Stroke length / perimeter of the stroke’s convex hull. [FPJ02]
7 Point Ratio # of points in the stroke’s convex hull / # of points in the stroke. [LC02]

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

8 Total length/bounding box
diagonal length

Length of the stroke divided by the length of the bounding box diagonal. Adapted from [Rub91]

3 Direction (4)
1 DCR Maximum change in direction / average change in direction. [PH08]
2 Direction Direction of the stroke (eigenvector of the largest eigen value) [BSH04]
3 Eigen value ratio The largest eigen value/ smallest eigen value. [BSH04]
4 Largest Frag. Direction Direction of largest fragment (eigenvector of the largest eigen value.[BSH04]
4 Divider Results (2)
1 Divider Result Results of our text/shape divider on the current stroke. [PPG*07]
2 Tablet OS text prob. Tablet OS text recognizer probability of the stroke being text.[Mic05]
5 Intersections (3)
1 # Endpt self intersections # of self intersections at the endpts of the stroke. Adapted from [Qin05]
2 # Other self intersections # of self intersections that are not at the stroke’s endpt. Adapted frm [Qin05]
3 # Self intersections Number of points where the stroke intersects itself. Adapted from [Qin05]
6 Pressure (4)
1 Average pressure Mean average pressure of the stroke. Adapted from [NSS*02]
2 Max pressure Maximum pressure value for the stroke. Adapted from [NSS*02]
3 Min pressure Minimum pressure value for the stroke. Adapted from [NSS*02]
4 # Pressure minima # of minima in pressure values for the stroke. [PPG*07]
7 Size (19)
1 Arc Fit Radius The radius of an arc fitted to the stroke. [PRD*08]
2 Aspect |45π/180 – angle of the bounding box diagonal |. [LLR*00]
3 Bounding box area Area of the bounding box of the stroke. Adapted from [FPJ02, HD02]
4 B. box diagonal length Length of the bounding box diagonal line. [Rub91]
5 Bounding box height Height of the bounding box of the stroke. Adapted from [FPJ02, HD02]
6 Bounding box width Width of the bounding box of the stroke. Adapted from [FPJ02, HD02]
7 Convex hull area ratio Ratio of area of convex hull to area of the enclosing rect of the stroke.[FPJ02]
8 Enclosing Rect. ratio Ratio of strokes enclosing rectangle width to height. [FPJ02]
9 Largest Frag. Length Arc length of the stroke’s largest fragment. [BSH04]
10 Length Total length of the stroke. [Rub91]
11 Log Area Log of the stroke’s bounding box area. [LLR*00]
12 Log Aspect Log of the aspect feature. [LLR*00]
13 Log Length Log of the total length of the stroke. [LLR*00, MFN93]
14 Log Longest Side Rect Log of the length of the longest side of the stroke’s bounding box. [MFN93]
15 Long Side of Enclosing Rect

of Largest Frag.
The longest length of the largest fragment’s enclosing rectangle. [BSH04]

16 Perimeter Efficiency 2 √ (π stroke’s convex hull area) / stroke’s convex hull perimeter. [LC02]
17 Perimeter to area Ratio of perimeter to area of the stroke’s convex hull. [FPJ02]
18 Thinness ratio Perimeter2 of stroke’s convex hull / area of stroke’s convex hull [FPJ02]
19 Width to height ratio Ratio of the stroke’s bounding box width to height. Adapted from [FPJ02]
8 Spatial Context
8.1 Curvature (2)
1 Avg Curvature of Close End

Pt Strokes
Average curvature (using total angle) of strokes close at end points to current stroke. [AWJ*07]

2 Avg Curvature of Close
Strokes

Average curvature (using total angle) of strokes close to current stroke. [AWJ*07]

8.2 Density (2)
1 Avg Density of Close End Pt

Strokes
Average density (stroke length / bounding box diagonal length) of strokes close at end points to the
current stroke. [AWJ*07]

2 Avg Density of Close Strokes Average density (stroke length / bounding box diagonal length) of strokes close to the current stroke.
[AWJ*07]

8.3 Divider Results (1)
1 Divider Closest Stroke Results of our text/shape divider for the closest stroke to the current [AWJ*07]
8.4 Intersections (5)
1 # Other intersections Number of points of intersection of the current stroke with other strokes (excluding self intersections).

Adapted from [CSK*02]
2 # Other strokes intersecting Number of other strokes that intersect the current stroke (excluding itself). Adapted from [FPJ02, HD02]
3 # Strokes Vert Overlapping The number of strokes vertically overlapping the current stroke. [BSP09]
4 Total # intersections Total # of intersections (includes self intersections). Adapted from [CSK*02]
5 Total # strokes intersecting Number of strokes that intersect the current stroke (including itself) [FPJ02, HD02]
8.5 Location (9)

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

1 # Close End Pt Strokes # of strokes whose endpts are close to endpt of the current stroke. [AWJ*07]
2 # Close Strokes The number of close strokes to the current stroke. [AWJ*07]
3 # Strokes Contained # of strokes contained in the current stroke. [BSP09]
4 # Strokes Horiz Close #of strokes horizontally close to curr stroke. [BSP09]
5 # Strokes On Same Horiz

Plane
The number of strokes on the same horizontal plane as the current stroke. [BSP09]

6 # Vertically Close The number of strokes vertically close to the current stroke. [AWJ*07]
7 Is Contained If a stroke is contained by another stroke. (New)
8 Smallest Dist Btwn Strokes

from End Pt
The smallest distance to another stroke from the current stroke’s end point. (New)

9 Smallest Dist Btwn Strokes
from Start Pt

The smallest distance to another stroke from the current stroke’s start point. (New)

8.6 Size (4)
1 # Strokes Similar Height # strokes of similar height to current stroke. [BSP09]
2 Avg Length of Close End Pt

Strokes
Average length of strokes close at endpoints to the current stroke. [AWJ*07]

3 Avg Length of Close Strokes Average length of strokes close to the current stroke. [AWJ*07]
4 Length of Closest Stroke The length of the closest stroke to the current stroke where the closest stroke is found by measuring

distance between the middle of the b. box. (New)
9 Temporal Context
9.1 Curvature (2)
1 Curv. of Next Stroke Total angle of next stroke. Adapted from [Rub91]
2 Curv. of Prev. Stroke Total angle of previous stroke. Adapted from [Rub91]
9.2 Density (2)
1 Density of Next Stroke Length of the next stroke divided by the length of the next stroke’s bounding box diagonal. Adapted from

[Rub91]
2 Density of Previous Stroke Length of the previous stroke divided by the length of the previous stroke’s bounding box diagonal.

Adapted from [Rub91]
9.3 Divider Results (2)
1 Next Stroke Divider Results of our text/shape divider for the next stroke. [PPG*07]
2 Previous Stroke Divider Results of our text/shape divider for the previous stroke. [PPG*07]
9.4 Length (2)
1 Length of Next Stroke Total length of next stroke. [AWJ*07]
2 Length of Prev. Stroke Total length of previous stroke. [AWJ*07]
9.5 Location/Distance (6)
1 Distance from last stroke Distance between current stroke and previous stroke. Adapted from [You05]
2 Distance to next stroke Distance between current stroke and next stroke. Adapted from [You05]
3 X Diff between strokes Difference in X co-ordinate between current stroke and next. [BSH04]
4 X Start point diff Difference in starting X coordinates of current stroke to next stroke. [BSH04]
5 Y Diff between strokes Difference in Y co-ordinate between current stroke and next. [BSH04]
6 Y Start point diff Difference in starting Y coordinates of current stroke to next stroke. [BSH04]
9.6 Time/Speed (8)
1 Log start time from prev Log of time from start of previous stroke to start of current stroke. [BSH04]
2 Log start time to next Log of time from start of current stroke to start of the next stroke. [BSH04]
3 Log time diff from prev Log of the time between the current and previous stroke. [BSH04]
4 Log time diff to next Log of the time between the current stroke and the next stroke. [BSH04]
5 Speed from last stroke Speed (distance/time) between current stroke and previous stroke. [PPG*07]
6 Speed to next stroke Speed (distance/time) between current stroke and next stroke. [PPG*07]
7 Time from last stroke The time between current stroke and previous stroke. [PPG*07]
8 Time till next stroke The time between current stroke and next stroke. [PPG*07]
10. Time / Speed (6)
1 # Speed minima #of extreme minima in the speed values for the stroke. Adapted from[SSD01]
2 Average Speed Mean average speed when drawing the stroke. Adapted from [Rub91]
3 Max speed Maximum speed when drawing the stroke. Adapted from[Rub91]
4 Max speed squared Maximum speed of the stroke squared. [Rub91]
5 Min speed Minimum speed when drawing the stroke. Adapted from[Rub91]
6 Total duration Total duration of the stroke from pen up to pen down. [Rub91]

Acknowledgements
Thanks to Associate Professor Eibe Frank for expert

advice on WEKA and data mining techniques. This
research is partly funded by the Royal Society of New

Zealand, Marsden Fund. The program code and data files
used in this project are available to other researchers at
http://www.cs.auckland.ac.nz/research/hci/digital_ink/ink_r
ecognition/index.shtml

R. Blagojevic, S. Chang, B. Plimmer / The Power of Automatic Feature Selection: Rubine on Steroids

© The Eurographics Association 2010.

References

[AWJ*07] AO X., WANG X., JIANG Y. DAI G..
Structuring and Manipulating Hand-Sketched Diagrams.
Sketch Based Interfaces and Modeling (SBIM '07) (2007),
[BH09] BHAT A. HAMMOND T.: Using Entropy to
Distinguish Shape Versus Text in Hand-Drawn Diagrams.
International Joint Conference on Artificial Intelligence
(IJCAI '09) (2009), 1395-1400.
[BSH] BISHOP C. M., SVENSEN M. HINTON G. E.
Distinguishing Text from Graphics in On-Line Handwritten
Ink. Frontiers in Handwriting Recognition (2004), 142-147
[BSP09] BLAGOJEVIC R., SCHMIEDER P. PLIMMER
B.: Towards a Toolkit for the Development and Evaluation
of Sketch Recognition Techniques. Intelligent User
Interfaces (IUI’09) Sketch Recognition Workshop (2009),
[CSK*02] CALHOUN C., STAHOVICH T. F.,
KURTOGLU T. KARA L. B.: Recognising Multi-Stroke
Symbols. AAAI Spring Symposium on Sketch
Understanding (2002), 15-23.
 [Mic05] MICROSOFT CORPORATION. Microsoft
Windows XP Tablet PC Edition Software Development
Kit, http://www.microsoft.com/downloads/details.aspx?fam
ilyid=B46D4B83-A821-40BC-AA85-C9EE3D6E9699&dis
playlang=en
[FPJ02] FONSECA M. J., PIMENTEL C. E. JORGE J. A.:
CALI: An Online Scribble Recogniser for Calligraphic
Interfaces. AAAI Spring Symposium on Sketch
Understanding (2002), 51-58
[GS67] GLASER B. G. STRAUSS A. L. The Discovery of
Grounded Theory: Strategies for Qualitative Research.
Aldine Publishing Company (1967).
[HD02] HAMMOND T. DAVIS R.: Tahuti: A Geometrical
Sketch Recognition System for UML Class Diagrams.
2002 AAAI Spring Symposium on Sketch Understanding
(2002).
[HCE*97] HUTTON G., CRIPPS M., ELLIMAN D.,
HIGGINS C. A.: A Strategy for On-line Interpretation of
Sketched Engineering Drawings. International Conference
on Document Analysis and Recognition (1997), 771-775.
[JGH*09] JOHNSON G., GROSS M. D., HONG J. DO E.
Y.-L.: Computational Support for Sketching in Design: A
Review. Foundations and Trends in Human-Computer
Interaction, 1, 2 (2009), pp. 1-93.
[LC02] LEUNG W. H. CHEN T.: User-independent
retrieval of free-form hand-drawn sketches. Acoustics,
Speech, and Signal Processing (ICASSP '02), (2002), 2,
2029-2032.
[LNH*00] LIN J., NEWMAN M. W., HONG J. I.
LANDAY J. A.: Denim: Finding a tighter fit between tools
and practice for web design. Chi 2000 (2000), 510-517.
[LLR*00] LONG A. C., LANDAY J. A., ROWE L. A.
MICHIELS J.: Visual similarity of pen gestures. CHI 2000
(2000), 2, 360-367.
[MFN93] MACHII K., FUKUSHIMA H. NAKAGAWA
M.: On-line text/drawings segmentation of handwritten
patterns. Document Analysis and Recognition (1993), 710-
713.

[NSS*02] NAKAI M., SUDO T., SHIMODAIRA H.
SAGAYAMA S.: Pen Pressure Features for Writer-
Independent On-Line Handwriting Recognition Based on
Substroke HMM. Pattern Recognition (ICPR'02) Volume 3
- Volume 3 (2002), 30220.
[PPG*07] PATEL R., PLIMMER B., GRUNDY J. IHAKA
R.: Ink Features for Diagram Recognition. Sketch-Based
Interfaces and Modeling (2007), 131-138.
[PH08] PAULSON B. HAMMOND T.: PaleoSketch:
Accurate Primitive Sketch Recognition and Beautification.
Intelligent User Interfaces (IUI '08) (2008), 1-10.
[PRD*08] PAULSON B., RAJAN P., DAVALOS P.,
GUTIERREZ-OSUNA R. HAMMOND T.: What!?! No
Rubine Features?: Using Geometric-based Features to
Produce Normalized Confidence Values for Sketch
Recognition VL/HCC Workshop: Sketch Tools for
Diagramming (2008), 57-63.
[Pli04] PLIMMER B. Using Shared Displays to Support
Group Designs; A Study of the Use of Informal User
Interface Designs when Learning to Program. University of
Waikato, PhD, (2004).
[PF07] PLIMMER B. FREEMAN I.: A Toolkit Approach to
Sketched Diagram Recognition. HCI (2007), 1, 205-213.
[Qin05] QIN S.: Intelligent Classification of Sketch Strokes.
EUROCON (2005), 1374-1377.
[Rub91] RUBINE D. H.: Specifying gestures by example.
Proceedings of Siggraph '91 (1991), 329-337.
[SPB09] SCHMIEDER P., PLIMMER B. BLAGOJEVIC
R.: Automatic Evaluation of Sketch Recognition. Sketch
Based Interfaces and Modelling (2009), 85-92.
[SD05] SEZGIN T. M. DAVIS R.: HMM-based efficient
sketch recognition. Intelligent user interfaces (IUI’05)
(2005), 281-283.
[SSD01] SEZGIN T. M., STAHOVICH T. DAVIS R.:
Sketch based interfaces: early processing for sketch
understanding. Perceptive user interfaces (2001), 1-8.
[WNG*09] WILLEMS D., NIELS R., GERVEN M. V.
VUURPIJL L.: Iconic and multi-stroke gesture recognition.
Pattern Recogn., 12, 42 (2009), pp. 3303-3312.
[WF05] WITTEN I. H. FRANK E. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann
(2005).
[WWL07] WOBBROCK J. O., WILSON A. D. LI Y.
Gestures without libraries, toolkits or training: a $1
recognizer for user interface prototypes. In User interface
software and technology (2007), 159-168.
[You05] YOUNG M. InkKit: The Back End of the Generic
Design Transformation Tool. University of Auckland,
BEng, (2005).
[YC03] YU B. CAI S.: A domain-independent system for
sketch recognition. Computer graphics and interactive
techniques in Australasia and South East Asia (2003), 141-
146.
[ZS07] ZHANG L. SUN Z.: An experimental comparison of
machine learning for adaptive sketch recognition. Applied
Mathematics and Computation, 2, 185 (2007), pp. 1138-
1148.

