Multi-Domain Sketch Recognition

Lecture #11: Sketch Understanding
Joseph J. LaViola Jr.
Fall 2010

Slides adapted from Alvarado, Multi-Domain Sketch Understanding, SIGGRAPH course #3, 2007.

Recall Pen-Based Interface Dataflow
Building Recognition Systems

- Building each system requires:
 - sketch recognition expertise
 - a lot of time (2-5 person years!)
 - built in domain assumptions to improve recognition

A Multi-Domain Sketch Recognition Engine

- Strokes to General Recognition Engine
- General Recognition Engine to Shape descriptions
Enabling Natural Interaction

- Goal:
 - recognition engines for multiple domains
- Core challenge:
 - multi-domain recognition

Sketch Recognition Subtasks

- Need a multi-domain solution!

Diagram showing:
- Stroke Fragmentation
- Symbol recognition
- Stroke grouping

NOR gate with connections and labels.
Multi-Domain Sketch Recognition Architecture

- Strokes
 - Line, Ellipse, Arc, Polyline
 - Shape Descriptions
 - Primitive Recognizer/Fragmenter
 - Generalized Matching Engine
 - Post Processor

Recognized Objects
Family Tree Domain

- **Compound:**
- **Domain:** Quadrilateral

Domain Patterns:
- Marriage
- Partnership
- Parent-Child
- Divorce

Knowledge Representation

(LADDER [Hammond03])

(Define **Arrow**

(Subshapes (Line shaft)
 (Line head1)
 (Line head2))

(Constraints
 (coincident shaft.p1 head1.p1)
 (coincident shaft.p1 head2.p1)
 (equalLength head1 head2)
 (smaller head1 shaft)
 (acuteAngle head1 shaft)
 (acuteAngle head2 shaft)))
Knowledge Representation

```
(Define Child-link
  (Subshapes (Arrow a)))
```

```
(Define Current-Source
  (Subshapes (Arrow a)
    (Ellipse e))
  (Constraints (contains e a)))
```

Multi-Domain Sketch Recognition Architecture

- **Strokes**
 - Line, Ellipse, Arc, Polyline
 - Shape Descriptions

- **Primitive Recognizer/Fragmenter**
 - Generalized Matching Engine
 - Post Processor

- **Recognized Objects**
Recognition overview

- Task: Simultaneous fragmentation, grouping and symbol identification
- Constraint-based approach
- Generate and test

Definition

- **Hypothesis**: A shape description with associated mapping from subshapes to user’s strokes.

![Diagram](image)
Hypothesis-based recognition

- Given a hypothesis, determine if it matches a shape description by testing constraints

\begin{align*}
(\text{Define } \text{Arrow} & \\
\text{Subshapes} & \text{Line shaft, Line head1, Line head2}) \\
\text{Constraints} & \text{Coincident shaft.p1 head1.p1, Coincident shaft.p1 head2.p1, EqualLength head1 head2, Smaller head1 shaft, AcuteAngle head1 shaft, AcuteAngle head2 shaft})
\end{align*}
Hypothesis-based recognition: Issues

- Too many hypotheses to try them all
 \[\sum_{i \in S} \binom{n}{k_i!} \]
 - \(n \) = number of strokes;
 - \(S \) = set of shapes;
 - \(k_i \) = subcomponents in shape \(S_i \)
- Constraints depend on context
 And this only considers shapes independently!

Definition

- Partial Hypothesis: A hypothesis with unbound subshapes

 Quadrilateral partial hypothesis

 L1 \(\rightarrow \) L2

 L3

 L4 is unbound
Recognition Using Partial Hypotheses

- Generating Hypotheses (rule-based)
 - generate partial hypotheses (PHs) based on easily recognizable low-level shapes
 - fill in strong PHs with unrecognized strokes
 - prune weak PHs

- Evaluating Hypotheses (probabilistic)
 - how well do user’s strokes fit low level shapes?
 - how well are constraints satisfied?

Bayesian Networks [Pearl88]

- Reason about events/entities
- Two parts
 - directed Acyclic Graph:
 - assign meaning to nodes
 - specify which variables influence one another
 - conditional Probability Tables
 - specify how variables influence one another

Use Bayes Rule to reason about the certainty of each variable
Bayesian Networks [Pearl88]

- Observations give evidence for other variables
 Say we observe $A=t$, then
 $$P(E|A)=0.0056$$
 $$P(B|A)=0.49$$

- Important Phenomenon: Explaining away
 If we also hear there has been an earthquake (i.e., $E=t$), then
 $$P(B|A,E) = 0.001$$
Shape Fragments

(Define Arrow
(Subshapes
L₁: (Line shaft)
L₂: (Line head1)
L₃: (Line head2))
(Constraints
C₁: (coincident shaft.p1 head1.p1)
C₂: (coincident shaft.p1 head2.p1)
C₃: (equalLength head1 head2)
C₄: (smaller head1 shaft)
C₅: (acuteAngle head1 shaft)
C₆: (acuteAngle head2 shaft)))

User’s intention to draw an Arrow [t, f]

User’s intention to draw needed lines and constraints [t, f]

Squared error between stroke and best fit line

Shape Fragments: Measurement Nodes

(Define Arrow
(Subshapes
L₁: (Line shaft)
L₂: (Line head1)
L₃: (Line head2))
(Constraints
C₁: (coincident shaft.p1 head1.p1)
C₂: (coincident shaft.p1 head2.p1)
C₃: (equalLength head1 head2)
C₄: (smaller head1 shaft)
C₅: (acuteAngle head1 shaft)
C₆: (acuteAngle head2 shaft)))

Distance between shaft.p1 head.p1

Squared error between stroke and best fit line
Shape Fragments

(Define Arrow
(Subshapes
L1: (Line shaft)
L2: (Line head1)
L3: (Line head2))
(Constraints
C1: (coincident shaft.p1 head1.p1)
C2: (coincident shaft.p1 head2.p1)
C3: (equalLength head1 head2)
C4: (smaller head1 shaft)
C5: (acuteAngle head1 shaft)
C6: (acuteAngle head2 shaft)))

Fall 2010
CAP 6105 – Pen-Based User Interfaces
©Joseph J. LaViola Jr.

Shape Fragments:
Another Hypothesis

(Define Arrow
(Subshapes
L1: (Line shaft)
L2: (Line head1)
L3: (Line head2))
(Constraints
C1: (coincident shaft.p1 head1.p1)
C2: (coincident shaft.p1 head2.p1)
C3: (equalLength head1 head2)
C4: (smaller head1 shaft)
C5: (acuteAngle head1 shaft)
C6: (acuteAngle head2 shaft)))

Fall 2010
CAP 6105 – Pen-Based User Interfaces
©Joseph J. LaViola Jr.
Shape Fragments: Partial Hypothesis

(Define Arrow
(Subshapes
L₁: (Line shaft)
L₂: (Line head1)
L₃: (Line head2))
(Constraints
C₁: (coincident shaft p₁ head1 p₁)
C₂: (coincident shaft p₁ head2 p₁)
C₃: (equalLength head1 head2)
C₄: (smaller head1 shaft)
C₅: (acuteAngle head1 shaft)
C₆: (acuteAngle head2 shaft)))

Composing Shape Fragments

Each node represents a hypothesis
Hypothesis Generation

- **Bottom Up**
 - Partial hypotheses generated based on rough classification for objects and constraints

- **Top Down**
 - Strokes possibly reclassified to fit into PHs

- **Pruning**
 - Keep number of hypotheses manageable

An Illustration

- **Parent-child**
 - Female(f1)
 - Female(f2)

- **Child-link**
 - Connects(l1, l3)
 - Connects(l1, l2)
 - Same-length(l3, l2)
 - Arrow

- **Domain patterns**
 - Domain shapes

- **Compound shapes**
 - Primitive shapes

Stroke(s1) Stroke(s2) Stroke(s3) Stroke(s4) Stroke(s5)
Results: Trees

Overall: SketchREAD: 77% Precision (F=0.83)
Baseline: 50% Precision (F=0.65)

Results: Circuits

Overall: SketchREAD: 62% Precision (F=0.65)
Baseline: 54% Precision (F=0.57)
Readings