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Symbol Recognition in Sketch-
Based Interfaces

Lecture #9: Symbol Recognition
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Symbol Recognition

 Want to recognize handwritten symbols
h t characters

 shapes

 gestures

 Use machine learning approach

 Which algorithm?
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g
 depends on number of symbols in alphabet

 complexity (i.e., similarity of symbols)

 distribution assumptions

Recognition Algorithms

 Many different approaches
 Machine learning techniques (classification)ac e ea g tec ques (c ass cat o )

 linear classifiers
 k-means classifiers
 neural networks
 Hidden Markov Models
 template matching
 support vector machines
 AdaBoost
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 AdaBoost
 Curve matching

 elastic matching
 Primitive decomposition
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Rubine’s Gesture Recognition Algorithm 
(Rubine 1991)
 Simple linear classifier

 Utilizes rejection metrics

 Assumes normality for features

 Simple to implement

 Does not need a lot of training samples
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Recall Rubine’s Feature Set

 Cosine and sine of initial angle
 Length and angle of bounding box diagonal Length and angle of bounding box diagonal
 Distance between first and last point
 Cosine and sine of angle between first and last point
 Total gesture length
 Total angle traversed
 Sum of absolute value of the angle at each point
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g p
 Sum of squared values of the angle at each point
 Maximum speed
 Stroke duration



4

Rubine Classifier
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 Evaluate each gesture 0 ≤ c < C.

 = value = goodness of fit for that gesture c.cv ˆ

Rubine Classifier Training

 Collect E samples for each symbol class

 Calculate feature vector for each sample for each 
class
 = the feature value of the ith feature for the eth sample of 

the cth symbol

 For each symbol calculate the mean value for each 
feature

eicf ˆ
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Rubine Classifier – Computing Weights

 We first need the covariance matrix of each class c
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Rubine Classifier – Computing Weights (2)

 Using the covariance matrices from each class, find 
the common covariance matrix
 numerator = non normalize total covariance numerator = non-normalize total covariance

 denominator = normalization factor = total number of 
examples – total number of shapes
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Rubine Classifier – Computing Weights (3)

 Using the common covariance matrix and the mean 
feature vectors from each class we can compute thefeature vectors from each class, we can compute the 
weights
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Rubine Classifier – Rejection Measures

 Linear classifier always will classify a symbol 
as one of the C classesas one of the C classes
 want to try to reject outliers and ambiguous 

symbols

 two approaches
 probabilistic

 distance measure
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 distance measure
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Rubine Classifier – Probabilistic Rejection 
Measure
 Given a symbol g with feature vector f classified as 
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Rubine Classifier – Rejection based on 
Distance
 Mahalanobis distance – the number of standard deviations a 

symbol g is away from the mean of its chosen class iy g y
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 May need to be careful not to reject too many good symbols 
(a simple alternate list to correct mistakes will be helpful)

2
for which symbols Rejecting F
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AdaBoost (Schapire 1997)
 Not really a classification algorithm – more 

like a framework
 Can use many different classification Can use many different classification 

algorithms within AdaBoost framework
 Works with series of weak (base) classifiers
 Want to increase the importance of incorrectly 

classified examples
 series of weak hypotheses and weights form a strong 
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yp g g
hypothesis

 need to ensure weak learners output either 1 or -1

 Many different variants (M1,M2, etc…)

AdaBoost Algorithm
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More Information on Machine Learning

Fall 2010 CAP 6105 – Pen-Based User Interfaces                                                            ©Joseph J. LaViola Jr.

Readings
 LaViola, J., and Zeleznik, R. "A Practical Approach to Writer-

Dependent Symbol Recognition Using a Writer-Independent 
Recognizer", IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 29(11):1917-1926, November 2007.

 Connell Scott D and Anil K Jain Template Based On Line Connell, Scott D. and Anil K. Jain. Template-Based On-Line 
Character Recognition. Pattern Recognition, 34(1):1-14, 
January 2000.

 Blagojevic, R., Chang, S., and Plimmer, B. The Power of 
Automatic Feature Selection: Rubine on Steroids, In 
Proceedings of the Seventh Eurographics/ACM Symposium 
on Sketch-Based Interfaces and Modeling 2010, 79-86, June 
2010.

 Wobbrock, J. O., Wilson, A. D., and Li, Y. 2007. Gestures

Fall 2010 CAP 6105 – Pen-Based User Interfaces                                                            ©Joseph J. LaViola Jr.

Wobbrock, J. O., Wilson, A. D., and Li, Y. 2007. Gestures 
without libraries, toolkits or training: a $1 recognizer for user 
interface prototypes. In Proceedings of the 20th Annual ACM 
Symposium on User interface Software and Technology UIST 
'07. ACM, New York, NY, 159-168.


