Features Extraction for Sketch-Based Recognition

Lecture #8: Feature Extraction
Joseph J. LaViola Jr.
Fall 2010

Recall Pen-Based Interface Dataflow

- Raw Stroke Data
- Preprocessing
- Segmentation
- Ink Parsing
- Classification
- Make Inferences
- Feature Extraction And Analysis
- Sketch Understanding
Feature Extraction and Analysis

- What came first, the feature or the machine learning algorithm?
- Want to distinguish sketch components from one another
- Good features are critical
- Extract important information
 - geometrical, statistical, contextual
- Examples include
 - arc length, histograms, cusps, aspect ratio
 - self-intersections, stroke area, etc…

Finding Features

- Challenging problem
 - need fast algorithms for gathering information
 - features must be good discriminators
- Often trial and error
- Can be domain specific
Geometric Features (1)

- **Number of strokes**
 - if you know how many strokes a symbol has, you can break up your recognizer into pieces (i.e., recognizer for 1 stroke symbols, recognizer for 2 stroke symbols …)

- **Cusps**
 - smooth vs. jagged strokes
 - distance between cusps
 - useful for when cusps are close together/far apart

Geometric Features (2)

- **Aspect ratio (width / height)**
 - tall vs. flat

- **Self Intersections**
 - loops vs. no loops
 - strokes with write over
 - distance between self intersections also useful
 - use line segment intersection algorithm

loops → 2 3 → d write over
Geometric Features (3)

- First and last distance
 - Strokes where first and last points are close together vs. far apart
 - simple computation – \(\| p_n - p_1 \| \)

- Arc length
 - many different symbols have varying arc lengths
 - simple computation as well –

\[
l = \sum_{i=2}^{n} \| p_i - p_{i-1} \|
\]

Geometric Features (4)

- Stroke area
 - area defined by the vectors created with the initial stroke point and consecutive stroke points.
 - good discriminator for straight vs. curved lines

Given \(\vec{u}_i = p_{i+1} - p_i \) and \(\vec{v}_i = p_{i+2} - p_i \)

\[
s_{area} = \sum_{i=1}^{n-2} \frac{1}{2} (\vec{u}_i \times \vec{v}_i) \cdot \text{sgn}(\vec{u}_i \times \vec{v}_i)
\]

where \(\vec{u}_i \times \vec{v}_i \) is a scalar
Geometric Features (5)

- **Fit line feature**
 - sophisticated approach to finding how close a stroke is to a straight line
 - finds a least-squares approximation to a line using principal components and then uses this approximation to find the distance of the projection of the stroke points onto the approximated line
 - outputs a value in \([0, 1]\)

- What is another name for this approach?

Fit Line Feature Implementation

Input: A set of stroke points \(P\).

Output: A distance measure

```
 FitLine(P)

(1) \(x_1 \leftarrow \sum_{i=1}^{n} X(P_i)\)
(2) \(y_1 \leftarrow \sum_{i=1}^{n} Y(P_i)\)
(3) \(x_2 \leftarrow \sum_{i=1}^{n} X(P_i)^2\)
(4) \(y_2 \leftarrow \sum_{i=1}^{n} Y(P_i)^2\)
(5) \(x y_1 \leftarrow \sum_{i=1}^{n} X(P_i)Y(P_i)\)
(6) \(x_3 \leftarrow x_2 - x_1^2/n\)
(7) \(y_3 \leftarrow y_2 - y_1^2/n\)
(8) \(x y_2 \leftarrow x y_1 - (x_1 y_1)/n\)
(9) \(rad \leftarrow \sqrt{(x_3 - y_3)^2 + 4x y_2^2}\)
(10) \(error \leftarrow (x_3 + y_3 - rad)/2\)
(11) \(max \leftarrow \sqrt{error/n}\)
(12) if \(x_3 > y_3\)
(13) \(a \leftarrow -2xy_2\)
(14) \(b \leftarrow x_3 - y_3 + rad\)
(15) else if \(x_3 < y_3\)
(16) \(a \leftarrow y_3 - x_3 + rad\)
(17) \(b \leftarrow -2xy_2\)
(18) else
(19) if \(xy y = 0\)
(20) \(a \leftarrow b \leftarrow c \leftarrow 0\)
(21) \(error \leftarrow +\infty\)
(22) else
(23) \(a \leftarrow -1\)
(24) \(b \leftarrow -1\)
(25) \(max \leftarrow \sqrt{a^2 + b^2}\)
(26) \(c \leftarrow \frac{x_1 - b y_1}{a}\)
(27) \(a \leftarrow \frac{a}{max}\)
(28) \(b \leftarrow \frac{b}{max}\)
(29) \(min \leftarrow +\infty\)
(30) \(max \leftarrow -\infty\)
(31) for \(i:=1\) to \(n\)
(32) \(err \leftarrow a X(P_i) + b Y(P_i) + c\)
(33) \(pX \leftarrow X(P_i) - a \cdot err\)
(34) \(pY \leftarrow Y(P_i) - b \cdot err\)
(35) \(ploc \leftarrow -b \cdot pX + b \cdot pY\)
(36) \(min \leftarrow \min(min, ploc)\)
(37) \(max \leftarrow \max(max, ploc)\)
(38) return \(\frac{100 \cdot min}{max - min}\)
```
Statistical Features (1)

- Side ratios
 - first and last point of strokes have variable locations with respect to the bounding box
 - Approach
 - take the x coordinates of the first and last point of a stroke
 - subtract them from the left side of the symbol’s bounding box (i.e., the bounding box’s leftmost x value)
 - divide by the bounding box width.

Statistical Features (2)

- Top and Bottom ratios
 - similar to side ratios except we are dealing with y coordinate
 - approach
 - take y coordinate of the first and last point of a stroke
 - subtract from the top of the symbol’s bounding box (i.e., the bounding box’s topmost y value)
 - these values are divided by the bounding box height.
Statistical Features (3)

- **Point Histogram**
 - distribution of point locations in stroke bounding box
 - discrimination where point concentrations are high
 - approach
 - break up box into $n \times m$ grid
 - Count number of points in each sub box
 - divide by total number of points

Statistical Features (4)

- **Angle Histogram**
 - similar to point histogram except dealing with angles
 - Approach
 - Given $\vec{v}_j = p_j - p_{i-1}$ for $2 \leq i \leq n$ and $\bar{x} = (1,0)$
 - $\alpha_j = \arccos \left(\frac{\bar{x} \cdot \vec{v}_j}{\|\vec{v}_j\|} \right)$
 - put angles into bins of n degrees
The Rubine Feature Set (Rubine 1991)

- Part of Rubine’s gesture recognition system
 - we will see this next class
- Stroke
 - \(P = \) total number of points
 - \(p = \) middle point
 - first point \((x_0, y_0, t_0)\)
 - last point \((x_{P-1}, y_{P-1}, t_{P-1})\)
 - compute \(x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}}\)

Feature \(f_1 \)

- Cosine of starting angle

\[
f_1 = \cos(\alpha) = \frac{(x_2 - x_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}
\]
Feature f₂

- Sine of starting angle

\[f_2 = \sin(\alpha) = \frac{(y_2 - y_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}} \]

Feature f₃

- Length of diagonal of bounding box (gives an idea of the size of the bounding box)

\[f_3 = \sqrt{(x_{\text{max}} - x_{\text{min}})^2 + (y_{\text{max}} - y_{\text{min}})^2} \]
Feature f_4

- Angle of diagonal
- Gives an idea of the shape of the bounding box (long, tall, square)

$$f_4 = \arctan\left(\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}\right)$$

Feature f_5

$$f_5 = \sqrt{(x_{p-1} - x_0)^2 + (y_{p-1} - y_0)^2}$$

- Distance from start to end of stroke
Feature f_6

- Cosine of ending angle

$$f_6 = \cos(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$

Feature f_7

- Sine of ending angle

$$f_7 = \sin(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$
More Definitions (before we continue)

Let $\Delta x_p = x_{p+1} - x_p$ and $\Delta y_p = y_{p+1} - y_p$

Let $\theta_p = \arctan \frac{\Delta x_p \Delta y_{p-1} - \Delta x_{p-1} \Delta y_p}{\Delta x_p \Delta x_{p-1} + \Delta y_p \Delta y_{p-1}}$ Directional angle

Let $\Delta t_p = t_{p+1} - t_p$ Time delta

Feature f_8

- Total stroke length

$$f_8 = \sum_{p=0}^{P-2} \sqrt{\Delta x_p^2 + \Delta y_p^2}$$
Feature f_9

- Total rotation (from start to end point)
- (not the same as $\beta - \alpha$ – think of spirals)

$$f_9 = \sum_{p=1}^{p-2} \theta_p$$

Feature f_{10}

- Absolute rotation
- How much does it move around

$$f_{10} = \sum_{p=1}^{P-2} |\theta_p|$$
Feature f_{11}

- Rotation squared
- How smooth are the turns?
- Measure of sharpness

$$f_{11} = \sum_{p=1}^{p-2} \theta_p^2$$

Feature f_{12}

- The maximum speed reached (squared)

$$f_{12} = \max_{p=0}^{p-2} \frac{\Delta x_p^2 + \Delta y_p^2}{\Delta t_p^2}$$
Feature f_{13}

- Total time of stroke

$$f_{13} = t_{P-1} - t_0$$

Next Class

- Start discussing machine learning algorithms
 - linear classifiers (e.g., Rubine)
 - template matching
 - SVM
 - AdaBoost
 - etc…