
Assignment 3 – Extending the $N Recognizer
CAP6105

Due: 10/14/10 11:59pm

This purpose of this assignment is twofold. First, it is designed to give you experience
with a simple recognizer. Second, it is to give you experience in implementing a state of
the art algorithm from a research paper and to extend the algorithm to improve upon it.

Requirements
There are two main requirements for this assignment. First, you will implement the $N
recognizer, a basic recognition algorithm for recognizing multi-stroke symbols that was
published in Graphics Interface 2010. The paper is attached to this document. Second,
you will improve upon this algorithm to try to improve the accuracy. Your approach can
be based on any strategy you want.

Your symbol recognizer must be able to recognize the following symbols:

0,1,2,3,4,5,6,7,8,9,+,-,*,t,a,n,s,c,i, and the square root symbol.

You should use your scribble erase from the last assignment to erase symbols.

Train your recognizer with 1,3, and 5 samples per symbol. Test the recognizer by writing
each symbol 5 times, which should give you a good accuracy number. Please put the
results of your experiment in the README file.

Strategy
To implement your symbol recognizer, there are some things you need to consider.

1. You need to find a way to invoke the recognizer. You can have it run in real time or in
batch mode (for ex. lassoing the symbol or symbols and taping to invoke the recognizer).

2. Regardless of the invocation method, you will need some form of ink segmentation
since you must be able to detect when a symbol has 2 or more strokes. Simple line
segment intersection should suffice here since it is relatively easy to determine if you
have a multi-stroke symbol in our alphabet.

3. You will need to show recognition results to the user. A simple text box is fine but if
you want to be more elaborate feel free to do so.

Deliverables

You must submit a zip file containing your source and any relevant files needed to
compile and run your application. Also include a README file describing what works
and what does not, any known bugs, and any problems you encountered. To submit, you
can email me your zip file.

Grading

Grading will be loosely based on the following:

50% correct implementation of the $N recognizer
30% extending the $N recognizer to improve accuracy
20% documentation

A Lightweight Multistroke Recognizer for User Interface Prototypes
Lisa Anthony1*, Jacob O. Wobbrock2

1Lockheed Martin Advanced Technology Laboratories, 2Information School, DUB Group, University of Washington

ABSTRACT
With the expansion of pen- and touch-based computing, new user
interface prototypes may incorporate stroke gestures. Many
gestures comprise multiple strokes, but building state-of-the-art
multistroke gesture recognizers is nontrivial and time-consuming.
Luckily, user interface prototypes often do not require state-of-
the-art recognizers that are general and maintainable, due to the
simpler nature of most user interface gestures. To enable easy
incorporation of multistroke recognition in user interface
prototypes, we present $N, a lightweight, concise multistroke
recognizer that uses only simple geometry and trigonometry. A
full pseudocode listing is given as an appendix.

$N is a significant extension to the $1 unistroke recognizer,
which has seen quick uptake in prototypes but has key limitations.
$N goes further by (1) recognizing gestures comprising multiple
strokes, (2) automatically generalizing from one multistroke to all
possible multistrokes using alternative stroke orders and
directions, (3) recognizing one-dimensional gestures such as lines,
and (4) providing bounded rotation invariance. In addition, $N
uses two speed optimizations, one with start angles that saves
79.1% of comparisons and increases accuracy 1.3%. The other,
which is optional, compares multistroke templates and candidates
only if they have the same number of strokes, reducing
comparisons further to 89.5% and increasing accuracy another
1.7%. These results are taken from our study of algebra symbols
entered in situ by middle and high schoolers using a math tutor
prototype, on which $N was 96.6% accurate with 15 templates.

KEYWORDS: Gesture recognition, stroke recognition, symbols,
marks, user interfaces, rapid prototyping, unistrokes, multistrokes.

INDEX TERMS: H.5.2. [Information interfaces and presentation]:
User interfaces—input devices and strategies; I.5.5. [Pattern
recognition]: Implementation—interactive systems.

1 INTRODUCTION

New technologies comprising pens, wands, touch, tabletops, and
surfaces are regularly emerging. A key factor in the success of
user interfaces designed with these elements is the speed with
which user interface prototypes can be created, tested, and iterated
upon [26]. Rapid prototyping tools and techniques are essential to
good user interfaces emerging for these new paradigms.

One feature many of these prototypes may desire to employ is
multistroke recognition (Figure 1). Examples are a two-stroke “X”
to delete an object or a two-stroke arrow () to trigger a prompt
for an annotation. But building or even using a state-of-the-art
multistroke recognizer is nontrivial and may slow the rapid
prototyping process with extensive training time and integration.
Furthermore, gesture recognition libraries that exist on desktop
platforms may not exist for new prototyping environments or on
new platforms. What is needed is a lightweight, concise, quickly
deployable multistroke recognizer capable of allowing user

Figure 1. Multistrokes from the HTML/JavaScript version of $N. Such
strokes are kept simple for human memorability and performance.

interface creators to define the gestures they want without the
burden of implementing a complex recognizer. Other desirable
properties include the ability for users to define their own
gestures, enabling customization, and for the recognizer to operate
at speeds supporting fluid interaction. Also, multistroke gestures
can be made in multiple ways owing to stroke order and direction
(cf. Figure 3), but neither designers nor users should have to
define more than one version of each multistroke; rather, the
system should recognize other variations automatically.

Although a concise recognizer specifically intended for rapid
prototyping may not rival state-of-the-art recognizers in terms of
power and complexity, it would nevertheless be an advance in
human-computer interaction by providing a useful tool to the
design process. Later, prototypes that become productized or
otherwise formally deployed may choose to invest more heavily
in the development or integration of a state-of-the-art recognizer.

1.1 A Lightweight Multistroke Recognizer

We have developed a multistroke recognizer called $N for user
interface prototypes that meets the criteria above. $N is accurate,
fast, simple, and easy to put into prototypes owing to its
approximate 240 lines of code. Simple geometry and trigonometry
are used to perform template matching between stored templates
and entered candidates, giving $N a deterministic quality whereby
candidates that look most like their templates are usually
recognized as such. $N is a significant extension of the $1
unistroke recognizer by Wobbrock et al. [33], which uses about
100 lines of code and has seen quick uptake in user interface
prototypes. Developers and researchers have created versions of
$1 in ActionScript, Python, C#, C++, Objective-C, Java, JavaME,
and JavaScript. $1 has been used in conjunction with computer

1Cherry Hill, NJ, USA, 2Seattle, WA, USA
1lanthony@atl.lmco.com, 2wobbrock@u.washington.edu
*Work by this author was done while affiliated with the Human-
Computer Interaction Institute, Carnegie Mellon University.

vision [7] and has been incorporated into prototyping toolkits
[34]. $1 also served as the basis for input to a video game that
won Best Windows Game in The Dobbs Challenge for 2008 [24].

Unfortunately, $1 has limitations that warrant attention. For
one, it is inherently a unistroke recognizer and does not handle
gestures comprising multiple strokes (Figure 1). For another, $1
fails to recognize one-dimensional (1D) gestures such as lines.
Also, $1 uses full rotation invariance, meaning symbols differing
only by orientation (e.g., A vs. ∀) cannot be distinguished. Prior
work [17] shows that choosing good gestures is inherently
difficult; ideally, a prototyper should not have to worry about the
limits of the recognizer as well.

$N remedies the above limitations of $1. The contributions of
$N include (a) a novel way to represent a multistroke as a set of
unistrokes representing all possible stroke orders and directions;
(b) the conception of a multistroke as inherently a unistroke, but
where part of this unistroke is made away from the sensing
surface; (c) the recognition of 1D gestures (e.g., lines); (d) the use
of bounded rotation invariance to support recognition of more
symbols; and (e) an evaluation of $N on a set of handwritten
algebra symbols made in situ by middle and high school students
working with a math tutor prototype on Tablet PCs [2,3].
Although we could have evaluated $N with user interface gestures
made by adults (e.g., with those from Figure 1), the results would
be predictable based on those from testing $1 [33], since $N uses
$1 “under the hood.” By testing $N with school students writing
algebra symbols in a math tutor prototype, we see how $N might
be used in the real world, and put $N to a more difficult test.

Overall, our study results show that $N achieved 96.6%
accuracy with 15 templates for each of 20 different algebra
symbols. Also, $N achieved 96.7% accuracy with 9 templates for
each of 16 different gestures from the $1 unistroke corpus
collected in a laboratory and made by adults [33]. Note that $N
achieves these recognition rates even when the candidates are
made using different stroke orders or directions than the
predefined templates (cf. Figure 3).

We emphasize that $N’s purpose, like $1’s before it, is to
facilitate rapid prototyping on just about any platform with
minimal developer effort. $N does not attempt to solve many
longstanding problems in sketch and handwriting recognition,
e.g., the segmentation problem. Determining where one
multistroke ends and another begins is a method-specific
consideration, and may be achieved with buttons, taps, pressure,
timeouts, spatial layout, and so forth. Addressing it and other
classic issues is not the goal of $N, although $N could be used to
facilitate such explorations. The literature contains reviews of
specific challenges and approaches [23,31,32].

2 RELATED WORK

Gesture, character, shape, sketch, and handwriting recognition are
longstanding areas of research, and various approaches have been
used, including finite state machines [11], Hidden Markov Models
(HMMs) [1,28], neural networks [22], feature-based statistical
classifiers [6,27], dynamic programming [19,30], template
matching [13,14], and ad hoc heuristic recognizers [20]. These
techniques have been used for both on-line and off-line
recognition. Space precludes an in-depth review of these
approaches. A nice review is found in the literature [12].

Many gesture recognition methods are ill-suited for use in rapid
prototyping. Sophisticated pattern matching algorithms like neural
networks [22] require numerous training examples and are
unsuitable when the gesture set may not be defined prior to use.
Studies show that machine learning can be a rather opaque topic
for many programmers, and pattern matching is no exception [21].

Some recognizers do not represent gestures as strokes, but use
atemporal geometric properties of the final drawn shape. Example

properties are a gesture’s bounding box or convex hull [4,5].
Although geometry-based recognizers can process multistroke
gestures, they often do not generalize well to non-shape gestures
such as handwriting [4]. Yin and Sun developed a geometric
recognizer that can handle multistroke symbols [35], but this
recognizer uses complex dynamic programming techniques.

In sum, gesture, character, shape, sketch, and handwriting
recognition are active areas of research containing many
approaches to the computational challenge of recognition.
However, for the rapid prototyping of user interfaces, the power
of these techniques, and the complexity that comes with that
power, is often unnecessary. After all, user interface gestures must
remain simple to facilitate human memorability and speed [17].

Like $N, other work has attempted to make gesture recognition
easier for rapid prototyping. Some efforts have incorporated
gesture recognizers in user interface toolkits. For example, SATIN
[10] combined gesture recognition with other ink-handling
support for developing informal pen-based user interfaces. Other
toolkits with gesture recognition capabilities include those by
Henry et al. [9], Landay and Myers [15], and the Amulet toolkit
by Myers et al. [18]. Although such toolkits can be powerful
development aids, they have not been widely adopted. In contrast,
$N is concise, simple, and conventional enough to be
implemented wherever necessary. For example, we have
implemented $N for use on Web pages in JavaScript and HTML.1

$N is not the first multistroke extension of $1 to be published;
in fact, Field et al. [8] also did this, using a very different
approach from $N.2 Their recognizer does not re-sample through
the air, but only uses points actually drawn on the sensing surface,
which allows them to use the same number of resampling points
as $1, rather than the increased number used in $N to account for
the possible loss in sensitivity. Also, their recognizer uses a more
complex nearest-neighbor computation that minimizes the
distance between pairs of matched points, over all possible
pairings, rather than using drawing order (and explicitly storing
order permutations), as $N does. However, $N is more suited for
rapid prototyping of user interfaces because the increase in
complexity introduced by Field et al.’s use of simulated annealing
to find the best matching template. The average accuracy obtained
by Field et al. for recognizing 3 symbols (AND, OR, and NOT gates)
with 5 templates was about 90%—comparable to $N’s results
with 5 templates for each of 20 algebra symbols.

3 OVERVIEW OF THE $1 UNISTROKE RECOGNIZER

Because the $N multistroke recognizer builds upon the $1
unistroke recognizer [33], a brief overview of $1 is warranted. $1
matches templates; it compares an articulated candidate unistroke
C to a set of stored templates T. The template Ti closest to C is the
recognition result, where “closeness” is determined by the average
Euclidean distance between corresponding points in C and Ti.
Multiple Ti’s can have the same name (e.g., “arrow”), allowing for
increased flexibility. Also, because candidates and templates are
both unistrokes, a misrecognized candidate can immediately be
added as a new template, allowing users to teach $1 at runtime.

An important step is how corresponding points are established.
On both templates and candidates, $1 uses four steps, illustrated in
Figure 2. First, it spatially resamples a stroke such that a fixed
number of points are spread equidistantly along the stroke’s path.
Second, it rotates the stroke such that its “indicative angle,”
defined by the centroid (yx ,) to the first point, is at 0°. This
serves as an approximation for alignment, but Golden Section
Search (GSS) [25] (pp. 397-402) is later used to find the optimal

1 http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
2 Field et al. [8] mention $N and compare their algorithm to it based on the

$N Web page and online JavaScript.

angular alignment. Third, it scales the stroke non-uniformly to
match a reference square. Fourth, it translates the stroke so that its
centroid is at the origin. These steps normalize all strokes so that
each point in a candidate corresponds spatially with one point in a
template. The template Ti with the least point-to-point distance
from the candidate is the recognition result.

Figure 2. Steps in the $1 matching process and the aligning of a
candidate and template. GSS means Golden Section Search.

Limitations of $1 include its restriction to 2D unistrokes, its
inability to recognize lines, and its inability to support orientation-
dependence. These are all remedied in $N.

4 THE $N MULTISTROKE RECOGNIZER

The goal of $N is to provide a useful, concise, easy-to-incorporate
multistroke recognizer deployable on almost any platform to
support rapid prototyping. $N’s goals are shared with $1, but $N
is much more versatile by (1) recognizing gestures comprising
multiple strokes, (2) automatically generalizing from one
multistroke template to all possible multistrokes with alternative
stroke orderings and directions, (3) recognizing 1D gestures such
as lines, and (4) providing bounded rotation invariance. Despite
these capabilities, $N only employs about twice the code of $1
(mostly handling the additional complexity of generating
multistroke permutations), making $N easy to write from scratch
using the pseudocode listing in Appendix A. This gives $N an
advantage over platform-specific libraries or toolkits, especially in
new prototyping environments.

4.1 $N Algorithm

A key challenge of performing online recognition of multistroke
gestures is that within any multistroke, the component strokes can
be made in any order and in either direction (Figure 3). Even a
simple circle can be made clockwise or counterclockwise. In $1,
this kind of variation must be handled by defining all desired
gesture variations. But it is infeasible to require designers or users
to define all permutations of a multistroke gesture. For $N to be
effective as a prototyping tool, it must enable designers and users
to define one multistroke, and ensure that different stroke orders
and/or directions will be properly recognized.

To permit this flexibility, $N computes and stores each
multistroke’s “unistroke permutations.” Each permutation
represents one possible combination of stroke order and direction,
i.e., one of the 8 possibilities in Figure 3, which is then made into
a unistroke by simply connecting the endpoints of component
strokes. This is, in effect, treating a multistroke as if it were
fundamentally a unistroke, but where part of the stroke is made
away from the sensing surface, i.e., by following the user’s hand.
Thus, a two-stroke “x” permutes into the 8 unistrokes of Figure 4.

We use Heap Permute [16] (p. 179) to generate all stroke orders
in a multistroke gesture. Then, to generate stroke directions for
each order, we treat each component stroke as a dichotomous
[0,1] variable. There are 2N combinations for N strokes, so we

convert the decimal values 0 to 2N-1, inclusive, to binary
representations and regard each bit as indicating forward (0) or
reverse (1). This algorithm is often used to generate truth tables in
propositional logic.

Figure 3. The 8 possibilities for a two-stroke “x”. The numbered dots

indicate stroke order and beginnings.

Figure 4. The 8 unistroke permutations for a two-stroke “x” based on

the two-stroke gestures in Figure 3.

The permuting of multistrokes takes place only once when they
are defined or loaded. At runtime, when a candidate multistroke is
articulated, its component strokes are simply connected in the
order drawn to form a unistroke, which is then preprocessed
according to the usual steps (cf. Figure 2) and compared to
unistroke permutations using Euclidean distance as in $1. The
score for a multistroke template is the best of its unistroke
permutations’ scores.

Admittedly, the approach of creating unistroke permutations to
represent multistroke templates “under the hood” results in a
combinatoric explosion. Three things, however, mitigate this
explosion during recognition: (1) in practice, most multistroke
gestures have only a few strokes because more elaborate gestures
are harder for users to remember and use [17]; (2) the comparison
of a candidate gesture to each unistroke is very fast—much faster
than many other template matching algorithms like dynamic time
warping [19,33]; and (3) we employ two speed optimizations, one
mandatory and one optional, which reduce the number of
candidate-to-unistroke comparisons by about 80-90%. In our
study, each optimization actually increased accuracy by about 1-
2%, because the optimizations cull potential candidates based on
relevant features not otherwise used by the simple template
matching process of $1. The number of unistrokes U resulting
from a multistroke with S component strokes is:

∏
=

=
S

i

iU
1

2 (1)

4.2 Bounded Rotation Invariance

The $1 algorithm operated with full rotation invariance (±180°),
meaning the drawn orientation of a template or candidate gesture
was ignored in the matching process. However, there may be
times when otherwise identical symbols differ only in their
orientation. For example, to distinguish “A” from “∀”, rotation
must be bounded by less than ±90°. That is, if “A” is rotated
clockwise 90° and “∀” is rotated counterclockwise 90°, they will
match. For this reason, $N has the option of bounding rotation
invariance by an arbitrary amount. This feature could be

Drawn candidate. Resampled. Rotated to 0°. Scaled, translated.

Drawn template. Normalized. Alignment before GSS.Optimal alignment.

21

2

1 2

12 1

2 1

2

12

121

employed on a per-gesture basis by flagging which templates are
orientation-dependent at design-time (e.g., with a checkbox).

Figure 5. (a) A rectangle at its drawn orientation with its indicative

angle θ°. For bounded rotation invariance, the gesture will be returned
to this orientation and searched over ±45°. (b) For full rotation

invariance, the gesture is left rotated by -θ° and the search for the best
alignment works over ±45° from there.

An algorithmic convenience regarding bounded rotation
invariance in $N is that, as noted above, both $1 and $N use
Golden Section Search (GSS) [25] to find the best alignment
between a template and candidate. Work on $1 showed that it is
sufficient to parameterize GSS with ±45° for its search. Thus, if
bounded rotation invariance is desired, the template and
candidate, after scaling, can be rotated back to their drawn
orientation, and GSS will search from there (Figure 5a). If full
rotation invariance is desired, the gestures will be left rotated such
that their indicative angle is at 0°, and GSS will search by the
same amount from there (±45°; Figure 5b). Thus, the search
procedure itself remains unchanged.

4.3 Recognition of One-Dimensional Gestures

The non-uniform scaling in $1 causes it to mistreat 1D gestures
like horizontal and vertical lines. One option for solving this, but
not the one adopted here, would be to have designers flag
templates explicitly as 1D at design-time (e.g., with a checkbox).
Then, when being compared to these flagged templates,
candidates would be scaled uniformly so as to preserve their
aspect ratio. (Recall that 2D gestures are scaled non-uniformly by
$1 and $N; cf. Figure 2.) The problem with this approach is that it
may not be clear at design-time what the proper setting should be.
A vertical bar (|) is clearly 1D, but is a left curly brace ({)? It
probably depends on how it is drawn. Also, users who are able to
define gestures at run-time should not be concerned with such
algorithmic issues. Placing the burden on designers or users to
make the 1D vs. 2D choice is undesirable.

$N solves this problem by automatically differentiating
between 1D and 2D gestures, and then scaling them uniformly or
non-uniformly, respectively. To classify a gesture as either 1D or
2D, $N uses the ratio of the sides of a gesture’s oriented bounding
box (MIN-SIDE vs. MAX-SIDE). If this ratio is less than a threshold,
the gesture is considered 1D and is scaled to preserve aspect. This
allows lines and other thin gestures to be recognized correctly
without having to explicitly flag them.

For the algebra symbols obtained during our study of a math
tutor prototype [2,3], we empirically derived a MIN-SIDE-to-MAX-
SIDE threshold of 0.30. This threshold was discovered by first
computing the oriented bounding box of all symbols, and then
comparing the classification of each symbol under varying
thresholds to hand-labeled ground truth. We performed an ROC
curve analysis to determine the best threshold to use (Figure 6). A
threshold of 0.30 gives a true positive rate of 97.0% and a false
positive rate of 4.4%. We chose it because 2D gestures are more
numerous in our algebra corpus than 1D gestures, and 2D gestures
suffer more if scaled improperly. The threshold may need to be

adjusted slightly based on performance for use in other symbol
sets, and should usually range from 0.20 to 0.35.

Figure 6. ROC curve of true positives vs. false positives. The chosen

threshold ratio of MIN-SIDE to MAX-SIDE for our algebra symbols was 0.30.

4.4 Speed Optimization Using Start Angles

$N supports all possible ways of making each multistroke.
However, with this flexibility comes a combinatoric explosion of
underlying unistrokes to which a candidate must be compared.
Although each comparison is fast, having many multistrokes
comprising many strokes can result in a slowdown.

To solve this problem, we employ a speed optimization based
on gestures’ start angles. The idea is to only compare unistrokes
whose start directions are “about the same.” The start direction is
computed only once for every unistroke at the end of the
preprocessing steps (cf. Figure 2). Then, during recognition, any
template that does not begin in the same direction as the candidate
is skipped, avoiding the search for the best alignment (Figure 7).

Figure 7. Blue dots are first points; red dots are centroids. (a) A two-

stroke cross permuted as a unistroke and rotated to 0°. The yellow strip
indicates the part of the gesture resampled off the sensing surface. (b)
A one-stroke rectangle rotated to 0°. These gestures are not compared

because they do not begin in the same general direction (±30°).

To determine the start direction of a gesture, we compute the
angle formed from the start point through the eighth interval (i.e.,
point[0] to point[8]). This setting was determined by conducting
an experiment using a random subset of our algebra symbols. We
compared the six combinations formed by two intervals (fourth,
eighth) and three angular windows (±30°, ±45°, and ±60°). The
best results were obtained with the eighth interval and ±30°,
although the results were close, suggesting there exists tolerance
in this choice. $N resamples gestures to 96 points. Anecdotally, it
seems that the start-angle interval should be about an eighth of the
way through the gesture (e.g., 96/8 = 12).

Using full rotation invariance, the start direction of a unistroke
is unaffected by its drawn orientation. Using bounded rotation
invariance, the angle is affected by the gesture’s drawn
orientation, which is good because we want to match candidates
drawn at similar orientations.

a. b.

±45°

θ

-θ

±45°

±30°

±30°

a. b.

In the study of our algebra symbols, the start angle optimization
reduced unistroke comparisons by 79.1%. With speed savings this
large, one might expect accuracy to decline, but the opposite
occurred; the accuracy improved 1.3%. This result seems because
the optimizations cull potential candidates based on relevant
features not otherwise used by the simple template matching
process of $1. Testing $N on the $1 unistroke corpus [33] showed
that without this optimization, $N took 1.92 times longer than $1
to complete. With this optimization, $N took only 0.67 times as
long; that is, $N was faster than $1. In general, $N is sufficiently
fast for interactive use with 20-30 user interface templates. It is
unlikely user interface prototypes would employ more gestures
than this due to the limits of human memory.

4.5 Speed Optimization Using Number of Strokes

There may be times when designers or users will expect that their
multistrokes will be made with a fixed number of strokes. For
example, making a plus sign (+) or equals sign (=) with anything
other than two strokes would be unusual. When one’s gesture set
allows for it, an optional speed optimization can restrict
comparisons of candidates to templates that comprise the same
number of strokes, skipping all others.

When testing our algebra symbols, we added this option in
conjunction with the start angle optimization. Although the
middle and high school students were not instructed by the math
tutor prototype to write symbols using a specific number of
strokes, the option to compare only multistrokes containing the
same number of strokes resulted in an additional 10.4% reduction
in comparisons, for 89.5% total. Like the start angle optimization,
this optimization increased accuracy, this time by an additional
1.7% for a total of almost 3% improvement, despite being 89.5%
faster than the core algorithm using neither optimization.

4.6 Limitations of $N

With $N’s relative simplicity comes inevitable limitations. As a
geometric template matcher, $N cannot reason about gesture
features. This presents problems when matching gestures whose
gestalt is their appeal, e.g., a messy scratch-out for erasing. While
a benefit of $N using unistroke permutations is that it can
recognize multistrokes made with fewer component strokes than
defined in a template (e.g., a 1-stroke “D” candidate will match a
2-stroke “D” template), candidates made with more strokes will
not match unless those strokes proceed in the same direction as
the template. Although $N has provisions for orientation
dependence and aspect ratio, it lacks provisions for scale or
position dependence. Also, as with any recognizer, collisions are
possible [17]; for example, if the optional number-of-strokes
speed optimization is not used, $N may have trouble
distinguishing a two-stroke equals sign (=) and a one-stroke “z”.
Finally, despite its speed optimizations, if $N is used with a large
set of multistroke templates (30+), some of which contain many
component strokes (5+), slowdowns are likely during the
recognition process depending on hardware and other factors.

In practice, although these limitations make $N less powerful
than a state-of-the-art sketch or handwriting recognizer, these
limitations do not readily affect $N’s suitability as a rapid
prototyping tool. The goal is to provide an accurate, fast, easily
deployable recognizer for small, useful sets of interface gestures.
The utility of such sets is limited by human memory and
performance, and we know from prior work that gestures should
be as distinct, simple, and quick to make as possible [17]. This
lessens the algorithmic burden on a recognizer intended for rapid
prototyping, but heightens the importance of a quick-to-use
approach that avoids extensive coding, training, and fine-tuning
like, say, a neural network requires [22]. As our study shows, $N
is well-suited to this purpose.

5 STUDY OF A PEN-BASED MATH TUTOR PROTOTYPE

Although we could replicate $1’s study of user interface gestures
[33] like those shown in Figure 1, the results are predictable,
given that $N uses $1’s algorithm “under the hood” and $1
recognized similar gestures, albeit unistrokes. Instead, we chose to
sacrifice experimental control for a more challenging in situ study
where gestures were not provided by adults, but by youth from
middle and high school classrooms. The prototype investigated
was a cognitive math tutor with a pen-based interface on Tablet
PCs [2,3], and the gestures were not collected for the purpose of
evaluating $N, but previously for evaluating the tutor. We
reasoned that if $N could perform well on students’ algebra
symbols, it could be effective on user interface symbols.

5.1 Method

5.1.1 Participants and Apparatus

Forty middle and high school students aged 11-17 provided pen
gestures. Most students had not used pen-based input prior to the
study. Gestures were collected on Tablet PCs running software
that recorded students’ strokes. Students copied algebra equations
displayed one at a time on the screen. Each student copied 45
equations such as “2x + 3 = 10”. Students could not erase their
strokes once written. After the experiment, the students’ strokes
were hand-segmented and hand-labeled for ground truth.

5.1.2 Algebra Symbols

Students supplied gestures for 20 distinct algebra symbols as part
of their equations. They could write these symbols however they
wanted: some almost always were unistrokes (e.g., 3, c), while
others were multistrokes (e.g., 4, x, =, +), and still others varied
from student-to-student (e.g., 5, a, b, y).

0-9, a-c, x, y, =, +, –, (,).
The final test corpus contained 15,309 gestures. Seventy-

percent of these gestures were unistrokes, 30.0% were
multistrokes, and 13.4% were 1D. Although our interest in testing
$N was primarily in multistroke gestures, user interface
prototypes often utilize a mixture of unistrokes and multistrokes,
and it is important for $N to succeed on both.

5.1.3 Recognizer Training and Testing

To facilitate comparisons, our procedure for testing $N was based
on that of Wobbrock et al. for $1 [33]. We tested $N under
various configurations on the algebra corpus, and also tested $N
on the released $1 unistroke corpus.

Although the term “training” is more suited to feature-based
statistical classifiers like Rubine [27], in a sense, we train $N
whenever we supply it with a named template. Of a given
student’s gestures, the number of training examples (i.e.,
templates) T for each of the 20 gesture types was increased
stepwise from T=1 to 15. Because students were not always issued
the same algebra equations in situ, not every algebra symbol was
written the same number of times. Thus, starting at T = 9, some
symbols were omitted if they were not numerous enough to
support training equally across students.

For 100 times per level of T, T training examples were chosen
randomly for each algebra symbol for a given student. From the
unchosen gestures, one was picked at random and tested as the
candidate. Over the 100 tests per symbol per level of T per
student, correct outcomes were averaged into a recognition rate.

For a single student, there were about 21,500 recognition
attempts. With 40 students, the experiment consisted of about
860,000 recognition attempts. The details of every test were
logged, including full N-best lists.

As mentioned, we also tested $N on the released $1 unistroke
corpus. This followed the same procedure except that T ranged
from 1 to 9 for 16 different symbols because fewer examples per
subject were available. For more details, readers are directed to
the $1 paper [33].

5.2 Results

The recognition results for our various tests are shown in Figure 8.
$N reached 96.6% accuracy on the algebra symbols with 15
training examples, and 96.7% on the $1 unistroke corpus with 9
training examples. $N was expectedly poorer than $1 on the $1
corpus of unistrokes (t(8)=8.12, p<.0001), which reached 99.6%.

For the algebra corpus, we see steady accuracy increases with
each additional option. With no options, $N reached 93.6%
accuracy and took 569 minutes to complete the entire automated
test. $N improved significantly with the start angle optimization
(t(14)=6.47, p<.0001), reaching 95.0% accuracy in 128 minutes.
Adding in the same-number-of-strokes optimization also
significantly improved accuracy (t(14)=8.62, p<.0001), reaching
95.7% in just 65 minutes. As an exploration, we tried uniformly
scaling all symbols, not just 1D ones, and $N improved
significantly to 96.6% accuracy also in 65 minutes (t(14)=7.60,
p<.0001). Thus, these options significantly improved both $N
speed and accuracy. For all series, there was no significant
difference between multistroke and unistroke accuracy.

On the unistroke corpus, $N with no options performed slightly
better than with the start angle (t(8)=3.75, p<.01) and uniform
scaling options (t(8)=3.25, p<.05), which themselves were not
significantly different (t(8)=2.02, n.s.). The start angle
optimization reduced recognition time from 37 to 13 minutes.

6 DISCUSSION

$N achieved reasonable recognition rates on both the algebra and
unistroke corpora. We should expect that $N would not perform
as well as $1 on the unistroke corpus because $N is more
complex: it turns each unistroke into two, one for each direction,
and automatically differentiates 1D from 2D gestures using a 0.30
MIN-SIDE to MAX-SIDE threshold derived from the algebra corpus.
Although there were no 1D gestures in the $1 corpus, some
subjects may have made checkmarks (), arrows (), left ([) and
right (]) square brackets, and left ({) and right (}) curly braces
thinly enough to be classified as 1D. Nevertheless, $N reached
96.7% accuracy. This suggests the possibility of a hybrid design,
which, if one’s application allows for it, runs $N on multistrokes
and $1 on unistrokes.

$N did not perform quite as well on the algebra corpus as it did
on the unistroke corpus. $N’s accuracy on the unistroke corpus
with only 9 templates (96.7%) almost matched its accuracy on the
algebra corpus with 15 templates (96.6%). Six factors may
explain this difference between corpora. First, $N was used in part
on multistroke gestures, which may have more inherent variability
than unistrokes. Second, $N was tested on 1D gestures, which had
to be automatically distinguished from 2D gestures. Third, the
algebra corpus was made in situ by middle and high school
students, whereas $1’s corpus was made in a lab by adults. Fourth,
some algebra symbols were quite similar, like “x” and “+“, or “a”
and “9”. (The most challenging algebra gestures for $N to
recognize with 1 template loaded were “c”, “2”, “y”, “9”, and “3”.
The most confusable pairs were “x” and “y”, “4” and “y”, “(” and
“c”, “x” and “+“, and “9” and “a”.) Fifth, $N was tested on 20
symbols, whereas $1 was tested on 16. Sixth, $N used only partial
rotation invariance, rather than full rotation invariance like $1,
making recognition less accurate if students wrote symbols at
unusual angles.

In light of these challenges, the results are quite satisfying.
They become more so when $N is compared to more complex

recognizers that require more training examples, such as the
Freehand Formula Entry System (FFES) [29], which suggests 20-
40 examples per symbol per user. With 15 training examples,
FFES was 91.5% accurate on our algebra corpus [3], lower than
the 96.6% accuracy achieved by $N.

It is interesting that both speed optimizations improved
recognition accuracy on the algebra corpus but not on the
unistroke corpus. The unistroke corpus was tested with full
rotation invariance, while the algebra corpus was tested with ±45°
from the drawn orientation. It is likely that the start angle
optimization is more effective when bounded rotation invariance
is used because a matching start angle is more discriminating
when drawing orientation matters. Also, the fact that the same-
number-of-strokes optimization improved accuracy shows that
most algebra symbols were made with the same stroke count.

7 FUTURE WORK

We chose to evaluate $N on a mixture of gestures made in situ by
middle and high school students on a pen-based math tutor
prototype [2,3], reasoning that if $N can perform well, it should
be suitable for recognizing user interface gestures just as $1 is.
Nevertheless, $N should ultimately be evaluated for its usefulness
to rapid prototypers. If the uptake of $1 is indicative, then $N may
also be quickly adopted. $1’s popularity has led to others working
on multistroke extensions to it, such as Field et al. [8]; an obvious
important test would be to compare such competitors to $N in
terms of accuracy and ease of use.

$N was tested in a writer-dependent fashion, which is
appropriate for prototypers testing and demonstrating their own
systems. However, in cases where training data for new users of a
prototype are unavailable, or where the prototype is collaborative
and multi-user, $N will be used in a writer-independent fashion,
which should be studied.

Additional features could be added to $N to support scale or
position dependence. These options, along with others, could be
exposed by a gesture design tool (e.g., [17]) that could also
automatically determine optimal MIN-SIDE to MAX-SIDE ratios
based on drawn or loaded examples (cf. Figure 6).

We could also prevent the collisions that may occur due to
resampling gestures “through the air,” e.g., equals sign (=) and
“z”. $N could tag each resampled point as occurring on “land” or
“air,” allowing the recognizer to match only the same type of
points to each other.

8 CONCLUSION

The popularization of pen, wand, touch, tabletop, and surface
computing raises the need for easy creation of stroke-based
gesture recognition to facilitate rapid prototyping. We have shown
that $N is capable of producing good recognition rates on algebra
symbols from a math tutor prototype, indicating that $N should be
effective for smaller user interface symbol-sets. $N generalizes
from single multistroke templates to all possible stroke orders and
directions, enabling each type of multistroke to be defined once.
$N also automatically distinguishes between 1D and 2D gestures,
provides for bounded rotation invariance, and employs two highly
effective speed optimizations that also improve accuracy. We
expect that $N should be useful for quickly adding multistroke
gestures to user interface prototypes, just as $1 has been for
unistrokes. An application developer can take the pseudocode
listing provided in this paper, or the reference JavaScript or C#
implementations on the $N website, and translate them into the
platform-specific language of his choice for the prototype. This
scenario has already been realized by the hobbyist developer of
AlphaCount, an iPhone application that teaches kids to recognize
and write numbers. It uses the $N recognizer and is available at
http://itunes.apple.com/us/app/alphacount/id359046783.

ACKNOWLEDGMENTS

The authors thank Isaac Simmons for advice and consultation.

REFERENCES

[1] Anderson, D., Bailey, C. and Skubic, M. (2004) Hidden Markov
Model symbol recognition for sketch-based interfaces. AAAI Fall
Symposium. Menlo Park, CA: AAAI Press, 15-21.

[2] Anthony, L., Yang, J. and Koedinger, K.R. (2007) Benefits of
handwritten input for students learning algebra equation solving.
Proc. Artificial Intelligence in Education (AIEd '07). Amsterdam, The
Netherlands: IOS Press, 521-523.

[3] Anthony, L., Yang, J. and Koedinger, K.R. (2008) Toward next-
generation, intelligent tutors: Adding natural handwriting input. IEEE
Multimedia 15 (3), 64-68.

[4] Apte, A., Vo, V. and Kimura, T.D. (1993) Recognizing multistroke
geometric shapes: An experimental evaluation. Proc. UIST '93. New
York: ACM Press, 121-128.

[5] Calhoun, C., Stahovich, T.F., Kurtoglu, T. and Kara, L.B. (2002)
Recognizing multi-stroke symbols. AAAI Spring Symposium. Menlo
Park, CA: AAAI Press, 15-23.

[6] Cho, M.G. (2006) A new gesture recognition algorithm and
segmentation method of Korean scripts for gesture-allowed ink editor.
Information Sciences 176 (9), 1290-1303.

[7] deadpocky. (2008) Object tracker with $1 gesture recognizer.
YouTube. http://www.youtube.com/watch?v=wl7fLUs7QX4.

[8] Field, M., Gordon, S., Peterson, E., Robinson, R., Stahovich, T. and
Alvarado, C. (2009) The effect of task on classification accuracy:
Using gesture recognition techniques in free-sketch recognition. Proc.
Eurographics SBIM '09. New York: ACM Press, 109-116.

[9] Henry, T.R., Hudson, S.E. and Newell, G.L. (1990) Integrating
gesture and snapping into a user interface toolkit. Proc. UIST '90.
New York: ACM Press, 112-122.

[10] Hong, J.I. and Landay, J.A. (2000) SATIN: A toolkit for informal ink-
based applications. Proc. UIST '00. New York: ACM Press, 63-72.

[11] Hong, P., Turk, M. and Huang, T.S. (2000) Constructing finite state
machines for fast gesture recognition. Proc. ICPR '00. Los Alamitos,
CA: IEEE Press, 691-694.

[12] Johnson, G., Gross, M.D., Hong, J. and Do, E.Y.-L. (2009)
Computational support for sketching in design: A review.
Foundations and Trends in Human-Computer Interaction 2 (1), 1-93.

[13] Kara, L.B. and Stahovich, T.F. (2004) An image-based trainable
symbol recognizer for sketch-based interfaces. AAAI Fall Symposium.
Menlo Park, CA: AAAI Press, 99-105.

[14] Kristensson, P.-O. and Zhai, S. (2004) SHARK2: A large vocabulary
shorthand writing system for pen-based computers. Proc. UIST '04.
New York: ACM Press, 43-52.

[15] Landay, J. and Myers, B.A. (1993) Extending an existing user
interface toolkit to support gesture recognition. Companion to
INTERCHI '93. New York: ACM Press, 91-92.

[16] Levitin, A.V. (2003) Introduction to the Design and Analysis of
Algorithms, 1st ed. Reading, MA: Addison-Wesley.

[17] Long, A.C., Landay, J.A. and Rowe, L.A. (1999) Implications for a
gesture design tool. Proc. CHI '99. New York: ACM Press, 40-47.

[18] Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A.,
Kyle, B.D., Mickish, A., Klimovitski, A. and Doane, P. (1997) The
Amulet environment: New models for effective user interface software
development. IEEE Trans. Software Engineering 23 (6), 347-365.

[19] Myers, C.S. and Rabiner, L.R. (1981) A comparative study of several
dynamic time-warping algorithms for connected word recognition.
The Bell System Technical Journal 60 (7), 1389-1409.

[20] Notowidigdo, M. and Miller, R.C. (2004) Off-line sketch
interpretation. AAAI Fall Symposium. Menlo Park, CA: AAAI Press,
120-126.

[21] Patel, K., Fogarty, J., Landay, J.A. and Harrison, B. (2008) Examining
difficulties software developers encounter in the adoption of statistical
machine learning. Proc. AAAI '08. Menlo Park, CA: AAAI Press,
1563-1566.

[22] Pittman, J.A. (1991) Recognizing handwritten text. Proc. CHI '91.
New York: ACM Press, 271-275.

[23] Plamondon, R. and Srihari, S.N. (2000) On-line and off-line
handwriting recognition: A comprehensive survey. IEEE Trans.
Pattern Analysis & Machine Intelligence 22 (1), 63-84.

[24] POW Studios. (2008) Mr. Spiff's Revenge.
http://dobbschallenge.com/index.php/View-document-details/72-Mr.-
Spiff-s-Revenge-POW-Studios.html.

[25] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.
(1992) Numerical Recipes in C: The Art of Scientific Computing, 2nd
ed. Cambridge, England: Cambridge University Press.

[26] Rettig, M. (1994) Prototyping for tiny fingers. Communications of the
ACM 37 (4), 21-27.

[27] Rubine, D. (1991) Specifying gestures by example. Proc. SIGGRAPH
'91. New York: ACM Press, 329-337.

Figure 8. $N recognition rates as
a function of training examples.
The legend’s order from top to
bottom matches the order of
series from top to bottom. $N was
tested on two corpora, the
unistrokes from the original $1
study [33] and the algebra
symbols made by middle and high
schoolers. The top series is the
original $1 results. The next three
series are $N on the $1 unistroke
corpus. The final four series are
$N on the algebra corpus.
Configuration options include start
angle, which refers to the start
angle optimization; #strokes,
which refers to the optimization for
only comparing multistrokes made
with the same number of strokes;
and uniform, which refers to all
gestures being uniformly scaled.

[28] Sezgin, T.M. and Davis, R. (2005) HMM-based efficient sketch
recognition. Proc. IUI '05. New York: ACM Press, 281-283.

[29] Smithies, S., Novins, K. and Arvo, J. (2001) Equation entry and
editing via handwriting and gesture recognition. Behaviour &
Information Technology 20 (1), 53-67.

[30] Tappert, C.C. (1982) Cursive script recognition by elastic matching.
IBM Journal of Research and Development 26 (6), 765-771.

[31] Tappert, C.C., Suen, C.Y. and Wakahara, T. (1990) The state of the
art in online handwriting recognition. IEEE Trans. Pattern Analysis &
Machine Intelligence 12 (8), 787-808.

[32] Tappert, C.C. and Cha, S.-H. (2007) English language handwriting
recognition interfaces. In Text Entry Systems, I. S. MacKenzie and K.
Tanaka-Ishii (eds.). San Francisco: Morgan Kaufmann, 123-138.

[33] Wobbrock, J.O., Wilson, A.D. and Li, Y. (2007) Gestures without
libraries, toolkits or training: A $1 recognizer for user interface
prototypes. Proc. UIST '07. New York: ACM Press, 159-168.

[34] Yeh, R.B., Paepcke, A. and Klemmer, S.R. (2008) Iterative design and
evaluation of an event architecture for pen-and-paper interfaces. Proc.
UIST '08. New York: ACM Press, 111-120.

[35] Yin, J. and Sun, Z. (2005) An online multi-stroke sketch recognition
method integrated with stroke segmentation. Proc. ACII '05. Berlin,
Germany: Springer-Verlag, 803-810.

APPENDIX A

GENERATE-UNISTROKE-PERMUTATIONS(strokes)

1 for i from 0 to |strokes| do orderi ← i
2 HEAP-PERMUTE(|strokes|, order, out orders)
3 M ← MAKE-UNISTROKES(strokes, orders)
4 foreach unistroke U in M do
5 Upoints ← RESAMPLE(Upoints, N) // step 3
6 ω ← INDICATIVE-ANGLE(Upoints) // step 4
7 Upoints ← ROTATE-BY(Upoints, –ω)
8 Upoints ← SCALE-DIM-TO(Upoints, size, ∂) // step 5
9 Upoints ← CHECK-RESTORE-ORIENTATION(Upoints, +ω)
10 Upoints ← TRANSLATE-TO(Upoints, O)
11 Uvector ← CALC-START-UNIT-VECTOR(Upoints, I) // step 6

HEAP-PERMUTE(n, order, out orders)
1 if n = 1 then APPEND(orders, order)
2 else
3 for i from 0 to n do
4 HEAP-PERMUTE(n-1, order, out orders)
5 if IS-ODD(n) then SWAP(order0, ordern-1)
6 else SWAP(orderi, ordern-1)

MAKE-UNISTROKES(strokes, orders)
1 foreach order R in orders do
2 for b from 0 to 2|R| do
3 for i from 0 to |R| do
4 if BIT-AT(b, i) = 1 then // b’s bit at index i
5 APPEND(unistroke, REVERSE(strokesRi

))

6 else APPEND(unistroke, strokesRi
)

7 APPEND(unistrokes, unistroke)
8 return unistrokes

COMBINE-STROKES(strokes)

1 for i from 0 to |strokes| do
2 for j from 0 to |strokesi| do
3 APPEND(points, strokesij

) // append each point

4 return points

INDICATIVE-ANGLE(points)

1 c ← CENTROID(points) // computes (x̄, ȳ)
2 return ATAN(cy – points0y

, cx – points0x
) // for -π ≤ ω ≤ π

ROTATE-BY(points, ω)
1 c ← CENTROID(points)
2 foreach point p in points do
3 qx ← (px – cx) COS ω – (py – cy) SIN ω + cx
4 qy ← (px – cx) SIN ω + (py – cy) COS ω + cy
5 APPEND(newPoints, q)
6 return newPoints

SCALE-DIM-TO(points, size, ∂)

1 B ← BOUNDING-BOX(points)
2 foreach point p in points do
3 if MIN(Bwidth / Bheight, Bheight / Bwidth) ≤ ∂ then // uniform
4 qx ← px × size / MAX(Bwidth, Bheight)
5 qy ← py × size / MAX(Bwidth, Bheight)
6 else // non-uniform
7 qx ← px × size / Bwidth

8 qy ← py × size / Bheight

9 APPEND(newPoints, q)
10 return newPoints

CHECK-RESTORE-ORIENTATION(points, ω)
1 if using bounded rotation invariance then
2 points ← ROTATE-BY(points, ω)
3 return points

TRANSLATE-TO(points, k)
1 c ← CENTROID(points)
2 foreach point p in points do
3 qx ← px + kx – cx
4 qy ← py + ky – cy
5 APPEND(newPoints, q)
6 return newPoints

CALC-START-UNIT-VECTOR(points, I)

1 qx ← pointsIx
 – points0x

2 qy ← pointsIy
 – points0y

3 vx ← qx / √(qx
2 + qy

2)
4 vy← qy / √(qx

2 + qy
2)

5 return v

RECOGNIZE(points, v, S, multistrokes)

1 b ← +∞
2 foreach multistroke M in multistrokes do
3 if S = |Mstrokes| then // optional: require same # strokes
4 foreach unistroke U in M do
5 if ANGLE-BETWEEN-VECTORS(v, Uvector) ≤ Φ then
6 d ← DISTANCE-AT-BEST-ANGLE(points, U, –θ, θ, θ∆)
7 if d < b then b ← d, M′ ← M
8 score ← 1 – b / [½√(size2 + size2)]
9 return M′, score

ANGLE-BETWEEN-VECTORS(A, B)
1 return ACOS(Ax × Bx + Ay × By)

Step 7. Match candidate points having start unit vector v, processed
from the raw strokes in Step 2, where now S = |strokes|, against
unistroke permutations U within each multistroke M. We use Φ = 30°
for the start angle similarity threshold. DISTANCE-AT-BEST-ANGLE
remains unchanged from Step 4 in [33]. The reader is directed there.
We pass it θ=±45° and θΔ=2°.

Step 6. Calculate the start unit vector v for points using index I=12.

Step 5. Scale dimensionally-sensitive based on threshold ∂=.30. Next,
if using bounded rotation invariance, restore drawn orientation by
rotating +ω. Then translate to the origin O=(0,0).

Step 4. Find and save the indicative angle ω from the points’ centroid
to first point. Then rotate by –ω to set this angle to 0°.

Step 3. Resample a points path into n evenly spaced points.
RESAMPLE remains unchanged from Step 1 in [33]. The reader is
directed there.

Step 2. Combine candidate strokes into one unistroke points path.

Step 1. Take a multistroke gesture strokes and generate unistroke
permutations. For gestures serving as templates, Step 1, which uses
Steps 3-6, should be carried out once on the input points. For
candidates, Steps 2-7 should be applied to the input points. For
constants we use N=96, size=250, ∂=.30, O=(0,0), and I=12.

