
Assignment 3 – Extending the $N Recognizer 
CAP6105 

 
Due: 10/14/10 11:59pm 

 
This purpose of this assignment is twofold. First, it is designed to give you experience 
with a simple recognizer.  Second, it is to give you experience in implementing a state of 
the art algorithm from a research paper and to extend the algorithm to improve upon it. 
 
Requirements 
There are two main requirements for this assignment.  First, you will implement the $N 
recognizer, a basic recognition algorithm for recognizing multi-stroke symbols that was 
published in Graphics Interface 2010.   The paper is attached to this document.  Second, 
you will improve upon this algorithm to try to improve the accuracy. Your approach can 
be based on any strategy you want. 
 
Your symbol recognizer must be able to recognize the following symbols: 
 
0,1,2,3,4,5,6,7,8,9,+,-,*,t,a,n,s,c,i, and the square root symbol. 
 
You should use your scribble erase from the last assignment to erase symbols.     
 
Train your recognizer with 1,3, and 5 samples per symbol. Test the recognizer by writing 
each symbol 5 times, which should give you a good accuracy number.  Please put the 
results of your experiment in the README file. 
 
Strategy 
To implement your symbol recognizer, there are some things you need to consider. 
 
1. You need to find a way to invoke the recognizer.  You can have it run in real time or in 
batch mode (for ex. lassoing the symbol or symbols and taping to invoke the recognizer). 
 
2.  Regardless of the invocation method, you will need some form of ink segmentation 
since you must be able to detect when a symbol has 2 or more strokes.  Simple line 
segment intersection should suffice here since it is relatively easy to determine if you 
have a multi-stroke symbol in our alphabet. 
 
3.  You will need to show recognition results to the user.  A simple text box is fine but if 
you want to be more elaborate feel free to do so. 
 
 
 
 
 
 



Deliverables 
 

You must submit a zip file containing your source and any relevant files needed to 
compile and run your application.  Also include a README file describing what works 
and what does not, any known bugs, and any problems you encountered.  To submit, you 
can email me your zip file. 

 
Grading 

 
Grading will be loosely based on the following: 

 
50% correct implementation of the $N recognizer 
30% extending the $N recognizer to improve accuracy 
20% documentation 
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ABSTRACT 
With the expansion of pen- and touch-based computing, new user 
interface prototypes may incorporate stroke gestures. Many 
gestures comprise multiple strokes, but building state-of-the-art 
multistroke gesture recognizers is nontrivial and time-consuming. 
Luckily, user interface prototypes often do not require state-of-
the-art recognizers that are general and maintainable, due to the 
simpler nature of most user interface gestures. To enable easy 
incorporation of multistroke recognition in user interface 
prototypes, we present $N, a lightweight, concise multistroke 
recognizer that uses only simple geometry and trigonometry. A 
full pseudocode listing is given as an appendix. 

$N is a significant extension to the $1 unistroke recognizer, 
which has seen quick uptake in prototypes but has key limitations. 
$N goes further by (1) recognizing gestures comprising multiple 
strokes, (2) automatically generalizing from one multistroke to all 
possible multistrokes using alternative stroke orders and 
directions, (3) recognizing one-dimensional gestures such as lines, 
and (4) providing bounded rotation invariance. In addition, $N 
uses two speed optimizations, one with start angles that saves 
79.1% of comparisons and increases accuracy 1.3%. The other, 
which is optional, compares multistroke templates and candidates 
only if they have the same number of strokes, reducing 
comparisons further to 89.5% and increasing accuracy another 
1.7%. These results are taken from our study of algebra symbols 
entered in situ by middle and high schoolers using a math tutor 
prototype, on which $N was 96.6% accurate with 15 templates. 

KEYWORDS: Gesture recognition, stroke recognition, symbols, 
marks, user interfaces, rapid prototyping, unistrokes, multistrokes. 

INDEX TERMS: H.5.2. [Information interfaces and presentation]: 
User interfaces—input devices and strategies; I.5.5. [Pattern 
recognition]: Implementation—interactive systems. 

1 INTRODUCTION 

New technologies comprising pens, wands, touch, tabletops, and 
surfaces are regularly emerging. A key factor in the success of 
user interfaces designed with these elements is the speed with 
which user interface prototypes can be created, tested, and iterated 
upon [26]. Rapid prototyping tools and techniques are essential to 
good user interfaces emerging for these new paradigms. 

One feature many of these prototypes may desire to employ is 
multistroke recognition (Figure 1). Examples are a two-stroke “X” 
to delete an object or a two-stroke arrow () to trigger a prompt 
for an annotation. But building or even using a state-of-the-art 
multistroke recognizer is nontrivial and may slow the rapid 
prototyping process with extensive training time and integration. 
Furthermore, gesture recognition libraries that exist on desktop 
platforms may not exist for new prototyping environments or on 
new platforms. What is needed is a lightweight, concise, quickly 
deployable multistroke recognizer capable of allowing user 

 

 

Figure 1. Multistrokes from the HTML/JavaScript version of $N. Such 
strokes are kept simple for human memorability and performance. 

interface creators to define the gestures they want without the 
burden of implementing a complex recognizer. Other desirable 
properties include the ability for users to define their own 
gestures, enabling customization, and for the recognizer to operate 
at speeds supporting fluid interaction. Also, multistroke gestures 
can be made in multiple ways owing to stroke order and direction 
(cf. Figure 3), but neither designers nor users should have to 
define more than one version of each multistroke; rather, the 
system should recognize other variations automatically. 

Although a concise recognizer specifically intended for rapid 
prototyping may not rival state-of-the-art recognizers in terms of 
power and complexity, it would nevertheless be an advance in 
human-computer interaction by providing a useful tool to the 
design process. Later, prototypes that become productized or 
otherwise formally deployed may choose to invest more heavily 
in the development or integration of a state-of-the-art recognizer. 

1.1 A Lightweight Multistroke Recognizer 

We have developed a multistroke recognizer called $N for user 
interface prototypes that meets the criteria above. $N is accurate, 
fast, simple, and easy to put into prototypes owing to its 
approximate 240 lines of code. Simple geometry and trigonometry 
are used to perform template matching between stored templates 
and entered candidates, giving $N a deterministic quality whereby 
candidates that look most like their templates are usually 
recognized as such. $N is a significant extension of the $1 
unistroke recognizer by Wobbrock et al. [33], which uses about 
100 lines of code and has seen quick uptake in user interface 
prototypes. Developers and researchers have created versions of 
$1 in ActionScript, Python, C#, C++, Objective-C, Java, JavaME, 
and JavaScript. $1 has been used in conjunction with computer 
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vision [7] and has been incorporated into prototyping toolkits 
[34]. $1 also served as the basis for input to a video game that 
won Best Windows Game in The Dobbs Challenge for 2008 [24]. 

Unfortunately, $1 has limitations that warrant attention. For 
one, it is inherently a unistroke recognizer and does not handle 
gestures comprising multiple strokes (Figure 1). For another, $1 
fails to recognize one-dimensional (1D) gestures such as lines. 
Also, $1 uses full rotation invariance, meaning symbols differing 
only by orientation (e.g., A vs. ∀) cannot be distinguished. Prior 
work [17] shows that choosing good gestures is inherently 
difficult; ideally, a prototyper should not have to worry about the 
limits of the recognizer as well. 

$N remedies the above limitations of $1. The contributions of 
$N include (a) a novel way to represent a multistroke as a set of 
unistrokes representing all possible stroke orders and directions; 
(b) the conception of a multistroke as inherently a unistroke, but 
where part of this unistroke is made away from the sensing 
surface; (c) the recognition of 1D gestures (e.g., lines); (d) the use 
of bounded rotation invariance to support recognition of more 
symbols; and (e) an evaluation of $N on a set of handwritten 
algebra symbols made in situ by middle and high school students 
working with a math tutor prototype on Tablet PCs [2,3]. 
Although we could have evaluated $N with user interface gestures 
made by adults (e.g., with those from Figure 1), the results would 
be predictable based on those from testing $1 [33], since $N uses 
$1 “under the hood.” By testing $N with school students writing 
algebra symbols in a math tutor prototype, we see how $N might 
be used in the real world, and put $N to a more difficult test. 

Overall, our study results show that $N achieved 96.6% 
accuracy with 15 templates for each of 20 different algebra 
symbols. Also, $N achieved 96.7% accuracy with 9 templates for 
each of 16 different gestures from the $1 unistroke corpus 
collected in a laboratory and made by adults [33]. Note that $N 
achieves these recognition rates even when the candidates are 
made using different stroke orders or directions than the 
predefined templates (cf. Figure 3). 

We emphasize that $N’s purpose, like $1’s before it, is to 
facilitate rapid prototyping on just about any platform with 
minimal developer effort. $N does not attempt to solve many 
longstanding problems in sketch and handwriting recognition, 
e.g., the segmentation problem. Determining where one 
multistroke ends and another begins is a method-specific 
consideration, and may be achieved with buttons, taps, pressure, 
timeouts, spatial layout, and so forth. Addressing it and other 
classic issues is not the goal of $N, although $N could be used to 
facilitate such explorations. The literature contains reviews of 
specific challenges and approaches [23,31,32]. 

2 RELATED WORK 

Gesture, character, shape, sketch, and handwriting recognition are 
longstanding areas of research, and various approaches have been 
used, including finite state machines [11], Hidden Markov Models 
(HMMs) [1,28], neural networks [22], feature-based statistical 
classifiers [6,27], dynamic programming [19,30], template 
matching [13,14], and ad hoc heuristic recognizers [20]. These 
techniques have been used for both on-line and off-line 
recognition. Space precludes an in-depth review of these 
approaches. A nice review is found in the literature [12]. 

Many gesture recognition methods are ill-suited for use in rapid 
prototyping. Sophisticated pattern matching algorithms like neural 
networks [22] require numerous training examples and are 
unsuitable when the gesture set may not be defined prior to use. 
Studies show that machine learning can be a rather opaque topic 
for many programmers, and pattern matching is no exception [21]. 

Some recognizers do not represent gestures as strokes, but use 
atemporal geometric properties of the final drawn shape. Example 

properties are a gesture’s bounding box or convex hull [4,5]. 
Although geometry-based recognizers can process multistroke 
gestures, they often do not generalize well to non-shape gestures 
such as handwriting [4]. Yin and Sun developed a geometric 
recognizer that can handle multistroke symbols [35], but this 
recognizer uses complex dynamic programming techniques. 

In sum, gesture, character, shape, sketch, and handwriting 
recognition are active areas of research containing many 
approaches to the computational challenge of recognition. 
However, for the rapid prototyping of user interfaces, the power 
of these techniques, and the complexity that comes with that 
power, is often unnecessary. After all, user interface gestures must 
remain simple to facilitate human memorability and speed [17]. 

Like $N, other work has attempted to make gesture recognition 
easier for rapid prototyping. Some efforts have incorporated 
gesture recognizers in user interface toolkits. For example, SATIN 
[10] combined gesture recognition with other ink-handling 
support for developing informal pen-based user interfaces. Other 
toolkits with gesture recognition capabilities include those by 
Henry et al. [9], Landay and Myers [15], and the Amulet toolkit 
by Myers et al. [18]. Although such toolkits can be powerful 
development aids, they have not been widely adopted. In contrast, 
$N is concise, simple, and conventional enough to be 
implemented wherever necessary. For example, we have 
implemented $N for use on Web pages in JavaScript and HTML.1 

$N is not the first multistroke extension of $1 to be published; 
in fact, Field et al. [8] also did this, using a very different 
approach from $N.2 Their recognizer does not re-sample through 
the air, but only uses points actually drawn on the sensing surface, 
which allows them to use the same number of resampling points 
as $1, rather than the increased number used in $N to account for 
the possible loss in sensitivity. Also, their recognizer uses a more 
complex nearest-neighbor computation that minimizes the 
distance between pairs of matched points, over all possible 
pairings, rather than using drawing order (and explicitly storing 
order permutations), as $N does. However, $N is more suited for 
rapid prototyping of user interfaces because the increase in 
complexity introduced by Field et al.’s use of simulated annealing 
to find the best matching template. The average accuracy obtained 
by Field et al. for recognizing 3 symbols (AND, OR, and NOT gates) 
with 5 templates was about 90%—comparable to $N’s results 
with 5 templates for each of 20 algebra symbols.  

3 OVERVIEW OF THE $1 UNISTROKE RECOGNIZER 

Because the $N multistroke recognizer builds upon the $1 
unistroke recognizer [33], a brief overview of $1 is warranted. $1 
matches templates; it compares an articulated candidate unistroke 
C to a set of stored templates T. The template Ti closest to C is the 
recognition result, where “closeness” is determined by the average 
Euclidean distance between corresponding points in C and Ti. 
Multiple Ti’s can have the same name (e.g., “arrow”), allowing for 
increased flexibility. Also, because candidates and templates are 
both unistrokes, a misrecognized candidate can immediately be 
added as a new template, allowing users to teach $1 at runtime. 

An important step is how corresponding points are established. 
On both templates and candidates, $1 uses four steps, illustrated in 
Figure 2. First, it spatially resamples a stroke such that a fixed 
number of points are spread equidistantly along the stroke’s path. 
Second, it rotates the stroke such that its “indicative angle,” 
defined by the centroid ( yx , ) to the first point, is at 0°. This 
serves as an approximation for alignment, but Golden Section 
Search (GSS) [25] (pp. 397-402) is later used to find the optimal 
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angular alignment. Third, it scales the stroke non-uniformly to 
match a reference square. Fourth, it translates the stroke so that its 
centroid is at the origin. These steps normalize all strokes so that 
each point in a candidate corresponds spatially with one point in a 
template. The template Ti with the least point-to-point distance 
from the candidate is the recognition result. 

 

Figure 2. Steps in the $1 matching process and the aligning of a 
candidate and template. GSS means Golden Section Search. 

Limitations of $1 include its restriction to 2D unistrokes, its 
inability to recognize lines, and its inability to support orientation-
dependence. These are all remedied in $N. 

4 THE $N MULTISTROKE RECOGNIZER 

The goal of $N is to provide a useful, concise, easy-to-incorporate 
multistroke recognizer deployable on almost any platform to 
support rapid prototyping. $N’s goals are shared with $1, but $N 
is much more versatile by (1) recognizing gestures comprising 
multiple strokes, (2) automatically generalizing from one 
multistroke template to all possible multistrokes with alternative 
stroke orderings and directions, (3) recognizing 1D gestures such 
as lines, and (4) providing bounded rotation invariance. Despite 
these capabilities, $N only employs about twice the code of $1 
(mostly handling the additional complexity of generating 
multistroke permutations), making $N easy to write from scratch 
using the pseudocode listing in Appendix A. This gives $N an 
advantage over platform-specific libraries or toolkits, especially in 
new prototyping environments. 

4.1 $N Algorithm 

A key challenge of performing online recognition of multistroke 
gestures is that within any multistroke, the component strokes can 
be made in any order and in either direction (Figure 3). Even a 
simple circle can be made clockwise or counterclockwise. In $1, 
this kind of variation must be handled by defining all desired 
gesture variations. But it is infeasible to require designers or users 
to define all permutations of a multistroke gesture. For $N to be 
effective as a prototyping tool, it must enable designers and users 
to define one multistroke, and ensure that different stroke orders 
and/or directions will be properly recognized. 

To permit this flexibility, $N computes and stores each 
multistroke’s “unistroke permutations.” Each permutation 
represents one possible combination of stroke order and direction, 
i.e., one of the 8 possibilities in Figure 3, which is then made into 
a unistroke by simply connecting the endpoints of component 
strokes. This is, in effect, treating a multistroke as if it were 
fundamentally a unistroke, but where part of the stroke is made 
away from the sensing surface, i.e., by following the user’s hand. 
Thus, a two-stroke “x” permutes into the 8 unistrokes of Figure 4. 

We use Heap Permute [16] (p. 179) to generate all stroke orders 
in a multistroke gesture. Then, to generate stroke directions for 
each order, we treat each component stroke as a dichotomous 
[0,1] variable. There are 2N combinations for N strokes, so we 

convert the decimal values 0 to 2N-1, inclusive, to binary 
representations and regard each bit as indicating forward (0) or 
reverse (1). This algorithm is often used to generate truth tables in 
propositional logic. 

 
Figure 3. The 8 possibilities for a two-stroke “x”. The numbered dots 

indicate stroke order and beginnings. 

 
Figure 4. The 8 unistroke permutations for a two-stroke “x” based on 

the two-stroke gestures in Figure 3. 

The permuting of multistrokes takes place only once when they 
are defined or loaded. At runtime, when a candidate multistroke is 
articulated, its component strokes are simply connected in the 
order drawn to form a unistroke, which is then preprocessed 
according to the usual steps (cf. Figure 2) and compared to 
unistroke permutations using Euclidean distance as in $1. The 
score for a multistroke template is the best of its unistroke 
permutations’ scores. 

Admittedly, the approach of creating unistroke permutations to 
represent multistroke templates “under the hood” results in a 
combinatoric explosion. Three things, however, mitigate this 
explosion during recognition: (1) in practice, most multistroke 
gestures have only a few strokes because more elaborate gestures 
are harder for users to remember and use [17]; (2) the comparison 
of a candidate gesture to each unistroke is very fast—much faster 
than many other template matching algorithms like dynamic time 
warping [19,33]; and (3) we employ two speed optimizations, one 
mandatory and one optional, which reduce the number of 
candidate-to-unistroke comparisons by about 80-90%. In our 
study, each optimization actually increased accuracy by about 1-
2%, because the optimizations cull potential candidates based on 
relevant features not otherwise used by the simple template 
matching process of $1. The number of unistrokes U resulting 
from a multistroke with S component strokes is: 

∏
=

=
S

i
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4.2 Bounded Rotation Invariance 

The $1 algorithm operated with full rotation invariance (±180°), 
meaning the drawn orientation of a template or candidate gesture 
was ignored in the matching process. However, there may be 
times when otherwise identical symbols differ only in their 
orientation. For example, to distinguish “A” from “∀”, rotation 
must be bounded by less than ±90°. That is, if “A” is rotated 
clockwise 90° and “∀” is rotated counterclockwise 90°, they will 
match. For this reason, $N has the option of bounding rotation 
invariance by an arbitrary amount. This feature could be 

Drawn candidate. Resampled. Rotated to 0°. Scaled, translated.

Drawn template. Normalized. Alignment before GSS.Optimal alignment.
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employed on a per-gesture basis by flagging which templates are 
orientation-dependent at design-time (e.g., with a checkbox). 

 
Figure 5. (a) A rectangle at its drawn orientation with its indicative 

angle θ°. For bounded rotation invariance, the gesture will be returned 
to this orientation and searched over ±45°. (b) For full rotation 

invariance, the gesture is left rotated by -θ° and the search for the best 
alignment works over ±45° from there. 

An algorithmic convenience regarding bounded rotation 
invariance in $N is that, as noted above, both $1 and $N use 
Golden Section Search (GSS) [25] to find the best alignment 
between a template and candidate. Work on $1 showed that it is 
sufficient to parameterize GSS with ±45° for its search. Thus, if 
bounded rotation invariance is desired, the template and 
candidate, after scaling, can be rotated back to their drawn 
orientation, and GSS will search from there (Figure 5a). If full 
rotation invariance is desired, the gestures will be left rotated such 
that their indicative angle is at 0°, and GSS will search by the 
same amount from there (±45°; Figure 5b). Thus, the search 
procedure itself remains unchanged. 

4.3 Recognition of One-Dimensional Gestures 

The non-uniform scaling in $1 causes it to mistreat 1D gestures 
like horizontal and vertical lines. One option for solving this, but 
not the one adopted here, would be to have designers flag 
templates explicitly as 1D at design-time (e.g., with a checkbox). 
Then, when being compared to these flagged templates, 
candidates would be scaled uniformly so as to preserve their 
aspect ratio. (Recall that 2D gestures are scaled non-uniformly by 
$1 and $N; cf. Figure 2.) The problem with this approach is that it 
may not be clear at design-time what the proper setting should be. 
A vertical bar (|) is clearly 1D, but is a left curly brace ({)? It 
probably depends on how it is drawn. Also, users who are able to 
define gestures at run-time should not be concerned with such 
algorithmic issues. Placing the burden on designers or users to 
make the 1D vs. 2D choice is undesirable. 

$N solves this problem by automatically differentiating 
between 1D and 2D gestures, and then scaling them uniformly or 
non-uniformly, respectively. To classify a gesture as either 1D or 
2D, $N uses the ratio of the sides of a gesture’s oriented bounding 
box (MIN-SIDE vs. MAX-SIDE). If this ratio is less than a threshold, 
the gesture is considered 1D and is scaled to preserve aspect. This 
allows lines and other thin gestures to be recognized correctly 
without having to explicitly flag them. 

For the algebra symbols obtained during our study of a math 
tutor prototype [2,3], we empirically derived a MIN-SIDE-to-MAX-
SIDE threshold of 0.30. This threshold was discovered by first 
computing the oriented bounding box of all symbols, and then 
comparing the classification of each symbol under varying 
thresholds to hand-labeled ground truth. We performed an ROC 
curve analysis to determine the best threshold to use (Figure 6). A 
threshold of 0.30 gives a true positive rate of 97.0% and a false 
positive rate of 4.4%. We chose it because 2D gestures are more 
numerous in our algebra corpus than 1D gestures, and 2D gestures 
suffer more if scaled improperly. The threshold may need to be 

adjusted slightly based on performance for use in other symbol 
sets, and should usually range from 0.20 to 0.35. 

 
Figure 6. ROC curve of true positives vs. false positives. The chosen 

threshold ratio of MIN-SIDE to MAX-SIDE for our algebra symbols was 0.30. 

4.4 Speed Optimization Using Start Angles 

$N supports all possible ways of making each multistroke. 
However, with this flexibility comes a combinatoric explosion of 
underlying unistrokes to which a candidate must be compared. 
Although each comparison is fast, having many multistrokes 
comprising many strokes can result in a slowdown. 

To solve this problem, we employ a speed optimization based 
on gestures’ start angles. The idea is to only compare unistrokes 
whose start directions are “about the same.” The start direction is 
computed only once for every unistroke at the end of the 
preprocessing steps (cf. Figure 2). Then, during recognition, any 
template that does not begin in the same direction as the candidate 
is skipped, avoiding the search for the best alignment (Figure 7). 

 
Figure 7. Blue dots are first points; red dots are centroids. (a) A two-

stroke cross permuted as a unistroke and rotated to 0°. The yellow strip 
indicates the part of the gesture resampled off the sensing surface. (b) 
A one-stroke rectangle rotated to 0°. These gestures are not compared 

because they do not begin in the same general direction (±30°). 

To determine the start direction of a gesture, we compute the 
angle formed from the start point through the eighth interval (i.e., 
point[0] to point[8]). This setting was determined by conducting 
an experiment using a random subset of our algebra symbols. We 
compared the six combinations formed by two intervals (fourth, 
eighth) and three angular windows (±30°, ±45°, and ±60°). The 
best results were obtained with the eighth interval and ±30°, 
although the results were close, suggesting there exists tolerance 
in this choice. $N resamples gestures to 96 points. Anecdotally, it 
seems that the start-angle interval should be about an eighth of the 
way through the gesture (e.g., 96/8 = 12). 

Using full rotation invariance, the start direction of a unistroke 
is unaffected by its drawn orientation. Using bounded rotation 
invariance, the angle is affected by the gesture’s drawn 
orientation, which is good because we want to match candidates 
drawn at similar orientations. 

a. b.
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In the study of our algebra symbols, the start angle optimization 
reduced unistroke comparisons by 79.1%. With speed savings this 
large, one might expect accuracy to decline, but the opposite 
occurred; the accuracy improved 1.3%. This result seems because 
the optimizations cull potential candidates based on relevant 
features not otherwise used by the simple template matching 
process of $1. Testing $N on the $1 unistroke corpus [33] showed 
that without this optimization, $N took 1.92 times longer than $1 
to complete. With this optimization, $N took only 0.67 times as 
long; that is, $N was faster than $1. In general, $N is sufficiently 
fast for interactive use with 20-30 user interface templates. It is 
unlikely user interface prototypes would employ more gestures 
than this due to the limits of human memory. 

4.5 Speed Optimization Using Number of Strokes 

There may be times when designers or users will expect that their 
multistrokes will be made with a fixed number of strokes. For 
example, making a plus sign (+) or equals sign (=) with anything 
other than two strokes would be unusual. When one’s gesture set 
allows for it, an optional speed optimization can restrict 
comparisons of candidates to templates that comprise the same 
number of strokes, skipping all others. 

When testing our algebra symbols, we added this option in 
conjunction with the start angle optimization. Although the 
middle and high school students were not instructed by the math 
tutor prototype to write symbols using a specific number of 
strokes, the option to compare only multistrokes containing the 
same number of strokes resulted in an additional 10.4% reduction 
in comparisons, for 89.5% total. Like the start angle optimization, 
this optimization increased accuracy, this time by an additional 
1.7% for a total of almost 3% improvement, despite being 89.5% 
faster than the core algorithm using neither optimization. 

4.6 Limitations of $N 

With $N’s relative simplicity comes inevitable limitations. As a 
geometric template matcher, $N cannot reason about gesture 
features. This presents problems when matching gestures whose 
gestalt is their appeal, e.g., a messy scratch-out for erasing. While 
a benefit of $N using unistroke permutations is that it can 
recognize multistrokes made with fewer component strokes than 
defined in a template (e.g., a 1-stroke “D” candidate will match a 
2-stroke “D” template), candidates made with more strokes will 
not match unless those strokes proceed in the same direction as 
the template. Although $N has provisions for orientation 
dependence and aspect ratio, it lacks provisions for scale or 
position dependence. Also, as with any recognizer, collisions are 
possible [17]; for example, if the optional number-of-strokes 
speed optimization is not used, $N may have trouble 
distinguishing a two-stroke equals sign (=) and a one-stroke “z”. 
Finally, despite its speed optimizations, if $N is used with a large 
set of multistroke templates (30+), some of which contain many 
component strokes (5+), slowdowns are likely during the 
recognition process depending on hardware and other factors. 

In practice, although these limitations make $N less powerful 
than a state-of-the-art sketch or handwriting recognizer, these 
limitations do not readily affect $N’s suitability as a rapid 
prototyping tool. The goal is to provide an accurate, fast, easily 
deployable recognizer for small, useful sets of interface gestures. 
The utility of such sets is limited by human memory and 
performance, and we know from prior work that gestures should 
be as distinct, simple, and quick to make as possible [17]. This 
lessens the algorithmic burden on a recognizer intended for rapid 
prototyping, but heightens the importance of a quick-to-use 
approach that avoids extensive coding, training, and fine-tuning 
like, say, a neural network requires [22]. As our study shows, $N 
is well-suited to this purpose. 

5 STUDY OF A PEN-BASED MATH TUTOR PROTOTYPE 

Although we could replicate $1’s study of user interface gestures 
[33] like those shown in Figure 1, the results are predictable, 
given that $N uses $1’s algorithm “under the hood” and $1 
recognized similar gestures, albeit unistrokes. Instead, we chose to 
sacrifice experimental control for a more challenging in situ study 
where gestures were not provided by adults, but by youth from 
middle and high school classrooms. The prototype investigated 
was a cognitive math tutor with a pen-based interface on Tablet 
PCs [2,3], and the gestures were not collected for the purpose of 
evaluating $N, but previously for evaluating the tutor. We 
reasoned that if $N could perform well on students’ algebra 
symbols, it could be effective on user interface symbols. 

5.1 Method 

5.1.1 Participants and Apparatus 

Forty middle and high school students aged 11-17 provided pen 
gestures. Most students had not used pen-based input prior to the 
study. Gestures were collected on Tablet PCs running software 
that recorded students’ strokes. Students copied algebra equations 
displayed one at a time on the screen. Each student copied 45 
equations such as “2x + 3 = 10”. Students could not erase their 
strokes once written. After the experiment, the students’ strokes 
were hand-segmented and hand-labeled for ground truth. 

5.1.2 Algebra Symbols 

Students supplied gestures for 20 distinct algebra symbols as part 
of their equations. They could write these symbols however they 
wanted: some almost always were unistrokes (e.g., 3, c), while 
others were multistrokes (e.g., 4, x, =, +), and still others varied 
from student-to-student (e.g., 5, a, b, y). 

0-9, a-c, x, y, =, +, –, (, ). 
The final test corpus contained 15,309 gestures. Seventy-

percent of these gestures were unistrokes, 30.0% were 
multistrokes, and 13.4% were 1D. Although our interest in testing 
$N was primarily in multistroke gestures, user interface 
prototypes often utilize a mixture of unistrokes and multistrokes, 
and it is important for $N to succeed on both. 

5.1.3 Recognizer Training and Testing 

To facilitate comparisons, our procedure for testing $N was based 
on that of Wobbrock et al. for $1 [33]. We tested $N under 
various configurations on the algebra corpus, and also tested $N 
on the released $1 unistroke corpus. 

Although the term “training” is more suited to feature-based 
statistical classifiers like Rubine [27], in a sense, we train $N 
whenever we supply it with a named template. Of a given 
student’s gestures, the number of training examples (i.e., 
templates) T for each of the 20 gesture types was increased 
stepwise from T=1 to 15. Because students were not always issued 
the same algebra equations in situ, not every algebra symbol was 
written the same number of times. Thus, starting at T = 9, some 
symbols were omitted if they were not numerous enough to 
support training equally across students. 

For 100 times per level of T, T training examples were chosen 
randomly for each algebra symbol for a given student. From the 
unchosen gestures, one was picked at random and tested as the 
candidate. Over the 100 tests per symbol per level of T per 
student, correct outcomes were averaged into a recognition rate. 

For a single student, there were about 21,500 recognition 
attempts. With 40 students, the experiment consisted of about 
860,000 recognition attempts. The details of every test were 
logged, including full N-best lists. 



As mentioned, we also tested $N on the released $1 unistroke 
corpus. This followed the same procedure except that T ranged 
from 1 to 9 for 16 different symbols because fewer examples per 
subject were available. For more details, readers are directed to 
the $1 paper [33]. 

5.2 Results 

The recognition results for our various tests are shown in Figure 8. 
$N reached 96.6% accuracy on the algebra symbols with 15 
training examples, and 96.7% on the $1 unistroke corpus with 9 
training examples. $N was expectedly poorer than $1 on the $1 
corpus of unistrokes (t(8)=8.12, p<.0001), which reached 99.6%. 

For the algebra corpus, we see steady accuracy increases with 
each additional option. With no options, $N reached 93.6% 
accuracy and took 569 minutes to complete the entire automated 
test. $N improved significantly with the start angle optimization 
(t(14)=6.47, p<.0001), reaching 95.0% accuracy in 128 minutes. 
Adding in the same-number-of-strokes optimization also 
significantly improved accuracy (t(14)=8.62, p<.0001), reaching 
95.7% in just 65 minutes. As an exploration, we tried uniformly 
scaling all symbols, not just 1D ones, and $N improved 
significantly to 96.6% accuracy also in 65 minutes (t(14)=7.60, 
p<.0001). Thus, these options significantly improved both $N 
speed and accuracy. For all series, there was no significant 
difference between multistroke and unistroke accuracy. 

On the unistroke corpus, $N with no options performed slightly 
better than with the start angle (t(8)=3.75, p<.01) and uniform 
scaling options (t(8)=3.25, p<.05), which themselves were not 
significantly different (t(8)=2.02, n.s.). The start angle 
optimization reduced recognition time from 37 to 13 minutes. 

6 DISCUSSION 

$N achieved reasonable recognition rates on both the algebra and 
unistroke corpora. We should expect that $N would not perform 
as well as $1 on the unistroke corpus because $N is more 
complex: it turns each unistroke into two, one for each direction, 
and automatically differentiates 1D from 2D gestures using a 0.30 
MIN-SIDE to MAX-SIDE threshold derived from the algebra corpus. 
Although there were no 1D gestures in the $1 corpus, some 
subjects may have made checkmarks (), arrows (), left ([) and 
right (]) square brackets, and left ({) and right (}) curly braces 
thinly enough to be classified as 1D. Nevertheless, $N reached 
96.7% accuracy. This suggests the possibility of a hybrid design, 
which, if one’s application allows for it, runs $N on multistrokes 
and $1 on unistrokes. 

$N did not perform quite as well on the algebra corpus as it did 
on the unistroke corpus. $N’s accuracy on the unistroke corpus 
with only 9 templates (96.7%) almost matched its accuracy on the 
algebra corpus with 15 templates (96.6%). Six factors may 
explain this difference between corpora. First, $N was used in part 
on multistroke gestures, which may have more inherent variability 
than unistrokes. Second, $N was tested on 1D gestures, which had 
to be automatically distinguished from 2D gestures. Third, the 
algebra corpus was made in situ by middle and high school 
students, whereas $1’s corpus was made in a lab by adults. Fourth, 
some algebra symbols were quite similar, like “x” and “+“, or “a” 
and “9”. (The most challenging algebra gestures for $N to 
recognize with 1 template loaded were “c”, “2”, “y”, “9”, and “3”. 
The most confusable pairs were “x” and “y”, “4” and “y”, “(” and 
“c”, “x” and “+“, and “9” and “a”.) Fifth, $N was tested on 20 
symbols, whereas $1 was tested on 16. Sixth, $N used only partial 
rotation invariance, rather than full rotation invariance like $1, 
making recognition less accurate if students wrote symbols at 
unusual angles. 

In light of these challenges, the results are quite satisfying. 
They become more so when $N is compared to more complex 

recognizers that require more training examples, such as the 
Freehand Formula Entry System (FFES) [29], which suggests 20-
40 examples per symbol per user. With 15 training examples, 
FFES was 91.5% accurate on our algebra corpus [3], lower than 
the 96.6% accuracy achieved by $N. 

It is interesting that both speed optimizations improved 
recognition accuracy on the algebra corpus but not on the 
unistroke corpus. The unistroke corpus was tested with full 
rotation invariance, while the algebra corpus was tested with ±45° 
from the drawn orientation. It is likely that the start angle 
optimization is more effective when bounded rotation invariance 
is used because a matching start angle is more discriminating 
when drawing orientation matters. Also, the fact that the same-
number-of-strokes optimization improved accuracy shows that 
most algebra symbols were made with the same stroke count. 

7 FUTURE WORK 

We chose to evaluate $N on a mixture of gestures made in situ by 
middle and high school students on a pen-based math tutor 
prototype [2,3], reasoning that if $N can perform well, it should 
be suitable for recognizing user interface gestures just as $1 is. 
Nevertheless, $N should ultimately be evaluated for its usefulness 
to rapid prototypers. If the uptake of $1 is indicative, then $N may 
also be quickly adopted. $1’s popularity has led to others working 
on multistroke extensions to it, such as Field et al. [8]; an obvious 
important test would be to compare such competitors to $N in 
terms of accuracy and ease of use.  

$N was tested in a writer-dependent fashion, which is 
appropriate for prototypers testing and demonstrating their own 
systems. However, in cases where training data for new users of a 
prototype are unavailable, or where the prototype is collaborative 
and multi-user, $N will be used in a writer-independent fashion, 
which should be studied. 

Additional features could be added to $N to support scale or 
position dependence. These options, along with others, could be 
exposed by a gesture design tool (e.g., [17]) that could also 
automatically determine optimal MIN-SIDE to MAX-SIDE ratios 
based on drawn or loaded examples (cf. Figure 6). 

We could also prevent the collisions that may occur due to 
resampling gestures “through the air,” e.g., equals sign (=) and 
“z”. $N could tag each resampled point as occurring on “land” or 
“air,” allowing the recognizer to match only the same type of 
points to each other. 

8 CONCLUSION 

The popularization of pen, wand, touch, tabletop, and surface 
computing raises the need for easy creation of stroke-based 
gesture recognition to facilitate rapid prototyping. We have shown 
that $N is capable of producing good recognition rates on algebra 
symbols from a math tutor prototype, indicating that $N should be 
effective for smaller user interface symbol-sets. $N generalizes 
from single multistroke templates to all possible stroke orders and 
directions, enabling each type of multistroke to be defined once. 
$N also automatically distinguishes between 1D and 2D gestures, 
provides for bounded rotation invariance, and employs two highly 
effective speed optimizations that also improve accuracy. We 
expect that $N should be useful for quickly adding multistroke 
gestures to user interface prototypes, just as $1 has been for 
unistrokes. An application developer can take the pseudocode 
listing provided in this paper, or the reference JavaScript or C# 
implementations on the $N website, and translate them into the 
platform-specific language of his choice for the prototype. This 
scenario has already been realized by the hobbyist developer of 
AlphaCount, an iPhone application that teaches kids to recognize 
and write numbers. It uses the $N recognizer and is available at 
http://itunes.apple.com/us/app/alphacount/id359046783. 
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APPENDIX A 

 
GENERATE-UNISTROKE-PERMUTATIONS(strokes) 

1 for i from 0 to |strokes| do orderi ← i 
2 HEAP-PERMUTE(|strokes|, order, out orders) 
3 M ← MAKE-UNISTROKES(strokes, orders) 
4 foreach unistroke U in M do 
5  Upoints ← RESAMPLE(Upoints, N)   // step 3 
6  ω ← INDICATIVE-ANGLE(Upoints)   // step 4 
7  Upoints ← ROTATE-BY(Upoints, –ω) 
8  Upoints ← SCALE-DIM-TO(Upoints, size, ∂)   // step 5 
9  Upoints ← CHECK-RESTORE-ORIENTATION(Upoints, +ω) 
10  Upoints ← TRANSLATE-TO(Upoints, O) 
11  Uvector ← CALC-START-UNIT-VECTOR(Upoints, I)   // step 6 

HEAP-PERMUTE(n, order, out orders) 
1 if n = 1 then APPEND(orders, order) 
2 else 
3  for i from 0 to n do 
4   HEAP-PERMUTE(n-1, order, out orders) 
5   if IS-ODD(n) then SWAP(order0, ordern-1) 
6   else SWAP(orderi, ordern-1) 

MAKE-UNISTROKES(strokes, orders) 
1 foreach order R in orders do  
2  for b from 0 to 2|R| do  
3   for i from 0 to |R| do  
4    if BIT-AT(b, i) = 1 then   // b’s bit at index i 
5     APPEND(unistroke, REVERSE(strokesRi

)) 

6    else APPEND(unistroke, strokesRi
) 

7   APPEND(unistrokes, unistroke) 
8 return unistrokes 

 
COMBINE-STROKES(strokes) 

1 for i from 0 to |strokes| do  
2  for j from 0 to |strokesi| do  
3   APPEND(points, strokesij

)   // append each point 

4 return points 

 
INDICATIVE-ANGLE(points) 

1 c ← CENTROID(points)   // computes (x̄, ȳ) 
2 return ATAN(cy – points0y

, cx – points0x
)   // for -π ≤ ω ≤ π 

ROTATE-BY(points, ω) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← (px – cx) COS ω – (py – cy) SIN ω + cx 
4  qy ← (px – cx) SIN ω + (py – cy) COS ω + cy 
5  APPEND(newPoints, q) 
6 return newPoints 

 
SCALE-DIM-TO(points, size, ∂) 

1 B ← BOUNDING-BOX(points) 
2 foreach point p in points do  
3  if MIN(Bwidth / Bheight, Bheight / Bwidth) ≤ ∂ then   // uniform 
4   qx ← px × size / MAX(Bwidth, Bheight) 
5   qy ← py × size / MAX(Bwidth, Bheight) 
6  else   // non-uniform 
7   qx ← px × size / Bwidth 

8   qy ← py × size / Bheight 

9  APPEND(newPoints, q) 
10 return newPoints 

CHECK-RESTORE-ORIENTATION(points, ω) 
1 if using bounded rotation invariance then 
2  points ← ROTATE-BY(points, ω) 
3 return points 

TRANSLATE-TO(points, k) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← px + kx – cx 
4  qy ← py + ky – cy 
5  APPEND(newPoints, q) 
6 return newPoints 

 
CALC-START-UNIT-VECTOR(points, I) 

1 qx ← pointsIx
 – points0x 

2 qy ← pointsIy
 – points0y

 

3 vx ← qx / √(qx
2 + qy

2) 
4 vy← qy / √(qx

2 + qy
2) 

5 return v 

 
RECOGNIZE(points, v, S, multistrokes) 

1 b ← +∞ 
2 foreach multistroke M in multistrokes do 
3  if S = |Mstrokes| then   // optional: require same # strokes 
4   foreach unistroke U in M do 
5    if ANGLE-BETWEEN-VECTORS(v, Uvector) ≤ Φ then 
6     d ← DISTANCE-AT-BEST-ANGLE(points, U, –θ, θ, θ∆) 
7     if d < b then b ← d, M′ ← M 
8 score ← 1 – b / [½√(size2 + size2)] 
9 return M′, score 

ANGLE-BETWEEN-VECTORS(A, B) 
1 return ACOS(Ax × Bx + Ay × By) 

Step 7. Match candidate points having start unit vector v, processed 
from the raw strokes in Step 2, where now S = |strokes|, against 
unistroke permutations U within each multistroke M. We use Φ = 30° 
for the start angle similarity threshold. DISTANCE-AT-BEST-ANGLE 
remains unchanged from Step 4 in [33]. The reader is directed there. 
We pass it θ=±45° and θΔ=2°. 

Step 6. Calculate the start unit vector v for points using index I=12. 

Step 5. Scale dimensionally-sensitive based on threshold ∂=.30. Next, 
if using bounded rotation invariance, restore drawn orientation by 
rotating +ω. Then translate to the origin O=(0,0). 

Step 4. Find and save the indicative angle ω from the points’ centroid 
to first point. Then rotate by –ω to set this angle to 0°. 

Step 3. Resample a points path into n evenly spaced points. 
RESAMPLE remains unchanged from Step 1 in [33]. The reader is 
directed there.

Step 2. Combine candidate strokes into one unistroke points path. 

Step 1. Take a multistroke gesture strokes and generate unistroke 
permutations. For gestures serving as templates, Step 1, which uses 
Steps 3-6, should be carried out once on the input points. For 
candidates, Steps 2-7 should be applied to the input points. For 
constants we use N=96, size=250, ∂=.30, O=(0,0), and I=12.


