
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)

M. van de Panne, E. Saund (Editors)

Kirchhoff’s Pen: A Pen-based Circuit Analysis Tutor

Ruwanee de Silva,1 David Tyler Bischel,1 WeeSan Lee,2 Eric J. Peterson,1 Robert C. Calfee,3 and Thomas F. Stahovich1

1Mechanical Engineering Department, University of California, Riverside
2Computer Science Department, University of California, Riverside
3Graduate School of Education, University of California, Riverside

Abstract

Kirchhoff’s Pen is a pen-based tutoring system that teaches students to apply Kirchhoff’s voltage law (KVL)

and current law (KCL). To use the system, the student sketches a circuit schematic and annotates it to indicate

component labels, mesh currents, and nodal voltages. The student then selects either mesh (KVL) or nodal (KCL)

analysis, and writes the appropriate equations. The system interprets the equations, compares them to the correct

equations (which are automatically derived from the circuit), and provides tutorial feedback about errors. Unlike

traditional tutoring systems that work from input provided with a keyboard and mouse, our system works from

ambiguous, hand-drawn input. The goal of our work is to create computational techniques to enable natural,

pen-based tutoring systems that scaffold students in solving problems in the same way they would ordinarily solve

them with paper and pencil. Kirchhoff’s Pen is an important first step toward this goal.

1. Introduction

Pen-based interaction is becoming increasingly important,

due in part to the ready availability of pen-based hardware.

Despite its potential, pen-based technology has not yet been

widely applied to education. Perhaps the best current exam-

ple of pen-based, educational technology is Classroom Pre-

senter [AMS05], a classroom interaction system that allows

students and instructors to communicate wirelessly in lecture

environments using tablet computers. However, this system

does not interpret what is written, nor is it intended to pro-

vide any instructional feedback.

Our work is focused on the use of pen-based technology

for creating intelligent tutoring systems. In particular, our

goal is to create computational techniques to enable natural,

pen-based tutoring systems that scaffold students in solv-

ing problems in the same way they would ordinarily solve

them with paper and pencil. This goal is consistent with re-

cent research comparing student performance across differ-

ent user interfaces showing that “as the interfaces departed

more from familiar work practice..., students would experi-

ence greater cognitive load such that performance would de-

teriorate in speed, attentional focus, meta-cognitive control,

correctness of problem solutions, and memory” [OAC06].

While that work used systems that provided no problem-

solving assistance (i.e., they were not tutoring systems), the

findings provide compelling evidence of the potential bene-

fits of well-designed, pen-based instructional tools.

As one step toward our goal, we have developed Kirch-

hoff’s Pen, a pen-based tutoring system that teaches students

to apply Kirchhoff’s voltage and current laws. Kirchhoff’s

voltage law (KVL) states that the sum of the voltages around

any closed loop, or “mesh,” is zero. Kirchhoff’s current law

(KCL) states that the sum of the currents into an electrical

node is zero. Our work to date has been primarily focused

on the issues of interpreting ambiguous, hand-drawn input

in an instructional setting.

To use Kirchhoff’s Pen, the student sketches a circuit

schematic and annotates it to indicate the component la-

bels, mesh currents, and nodal voltages. A radio button at

the top of the window allows the student to switch between

circuit drawing and annotation mode. Next, the student se-

lects either mesh analysis (KVL) or nodal analysis (KCL),

and writes the appropriate equations in a window at the bot-

tom of the screen. The system interprets the equations, com-

pares them to the correct equations (which are automatically

derived from the circuit), and provides feedback about er-

rors. Figure 1 shows an example of the system being used

for mesh analysis. The equation at the bottom of the screen

Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

de Silva et al. / Kirchhoff’s Pen

Figure 1: Kirchhoff’s Pen used for mesh analysis. The system informs the student of the sign error on the “R2I2” term.

is intended to describe the mesh on the left side of the circuit.

However, the student has made a sign error: the R2I2 term

should be negative, but was written as positive. The system

identifies the error and informs the student.

Kirchhoff’s Pen is built on top of our AC-SPARC sys-

tem [GKSS05], which can interpret a sketch of a circuit, and

generate an input file for the SPICE circuit simulator [spi].

AC-SPARC is an analysis rather than instructional tool; it

provides no tutoring capabilities. Additionally, AC-SPARC

interprets only circuit sketches and cannot interpret circuit

annotations or hand-written equations.

The next section presents a discussion of related work.

This is followed by a brief discussion of AC-SPARC, and

then the details of the Kirchhoff’s Pen system. Finally, future

work is discussed and conclusions are presented.

2. Related Work

Intelligent tutoring systems have been developed for a wide

variety of domains, such as: medicine [SH04], law [Spa93],

computer programming [FAR84], physics [VLS∗05], and

electric circuits [BRAH04, BDM06]. Nearly all of these

systems are based on WIMP (windows, icons, mouse, and

pointer) or keyboard interfaces. Our work, by contrast, is

focused on building pedagogically-sound, pen-based inter-

faces for tutoring systems. While conventional tutoring sys-

tems work from unambiguous input provided with a key-

board and mouse, we focus on the challenges of working

from ambiguous, hand-drawn input.

Research on pen-based interfaces is quite active at

present. Examples of existing experimental applications in-

clude: a tool for simulating simple hand-drawn mechanical

devices [AD01], a tool for sketching user interfaces [LM01],

a UML diagram tool [HD02], a tool for interpreting hand-

drawn equations [Mat99], and a tool for understanding mil-

itary tactics [FFU01]. Likewise there has been significant

progress in sketching 3D shapes [ZHH96].

While sketch understanding techniques have been used

for a wide range of applications, the impact on tutoring sys-

tems has been limited. [AMS05] describes a classroom inter-

action system that allows students and instructors to commu-

nicate wirelessly in lecture environments using tablet com-

puters. However, this system does not interpret what is writ-

ten, nor is it intended to provide tutoring capabilities.

Researchers have recently begun to explore issues related

to the development of pen-based instructional tools. For ex-

ample, Oviatt [OAC06] compared student performance us-

ing paper-and-pencil, the Anoto digital pen system (a digital

pen that digitizes ink but does not run applications) [ano],

and the Tablet PC. Students used these platforms solely as

a recording medium for problem solving; no tutoring ca-

pabilities were provided. This work demonstrated that “as

the interfaces departed more from familiar work practice...,

students would experience greater cognitive load such that

performance would deteriorate in speed, attentional focus,

meta-cognitive control, correctness of problem solutions,

and memory.” This work speaks to the importance of good

user interface design in creating effective educational sys-

tems. [AYK05] describes a study of methods for entering

mathematical equations into a computer. The goal was to ex-

plore interface issues for tutoring systems. Although the user

input was not interpreted, the study suggests that pen-input

of equations is substantially more efficient than keyboard en-

try, and is greatly preferred by users.

76

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

3. AC-SPARC Overview

Kirchhoff’s Pen is built on top of our AC-SPARC system

[GKSS05], which can interpret a sketch of a circuit and gen-

erate an input file for the SPICE circuit simulator [spi]. AC-

SPARC is an analysis rather than instructional tool. It is con-

cerned with interpreting circuit schematics; It does not inter-

pret circuit annotations or hand-written equations, nor does

it provide tutoring capabilities.

AC-SPARC was designed to provide a natural drawing

experience, by placing minimal constraints on the way the

user draws. The user can draw an electrical symbol with any

number of pen strokes, and each instance of a symbol can

contain a different number of strokes. There are no require-

ments that the parts of a symbol be drawn in the same order

in every instance. The user can also draw multiple symbols

in the same pen stroke, without lifting the stylus or pausing.

The only constraint is that the user must finish drawing one

symbol before starting another.

The system employs a novel sketch segmentation tech-

nique. Segmentation is the process of decomposing a sketch

into the constituent objects, in this case, electrical com-

ponents and wires. AC-SPARC’s segmenter locates circuit

components by locating regions with high "ink density" –

regions with a high concentration of pen strokes. It also lo-

cates circuit components by identifying changes in the char-

acter of the pen strokes, such as when a sequence of long

line segments is followed by a sequence of short arc seg-

ments. Pen strokes are segmented into lines and arcs using

the technique in [Sta04].

Once it has located the electrical components, AC-SPARC

classifies them using a feature-based symbol recognizer.

A symbol is characterized by the number of: pen strokes,

line segments, arc segments, endpoint (“L”) intersections,

endpoint-to-midpoint (“T”) intersections, midpoint (“X”) in-

tersections, pairs of parallel line segments, and pairs of per-

pendicular line segments. The final feature is the average dis-

tance between the endpoints of the segments, normalized by

the maximum distance between any two endpoints. A sym-

bol definition is learned from training examples by comput-

ing the mean and standard deviation of each feature from

those examples. During classification, the features of the un-

known symbol are compared to the distributions of the fea-

tures in the definition, using a naive Bayesian approach.

AC-SPARC uses context to automatically correct inter-

pretation errors. Domain knowledge is used to determine if

the interpretation of the sketch is self-consistent. If it is not,

segmentation and recognition are revisited so as to eliminate

the inconsistencies. For example, if a component is recog-

nized as a capacitor, but has only one wire attached to it,

the program will revisit recognition to determine if another

likely classification would make more sense. For instance, if

the next highest ranked classification was that of a ground

symbol, the program would reclassify the symbol as such,

because that would match the number of attached wires.

Figure 2: Circuit with six meshes indicated by approxi-

mately inscribed rectangles (3 dashed, 3 solid). The three

solid rectangles indicate “windows,” meshes that are pre-

ferred for analysis.

4. System Design

To interpret the student’s work and provide tutorial feedback,

Kirchhoff’s Pen must perform a number of tasks. It must

interpret the various circuit annotations, such as component

labels and mesh-current arrows, and associate them with the

objects they describe. It must derive the correct equations for

the circuit. (Our underlying AC-SPARC system, described in

Section 3, interprets the circuit.) Finally, it must interpret the

student’s hand-written equations, and compare them to those

it derives. The following sections describe how the system

performs these tasks.

4.1. Locating Meshes

To verify the student’s mesh analysis, Kirchhoff’s Pen must

be able to compute the correct mesh equations for the cir-

cuit. To do this, the program must first identify all of the

possible meshes in the circuit. A mesh is a closed, non-

self-intersecting path through the circuit. The program lo-

cates meshes by searching a graph representation of the

circuit produced by AC-SPARC. Each graph node repre-

sents a wire, or an electrical component, such as a resistor.

The edges in the graph represent electrical connections be-

tween the wires and components. To begin, the program se-

lects a graph node, and exhaustively searches for non-self-

intersecting paths that return to that node. All such paths are

meshes. Another graph node is then selected as the starting

point for another search. First, however, the previous start-

ing node is removed from the graph to prevent duplicate

paths from being discovered. This process is repeated until

all graph nodes have been considered, and thus all meshes

located.

A typical circuit will have multiple meshes, but not all

are needed to analyze the circuit. In general, the number of

meshes required is given by:

M = C−N +1 (1)

where M is the number of meshes, N is the number of elec-

trical nodes (wires with distinct voltages), and C is the num-

ber of components (resistors, voltage sources, and current

sources) [AS04]. For example, the circuit in Figure 2 has

77

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

Figure 3: Typical circuit annotations.

six different meshes. However, because the circuit has four

components and two electrical nodes (the top and bottom

“rails”), only three meshes are required to analyze the cir-

cuit. Any three of the six meshes could be used, but students

are initially taught to choose “windows,” meshes that do not

contain portions of other meshes. In Figure 2, the windows

are indicated with solid rectangles. The program identifies

the windows by sorting the meshes in increasing order of

bounding box size, and selecting the M smallest meshes that

do not subsume other meshes with smaller bounding boxes.

4.2. Interpreting Circuit Annotations

After the student has drawn a circuit, he or she must annotate

it to indicate the mesh currents, component labels, and nodal

voltages. Figure 3 shows a typical set of annotations. To in-

terpret these, the program must first segment them into dis-

tinct objects. The annotations are drawn in annotation mode,

rather than circuit drawing mode, and thus are distinct from

the circuit sketch. Consequently, the program needs only to

distinguish the annotations from one another. It does this by

first identifying the arrows representing mesh currents. All

of the remaining annotations are text, which are grouped into

individual labels using a clustering technique. The labels are

then interpreted, and mapped to the corresponding circuit el-

ements and mesh current arrows. The following sections de-

scribe these steps in more detail.

4.2.1. Recognizing Arrows

To recognize mesh-current arrows, we use a technique

described in [Kar04]. Our implementation is suitable for

single-stroke arrows drawn from tail to tip. The technique

can also be used for two-stroke arrows, but we have not yet

implemented this.

To begin, the pen stroke is resampled to produce 36 evenly

spaced points. A line segment is then defined between each

pair of consecutive points. Finally, the cosine of the angle

between adjacent segments is computed, as shown in Fig-

ure 4. The cosine is inversely related to the curvature. For

example, if two consecutive segments are nearly colinear,

the cosine is close to 1.0. If there is a large discontinuity,

Figure 4: Resampled arrow. Inverse curvature at point A is

cos(θ).

Figure 5: Inverse curvature of the arrow from Figure 4.

such as a 90o bend, the cosine is close to 0.0. For this rea-

son, the cosine of the angle between adjacent segments is

called “inverse curvature.” Figure 5 shows the inverse cur-

vature representation of the arrow from Figure 4. Notice that

the inverse curvature is approximately 1.0 for most points on

the arrow, but is much smaller (in this case, less than 0.0) for

the three discontinuities at the head of the arrow. It is these

discontinuities that enable the technique to identify arrows.

The shape of the arrow shaft is irrelevant. In fact, the first 18

sample points are actually discarded by the recognizer.

The arrow recognizer is a neural network comprised of

an eighteen-node input layer, two five-node hidden layers,

and a single-node output layer. The inputs to the network are

the 18 inverse curvature values for the head end of the ar-

row. The output is the classification: arrow or non-arrow. We

trained the network using 300 arrows and 1900 non-arrows

provided by six different users. The non-arrows consisted of

examples of all legal, non-arrow annotations, including “V,”

“I,”, “R,” and all single digit numbers. Using such a compre-

hensive set of negative training examples contributes to the

robustness of the recognizer.

4.2.2. Clustering Text Labels

The arrow recognizer described in the previous section is ap-

plied to each annotation pen stroke. Any stroke that is clas-

sified as a non-arrow is considered text. Before the text can

be recognized, however, the non-arrow pen strokes must be

clustered into individual characters, which are then clustered

78

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

into distinct text labels. A character is a group of pen strokes

that intersect, or whose separation from one another is less

than a threshold. Similarly, a text label is a set of characters

whose separation from one another is less than a threshold.

The characters in a cluster are sorted from left to right and

are recognized with the Tablet PC handwriting recognizer.

Once the labels have been recognized, the hand-written char-

acters are replaced with machine generated characters. The

complete process is described in Section 4.3.

4.2.3. Associating Labels

After the text labels have been located and recognized, they

must be associated with the objects – circuit components,

electrical nodes (wires), and mesh-current arrows – they de-

scribe. We use geometric proximity to determine which ob-

ject is associated with each label. However, this problem

presents several challenges. First, it is common for a given

label to be near several different objects, and furthermore,

it is possible that the closest object is not the intended as-

sociation. Label I0 in Figure 3, for example, is intended to

describe the mesh current, but is actually closer to the volt-

age source than it is to the arrow. Second, a label intended

for a particular circuit component may be as close or closer

to the wire attached to that component. Third, in most prob-

lems, some objects are not intended to have labels, even if

there are nearby labels. For example, in mesh analysis the

electrical nodes are not labeled.

To address these issues, we define a cost function, based

on the sum of the distances from the labels to their associated

objects:

C(a) =
N

∑
i=1

d(Li,a(Li))+P(a(Li)) (2)

Here Li is the ith label, a(Li) is the object associated with Li,

d(L,O) is the Euclidean distance from label L to object O,

and N is the total number of labels. P(O) is a penalty func-

tion that causes the system to preferentially apply labels to

electrical components and mesh-current arrows, rather than

wires. P(O) is 200 pixels (about 20% of the horizontal res-

olution of the tablet) if object O is a wire, and is zero other-

wise.

The best set of label associations is the one that minimizes

the cost in Equation 2:

BestAssociations = argmin
a∈A

C(a) (3)

where A is the set of all mappings of labels to objects. We

find this best set using a simulated annealing approach. Ini-

tially, a greedy approach is used to assign each label to the

nearest un-assigned object. Then, in each iteration of simu-

lated annealing, two labels are randomly selected, and their

associations swapped. The cost of the new assignments is

computed using Equation 2. If the new cost is less than the

previous value, the swap is kept. If the cost increases, there

Figure 6: Left: arrow mapped to the mesh indicated by the

rectangle. Right: vectors used for computing orientation of

mesh-current arrow.

is still a probability that the swap will be kept. The probabil-

ity is inversely proportional to the amount of increase of the

cost, and the number of iterations that have already occurred.

The process terminates after 100 successive iterations with

no improvement, or a total of 1000 iterations. The final asso-

ciations are revealed via color coding as shown in Figure 1.

In our studies, we have not required users to provide train-

ing data for the circuit component classifier, but have instead

relied on default training data. This has caused some users to

experience some classification errors. As a remedy, Kirch-

hoff’s Pen has a mode in which the labels are used to au-

tomatically correct errors in the classification of the compo-

nents. By convention, resistor labels begin with “R,” voltage

source labels begin with “V”, and current source labels begin

with “I”. If the classification of a component is inconsistent

with its label, the program changes the classification accord-

ingly. For example, if label “I1” is associated with a voltage

source, it is reclassified as a current source.

4.2.4. Associating Arrows

Once the mesh-current arrows have been identified, they

must be associated with the appropriate meshes. Here, again

we make use of geometric proximity. The arrows are re-

sampled by keeping only every fourth data point. The dis-

tance from arrow W to mesh M is computed by finding, for

each sample point w in W , the closest point m on an electrical

component or wire in M:

D(W,M) = ∑
w∈W

min
m∈M

‖w−m‖ (4)

Figure 6 shows an example in which each sample point on

the arrow is connected to its nearest point on the compo-

nents and wires of the mesh on the left side of the circuit.

To find the mesh associated with a particular arrow, Equa-

tion 4 is used to compute the distance from that arrow to

each mesh. The arrow is associated with the mesh that pro-

duces the smallest distance.

The final step in associating an arrow with a mesh is de-

termining the orientation – clockwise or counterclockwise –

of the arrow. The orientation, which is needed to determine

the sign of each term in a mesh equation, is computed us-

ing a cross product. Consider the arrow on the right side of

Figure 6. Two nearby points, A and B, are selected on the

shaft of the arrow such that A is closer to the tail than B. A

79

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

point C is then selected at the center of the bounding box

of the arrow. If (
−→
CA×

−→
AB) · k̂ > 0.0, the arrow is counter-

clockwise, otherwise it is clockwise. (k̂ is a unit vector in the

z-direction, i.e., out of the screen.)

4.3. Interpreting Equations and Labels

Kirchhoff’s Pen uses the Tablet PC handwriting recognizer

to interpret the characters in text labels and equations. This

recognizer is intended primarily for cursive writing rather

than block characters. Furthermore, the recognizer uses a

dictionary to improve recognition accuracy for words. This

actually hinders accuracy in our application, because our la-

bels and equations are not contained in the dictionary. As a

remedy, our system segments the text into individual char-

acters, and passes them to the handwriting recognizer one at

a time. To improve accuracy, our system then uses a set of

domain-specific debugging rules to correct common recog-

nition errors. Details of these steps are described in the sec-

tions that follow.

4.3.1. Clustering Characters

The program uses geometric proximity to cluster pen strokes

into individual characters. Characters are located by group-

ing pen strokes that intersect, or whose separation from one

another is less than a threshold. Because the two lines in an

equal sign are separated by a distance comparable to the typ-

ical inter-character spacing, equal signs are handled as a spe-

cial case: Two horizontal lines located one above the other,

and separated by a distance that is a fraction of their length,

are clustered into a single character. The clustered charac-

ters are sorted from left to right. This enables users to write

the terms of an equation in any order. Once the characters

are sorted, subscripts are identified as characters that are less

than two-thirds the height of the previous character.

4.3.2. Recognizing Characters

Most characters are recognized using the Tablet PC hand-

writing recognizer. However, we developed special-case rec-

ognizers for the equal sign, plus sign, capital “I” with bars

on the top and bottom, and the forward slash (“/”), because

these are frequently misclassified. If a character is recog-

nized by one of these special-purpose recognizers, it is not

sent to the Tablet PC handwriting recognizer.

The Tablet PC handwriting recognizer produces a ranked

set of alternative interpretations for each character. We select

the highest-ranked choice that is consistent with our problem

domain. Specifically, for both text labels and equations, the

allowed characters consist of “V ”, “I”, and “R” and the digits

“0” – “9.” Equations can also contain: “(”, “)”, “[”, “]”, “+”,

“−”, “/”, and “=”.

4.3.3. Debugging Rules

By using our special-purpose character recognizers, and bi-

asing the handwriting recognizer to the legal characters, our

program does avoid many recognition errors. However, there

are still several kinds of common misclassifications. For ex-

ample, it is common for “I”, “1”, and “/” to be confused

Equation Rule Example

Type
e

I −→
e

1 RI −→ R1

1� −→ I� 13 −→ I3

All
e

−
−→

e
−)− −→)−

e
�

4 −→
e

�
+ R24 −→ R2+

12 −→ R 12 −→ R

Mesh /� −→ I� /1 −→ I1e
/ −→

e
1 I/ −→ I1

1V −→ (V 1V −→ (V
Nodal IV −→ (V IV −→ (V

)1R −→)/R)1R −→)/R

)IR −→)/R)IR −→)/R

Table 1: Debugging rules for improving recognition accu-

racy for text. Rules for “All” apply to text labels, and both

mesh and nodal equations. “�” represents any character.

with one another. We correct these sorts of errors by examin-

ing the local context of each character using the rules shown

in Table 1. For example, subscripts must be digits. Thus, if a

subscript is interpreted as an “I”, it is changed to a “1”. Con-

versely, if a “1” has a subscript, the “1” is changed to “I”.

This set of rules has proven to substantially improve recog-

nition accuracy.

4.4. Critiquing Equations

To critique the student’s equations, Kirchhoff’s Pen first de-

rives the correct equations for the circuit. The mesh equa-

tions are derived from the meshes identified by the methods

described in Section 4.1. The nodal equations are derived

from a graph representation of the circuit produced by the

underlying AC-SPARC system.

To facilitate comparing the student’s equations to the cor-

rect ones, we represent each equation with a matrix con-

taining the coefficients of the various terms in the equation.

Here, we will describe how the process works for mesh equa-

tions; nodal equations are handled in an analogous fashion.

The terms in a valid mesh equation consist of either a sin-

gle variable, or a product of two variables. In particular, a

valid mesh equation will contain terms representing voltage

sources, such as “V0,” and products of currents and resis-

tances, such as “R1I1.” An equation can be represented by

a matrix in which there is a row and a column correspond-

ing to each variable. So that a single variable can be treated

as product of two variables, an extra row and column, cor-

responding to a value of “1”, are added to the matrix. “V0”

is treated as the product of “1” and “V0,” for example. The

values stored in the matrix represent the coefficients of each

possible term, i.e., each possible product of two variables. A

“1” in the matrix indicates that the term exists in the equa-

tion. A “-1” indicates that the term exists, and has a negative

sign. A “0” indicates that the term does not exist in the equa-

tion.

To illustrate the approach, consider the mesh equation in

80

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

Equation 5, which is represented by the matrix in Table 2.

The term “V0” is represented by the “1” in row 5, column 7

(and row 7, column 5). The term “−I0R1” is represented by

the “-1” in row 1, column 4 (and row 4, column 1). The term

“−I0R0” is represented by the “-1” in row 1, column 3 (and

row 3, column 1). As these are the only three terms in the

equation, all other matrix entries are “0”.

V0 − I0R1 − I0R0 = 0 (5)

I0 I1 R0 R1 V0 V1 1

I0 0 0 -1 -1 0 0 0

I1 0 0 0 0 0 0 0

R0 -1 0 0 0 0 0 0

R1 -1 0 0 0 0 0 0

V0 0 0 0 0 0 0 1

V1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

Table 2: Matrix representation of Equation 5

To simplify the implementation, we actually use a

31 × 31 matrix, with the column and row labels being

I0, I1, ..., I9,R0,R1, ...,R9,V0,V1, ...,V9, and 1. Because sub-

scripts are limited to a single digit, this will represent all

possible, legal equations. The matrix is symmetric, so only

the upper triangle (or lower triangle) of the matrix need be

considered.

Kirchhoff’s Pen uses a simple numerical technique to de-

rive the matrix representation for an equation. To determine

the coefficient for a term representing the product of two

particular variables, the program sets those variables equal

to one, sets all other variables equal to zero, and numeri-

cally evaluates the left side of the equation. For example, to

determine the coefficient of the term “I0R1” in Equation 5,

the program sets I0 = R1 = 1 and V0 = R0 = 0 as shown in

Equation 6. This correctly identifies the coefficient as nega-

tive one:

0−1∗1−1∗0 (6)

The student is not required to indicate which mesh a par-

ticular equation is intended to represent. We assume the

equation was intended to represent whichever mesh it de-

scribes best. More precisely, the intended mesh is identified

by comparing the matrix form of the student’s equation to

the matrix form of each of the correct equations. The mis-

match between two matrices is defined as the number of

non-zero elements unique to one or the other of the matri-

ces. Once the intended equation has been identified, the ma-

trices for the student’s equation and the correct equation are

compared term by term. Errors are reported if the student’s

equation is missing terms, has extra terms, or has terms with

the wrong sign.

4.5. Editing Gestures

Kirchhoff’s Pen provides several editing gestures to allow

the user to change the input or correct interpretation errors.

Ink can be erased with the eraser end of the stylus. The cir-

cuit can be extended at any time by simply drawing new

wires and components. Recognition errors can be corrected

by tapping the stylus on the circuit symbol or text in ques-

tion, and selecting the correct interpretation from a pop-up

list. If the circuit segmenter fails to locate a circuit compo-

nent, it can be manually located by holding the button on the

stylus and circling it. If the segmenter incorrectly marks ink

as a circuit component, this can be corrected by holding the

button on the stylus and making a slashing gesture through

the ink.

5. Discussion and Future Work

We have not yet conducted a formal user study of Kirch-

hoff’s Pen. We have, however, obtained informal feedback

from a number of subjects who have tried the system. The

feedback has been generally favorable, but has revealed op-

portunities for improving the system. In particular, we plan

to increase the naturalness of interaction by eliminating

some of the assumptions about how objects are drawn. For

example, we currently assume that arrows are drawn with

single-strokes, but some users prefer to draw them with two-

strokes. Fortunately, implementing a two-stroke arrow rec-

ognizer is a straightforward extension of our current system.

Also, our text clustering technique requires the user to main-

tain a minimum inter-character spacing. Users can adapt to

this relatively easily, but we plan to develop a more robust

approach.

Currently, the circuit is drawn in circuit mode, and is an-

notated in annotation mode. We used this approach for our

initial prototype system, because it allowed us to efficiently

build tutoring capabilities on top of our existing AC-SPARC

system. In future work, we will eliminate the modes, and

develop techniques to enable the system to distinguish anno-

tations from the circuit. This will be feasible, as the circuit

is comprised, for the most part, of connected pen strokes.

The system currently teaches students to apply Kirch-

hoff’s current and voltage laws. We plan to extend the system

to other topics, such as simplifying circuits by identifying

parallel and series components, and transforming sources,

i.e., computing Norton and Thevenin equivalents. Addition-

ally, we plan to greatly expand the kind of tutorial feedback

the system provides. For example, if the “I2R2” term is miss-

ing from the equation in Figure 1, the program simply re-

ports that the term is absent. A better explanation would also

indicate the likely source of the error, drawing the student’s

attention to the fact that resistor R2 is part of two meshes. We

will provide this sort of explanation using the “buggy rules”

approach to intelligent tutoring [FAR84].

Once we address the remaining user interface issues and

complete the tutorial capabilities, we plan to deploy Kirch-

hoff’s Pen in an introductory electric circuits course at the

University of California, Riverside. We plan to conduct a for-

mal assessment of the usability of the system, and its value

as an instructional tool.

81

© Association for Computing Machinery, Inc., 2007.

de Silva et al. / Kirchhoff’s Pen

6. Conclusion

We have presented Kirchhoff’s Pen, a pen-based tutoring

system that teaches students to apply Kirchhoff’s voltage

law (KVL) and current law (KCL). To use the system, the

student sketches a circuit schematic and annotates it to in-

dicate component labels, mesh currents, and nodal voltages.

The student then selects either mesh analysis (KVL) or nodal

analysis (Kirchhoff’s KCL), and writes the appropriate equa-

tions. The system interprets the equations, compares them to

the correct equations (which are automatically derived from

the circuit), and provides tutorial feedback about errors.

Intelligent tutoring systems have been widely studied, and

applied to a variety of subjects. However, most current sys-

tems work from unambiguous input provided with a key-

board and mouse. Our work has addressed some of the chal-

lenges of working from ambiguous, hand-drawn input.

Our work is motivated by research suggesting that skill

transfer is higher when training and testing environments are

similar. Our work is also supported by recent research sug-

gesting the potential benefits of well-designed, pen-based in-

structional tools. For these reasons, our goal is the creation

of computational techniques to enable natural, pen-based tu-

toring systems that scaffold students in solving problems in

the same way they would ordinarily solve them with paper

and pencil. Kirchhoff’s Pen is a prototype system, and there

is clearly much more work to be done. Nevertheless, this

system is an important first step toward our goal.

7. Acknowledgments

The authors are grateful to Microsoft Research for their sup-

port for this work.

References

[AD01] ALVARADO C., DAVIS R.: Resolving ambiguities

to create a natural sketch based interface. In IJCAI’01

(2001), pp. 1365–1371.

[AMS05] ANDERSON R., MCDOWELL L., SIMON B.:

Use of classroom presenter in engineering courses. In

FIE’05 (2005), pp. T2G–13–18.

[ano] Anoto Group AB. http://www.anoto.com/.

[AS04] ALEXANDER C., SADIKU M.: Funda-

mentals of Electric Circuits. McGraw-Hill Sci-

ence/Engineering/Math, 2004.

[AYK05] ANTHONY L., YANG J., KOEDINGER K. R.:

Evaluation of multimodal input for entering mathematical

equations on the computer. In CHI ’05 (2005).

[BDM06] BUTZ B. P., DUARTE M., MILLER S. M.: An

intelligent tutoring system for circuit analysis. In IEEE

Transactions on Education (2006), vol. 49, pp. 216–223.

[BRAH04] BILLINGSLEY W., ROBINSON P., ASHDOWN

M., HANSON C.: Intelligent tutoring & supervised prob-

lem solving in the browser. In ICWI (2004), pp. 806–810.

[FAR84] FARRELL R. G., ANDERSON J. R., REISER

B. J.: An interactive computer-based tutor for LISP. In

AAAI’04 (1984), pp. 106–109.

[FFU01] FORBUS K. D., FERGUSON R. W., USHER

J. M.: Towards a computational model of sketching. In

6th International Conference on Intelligent User Inter-

faces (2001), pp. 77–83.

[GKSS05] GENNARI L., KARA L. B., STAHOVICH T. F.,

SHIMADA K.: Combining geometry and domain knowl-

edge to interpret hand-drawn diagrams. Computers &

Graphics 29, 4 (2005), 547–562.

[HD02] HAMMOND T., DAVIS R.: Tahuti: A geometri-

cal sketch recognition system for UML class diagrams.

In AAAI Spring Symposium on Sketch Understanding

(2002), pp. 59–68.

[Kar04] KARA L. B.: Automatic Parsing and Recognition

of Hand-Drawn Sketches for Pen-Based Computer Inter-

faces. PhD thesis, Department of Mechanical Engineer-

ing, Carnegie Mellon University, September 2004.

[LM01] LANDAY J. A., MYERS B. A.: Sketching inter-

faces: Toward more human interface design. IEEE Com-

puter 34, 3 (2001).

[Mat99] MATSAKIS N.: Recognition of Handwritten

Mathematical Expressions. Master’s thesis, MIT, Cam-

bridge, MA, 1999.

[OAC06] OVIATT S., ARTHUR A., COHEN J.: Quiet in-

terfaces that help students think. In UIST ’06 (2006),

pp. 191–200.

[SH04] SUEBNUKARN S., HADDAWY P.: A collabora-

tive intelligent tutoring system for medical problem-based

learning. In IUI ’04 (2004), pp. 14–21.

[Spa93] SPAN G.: LITES, an intelligent tutoring system

for legal problem solving in the domain of dutch civil

law. In Proc. 4th International Conference on AI and

Law (1993), pp. 76–81.

[spi] The spice page. http://bwrc.eecs.berkeley.edu/

Classes/IcBook/SPICE/.

[Sta04] STAHOVICH T. F.: Segmentation of pen strokes

using pen speed. In AAAI Symposium, Making Pen-Based

Interaction Intelligent and Natural (2004).

[VLS∗05] VANLEHN K., LYNCH C., SCHULZE K.,

SHAPIRO J. A., SHELBY R., TAYLOR L., TREACY D.,

WEINSTEIN A., WINTERSGILL M.: The Andes physics

tutoring system: Lessons learned. International Journal

of AI in Education 15, 3 (2005).

[ZHH96] ZELEZNIK R., HERNDON K., HUGHES J.:

SKETCH: An interface for sketching 3D scenes. In SIG-

GRAPH ’96 (1996), pp. 163–170.

82

© Association for Computing Machinery, Inc., 2007.

