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Abstract

We present Newton’s Pen, a statics tutor implemented on a “pentop computer,” a writing instrument with an in-
tegrated digitizer and embedded processor. The tutor, intended for undergraduate education, scaffolds students in
the construction of free body diagrams and equilibrium equations. This project entailed the development of sketch
understanding techniques and user interface principles for creating pedagogically-sound instructional tools for
pentop computers. Development on the pentop platform presented novel challenges because of limited computa-
tional resources and a visually static, ink-on-paper display (the only dynamic output device is an audio speaker).
We show that a system architecture based on a finite state machine reduces the computational complexity, and
serves as a convenient means for providing context-sensitive tutorial help. Our pilot study suggests that Newton’s
Pen has potential as an effective teaching tool.

1. Introduction

Intelligent tutoring systems have been widely studied and
have been applied to a variety of domains [SH04, FAR84,
BDM06,RHC∗03,VLS∗05]. Most current systems are based
on WIMP (windows, icons, mouse, and pointer) interfaces.
However, research suggests that transfer of skills from train-
ing to testing is higher when the testing and training envi-
ronments are similar [Mes05]. Thus, there is a clear benefit
to creating tutoring systems with interfaces that match real-
world problem-solving environments.

The long-term goal of our work, therefore, is to create
computational techniques to enable natural, pen-based tu-
toring systems that scaffold students in solving problems in
the same way they would ordinarily solve them with paper
and pencil. This goal is consistent with recent research com-
paring student performance across different user interfaces
showing that “as the interfaces departed more from familiar
work practice..., students would experience greater cognitive
load such that performance would deteriorate in speed, at-
tentional focus, meta-cognitive control, correctness of prob-
lem solutions, and memory” [OAC06]. While that work used
systems that provided no problem-solving assistance (i.e.,
they were not tutoring systems), the findings provide com-
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Figure 1: The FLY pentop computer.

pelling evidence of the potential benefits of well-designed,
pen-based instructional tools.

As a step towards our goal, we have built Newton’s Pen, a
pen-based statics tutor designed for the LeapFrog FLY pen-
top computer. (Statics is the sub-discipline of engineering
mechanics concerned with the equilibrium of objects sub-
jected to forces.) The FLY, shown in Figure 1, is a writing in-
strument (pen) with an integrated digitizer and an embedded
processor, and is used in conjunction with paper preprinted
with a specially designed dot pattern. As one writes on this
“digital paper,” the digitizer uses the grid to locate the pen
tip on the page and digitize the pen stroke. Newton’s pen
runs entirely on the FLY’s embedded processor, which cre-
ated significant challenges because of the limited memory
and computational power available. Audio is the only form
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of dynamic output on the FLY: the system has a speech syn-
thesizer and can play recorded sound clips. The platform re-
strictions presented substantial user interface design issues.

Newton’s Pen scaffolds students in the construction of
free body diagrams and equilibrium equations. Problems
are solved on digital paper preprinted with user interface
objects, such as “HELP” and “DONE” buttons. Figure 3a
shows a worksheet for drawing a free body diagram. To be-
gin, the student taps the pen on the “START FBD” button,
and the system prompts the student to draw the free body
diagram in the space provided. After each graphical element
is drawn, the system provides interpretive audio feedback.
If the student makes a problem-solving error, or the input is
not recognized, the system informs the student via synthe-
sized speech. The student can tap “HELP” at any time for
audio hints about what to do next, or for guidance after an
error. When the student completes the free body diagram, he
or she hits the “DONE” button, and is directed to write the
equilibrium equations on the worksheet in Figure 3b.

The next section discusses related work. This is followed
by an overview of Newton’s Pen, and then the details of the
system’s design. Finally, results of a user study are presented
and discussed.

2. Related Work

Intelligent tutoring systems have been developed for a wide
variety of domains: medicine [SH04], computer program-
ming [FAR84], electric circuits [BDM06], free body dia-
grams [RHC∗03], and physics [VLS∗05]. Nearly all of these
systems are based on WIMP or keyboard interfaces. Our
work, by contrast, is focused on building pedagogically-
sound, pen-based interfaces for tutoring systems. While con-
ventional tutoring systems work from unambiguous input
provided with a keyboard and mouse, we focus on the chal-
lenges of working from ambiguous, hand-drawn input.

Research on pen-based interfaces is quite active at
present. Examples of existing experimental applications in-
clude: a tool for simulating simple, hand-drawn, mechanical
devices [AD01], a tool for sketching user interfaces [LM01],
a UML diagram tool [HD02], a tool for interpreting hand-
drawn equations [Mat99], and a tool for understanding mil-
itary tactics [FFU01]. Likewise, there has been significant
progress in sketching 3D shapes [ZHH96].

While sketch understanding techniques have been used
for a wide range of applications, the impact on tutoring sys-
tems has been limited. [AMS05] describes a classroom inter-
action system that allows students and instructors to commu-
nicate wirelessly in lecture environments using tablet com-
puters. However, this system does not interpret what is writ-
ten, nor is it intended to provide tutoring capabilities.

Researchers have recently begun to explore issues related
to the development of pen-based instructional tools. For ex-
ample, Oviatt [OAC06] compared student performance us-
ing paper-and-pencil, the Anoto digital pen system (a digital

Problem:

A ring C of weight W hangs from a ceiling by means of

two cords as shown below. The angles between the

horizontal and cords AC and BC are Q and U,

respectively. Draw the free body diagram for the ring,

and write the equilibrium equations.

Q U

A B

C

Figure 2: A typical problem from Newton’s Pen.

pen that digitizes ink but does not run applications) [ano],
and the Tablet PC. Students used these platforms solely as
a recording medium for problem solving; no tutoring ca-
pabilities were provided. This work demonstrated that “as
the interfaces departed more from familiar work practice...,
students would experience greater cognitive load such that
performance would deteriorate in speed, attentional focus,
meta-cognitive control, correctness of problem solutions,
and memory.” This work speaks to the importance of good
user interface design in creating effective educational sys-
tems. [AYK05] describes a study of methods for entering
mathematical equations into a computer. The goal was to ex-
plore interface issues for tutoring systems. Although the user
input was not interpreted, the study suggests that pen-input
of equations is substantially more efficient than keyboard en-
try, and is greatly preferred by users.

Several recent research efforts have aimed at using pen-
top technology to build pen-based applications. The Papier-
Craft [LGH05] system enables users to edit documents by
writing on paper printouts with an Anoto digital pen. An-
notations and command gestures are captured by the digital
pen, and are then uploaded to a PC to be interpreted and ex-
ecuted on a digital version of the document. The NISMap
system [CM04] is a military planning tool, also based on the
Anoto digital pen. As the user annotates a paper map, digi-
tized pen strokes are wirelessly transmitted to a PC for pro-
cessing. The pen input is processed in real time, but is done
so on a traditional computer. The work in [LGL06] has be-
gun exploring methods of providing real-time user feedback
directly from a pentop using LEDs, voice coils, and audio
speakers.

3. System Overview

Newton’s Pen is deployed on the LeapFrog FLY pentop
computer (Figure 1), which is based on Anoto [ano] digital
pen and paper technology. “Digital paper” is ordinary paper
printed with a special dot pattern. The pentop contains a dig-
itizer (camera), which uses the dot pattern to locate the pen
tip. The digitizer, which is near the tip of the pen, is activated
when the pen is pressed against the paper. The FLY produces
two kinds of output: it leaves ink on the paper, and can pro-
duce synthesized speech and sound clips through a speaker
or headphone jack.
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To begin, tap START FBD and draw the free body diagram in

the box. When you are finished, tap DONE. Tap HELP if you

need assistance. If you need to start over, draw an X on the

DELETE button, tap the next START FBD button, and solve

the problem in the new box.

HELPSTATUSC DONE

START FBDSTART FBD DELETE

START FBD DELETESTART FBD DELETE

REPEAT
INSTRUCTIONS

(a)

HELP

REPEAT
INSTRUCTIONS

FINISH

STARTWhen ready, hit

DELETE

DONE

DELETE

DONE

DELETE

DONE

DELETE

DONE

DELETE

DONE

DELETE

DONE

Eqn Type Sign Equation

To write an equation: (a) Write the equation type and

pause. (b) Write the sign convention and pause. (c) Write

the equation, pausing after each item: variable, “cos”,

“sin”, “+”, “-”, “=0“.

Tap DONE when you have completed the equation.

If you need to start over, draw an X on the DELETE button

and use the next row of the table.

(b)
Figure 3: (a) Worksheet for drawing free body diagrams. (b) Worksheet for writing equilibrium equations.

The Newton’s pen system consists of software and spe-
cially designed worksheets. The software is contained on a
flash memory cartridge and runs entirely on the FLY’s em-
bedded processor. The worksheets, which are printed on dig-
ital paper, contain instructions for using the system, user in-
terface objects (i.e., buttons), and spaces for solving prob-
lems. Each problem is laid out in three pages: one page, on
ordinary paper, for the problem description (Figure 2), one
for the free body diagram (Figure 3a), and one for the equi-
librium equations (Figure 3b).

Figure 2 shows a typical problem in which the student
is asked to draw a free body diagram for a ring of weight
W supported by two cords. Figure 3a shows a worksheet for
drawing free body diagrams. The top of the page has instruc-
tions for using the system. As the student works, the sys-
tem provides additional instructions via synthesized speech.
The “REPEAT INSTRUCTIONS” button at the top of the
page is used to repeat the last audio instruction. Below the
printed instructions are three blocks for drawing free body
diagrams (only two are shown in the figure), which allow
the student to make three attempts at solving the problem.
There are two buttons at the top of each block: “START
FBD” and “DELETE”. To begin, the student taps the pen
on the “START FBD” button, and the system prompts the
student to draw the coordinate system and then the body
in the space provided. Once these are completed, the stu-
dent is prompted to draw and label the forces, which can be
drawn in any order. After each graphical element is drawn,
the system provides interpretive audio feedback. If the stu-

dent makes a problem-solving error, or the input is not recog-
nized, the system informs the student by saying “try again.”
At any time, the student can tap the “HELP” button at the
bottom of the page for audio hints about what to do next, or
for guidance following an error.

If the student makes several mistakes while drawing a free
body diagram, he or she can start over in the next block.
Before doing so, the student marks an ’X’ on the “DELETE”
button to indicate that the current work should be discarded.
The student then taps the “START FBD” button of the next
block, and begins as before.

There are three additional buttons at the bottom of the
page: “C”, “STATUS”, and “DONE”. The “C” (continue)
button is used for debugging purposes and causes the system
to advance to the next step in the solution, as if the current
step had been completed correctly. The “STATUS” button
informs the student of the number of forces still to be drawn
to complete the free body diagram. When the student taps
the “DONE” button, the system analyzes the free body dia-
gram. If it is complete, the student is congratulated. If forces
are missing, the system notifies the student of the number
of missing forces, just as the “STATUS” button would. The
“STATUS” and “DONE” buttons do perform similar func-
tions. However, the student uses the former to query for help,
and the latter to indicate that the problem has been solved.
This distinction will eventually be used in assigning credit.

Figure 3b shows the worksheet for writing equilibrium
equations. It provides a table for the student to write equa-
tions, where each row contains a space for the equation type,
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the sign convention, and the equation. The equation type de-
notes the generic equilibrium equation, and the sign conven-
tion indicates the positive coordinate direction. For example,
“ΣFx = 0” and “→ +” indicate an equilibrium equation for
the x-direction, with positive defined to the right. Requiring
the student to provide this information has several benefits:
It supports meta-cognition, is consistent with the way stat-
ics is commonly taught, and allows Newton’s Pen to provide
focused feedback.

As would be expected of such a small device, the FLY
has limited computational power and memory (RAM). Be-
cause of these limitations, computational complexity was of
paramount concern in designing the system. For example,
we employed manual rather than automatic sketch segmen-
tation. (Segmentation is the task of decomposing a sketch
into the individual objects that comprise it.) Like other appli-
cations for the FLY, Newton’s Pen requires the user to pause
after drawing each object. Following a pause, the system at-
tempts to recognize the object, and then announces the re-
sult via synthesized speech. For example, if a force arrow is
recognized, and is drawn in the correct location and orienta-
tion, the system says “force.” If the input is not recognized as
an arrow, or the force is drawn incorrectly, the system says
“try again.” The student can double tap the pen after drawing
an object to cause immediate recognition, thus avoiding the
need to pause.

As another means of reducing computation, Newton’s Pen
requires certain compound objects to be drawn in a particu-
lar order. For example, to draw a force not aligned with a
coordinate direction, the student draws an arrow, the force
label, a leader line, an arc to indicate the angle, and finally
the angle label, all in this order, with a pause after each ob-
ject. Figure 4 shows an example.

In addition to the normal problem-solving mode, New-
ton’s Pen has a demonstration mode that familiarizes stu-
dents with the system. The demonstration begins by provid-
ing step-by-step instruction for drawing and labeling forces.
The student is then shown an example of a force and is asked
to copy it. Next, the student is shown a sample problem, and
the complete free body diagram. The system asks the stu-
dent to copy the diagram, and provides step-by-step audio
instruction for doing so. Likewise, the student is shown the
equilibrium equations and is guided through the process of
copying them. Before starting the demonstration, we typi-
cally ask students to practice by trying commercial FLY ap-
plications such as the calculator or music keyboard (“FLY
Tones”) applications. This helps students become familiar
with basic interaction concepts, such as pausing after draw-
ing and waiting for audio feedback.

4. System Design

The following sections describe how Newton’s Pen performs
its tasks. In particular the system architecture, recognition
techniques, equation interpreter, and tutoring techniques are
presented.

3. Leader Line

2. Label

5. Angle

4. Arc

1. Force Arrow

4. Arc

1. Force Arrow

Figure 4: A typical force. Numbers indicate required draw-
ing order.

4.1. System Architecture

Because of the limited computational resources on the FLY,
we require the student to solve problems in a particular order.
For example, when drawing a free body diagram, the student
must first draw the coordinate system, then the body, and
finally the forces. Also, as discussed in Section 3, there is a
prescribed drawing order for drawing and labeling forces.

Because of the sequential nature of interaction with New-
ton’s Pen, we employ a system architecture that is essen-
tially a non-deterministic finite state machine. (Each prob-
lem actually has two finite state machines: one for the free
body diagram, and one for the equilibrium equations.) In our
case, a “state” is a C++ object that contains a list of legal
inputs, a list of next states, and context sensitive help. In-
puts to states consist of hand-drawn, graphical objects, such
as arrows, text, leader lines, etc. The expected properties of
each graphical object are encoded in the state. For example,
a force arrow is associated with an expected orientation and
location on the body. Each legal input for a state is associ-
ated with a specific recognizer that can identify that kind of
input (see Section 4.2). After the student has drawn an object
and paused (or double tapped), the system calls each of the
recognizers associated with the current state to determine if
the input is one of the legal inputs for that state. If so, the
system advances to the appropriate next state. If not, the sys-
tem uses synthesized speech to say “try again,” and remains
in the same state.

Consider the free body diagram on the worksheet in Fig-
ure 3a, describing a particle subject to three forces T1, T2,
and W . A portion of the corresponding finite state machine
is shown in Figure 5. At the instant shown, the student has
drawn the coordinate system and body, and the system is in
state Forces. There are three legal inputs to this state: Ar-
row1, the arrow corresponding to force T1; Arrow2, the ar-
row corresponding to force T2; and Arrow 3, the arrow cor-
responding to force W . If the student draws an arrow match-
ing Arrow3, for example, the system will transition to state
Label_W in which the only legal input is the text label “W”.
If the student writes a “W” while in this new state, the sys-
tem will transition back to state Forces and wait for the other
forces to be drawn. Thus, our C++ “state” object actually
represents multiple logical states.

This architecture has a number of advantages. First, it pro-
vides a convenient method for providing context sensitive
help. Each state is associated with help messages that are
announced to the student when the help button is pressed.
Because the program’s state mirrors the student’s problem-
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ForcesForces

Arrow3

Arrow2Arrow1
Label_T2Label_T2Label_T1Label_T1

Label_WLabel_W

‘W’

Leader_lineLeader_line ……

DONE

Figure 5: A portion of the finite state machine correspond-
ing to the free body diagram in Figure 3a. The system is
currently in state Forces.

solving progress, the help messages are always relevant.
Second, the architecture allows new problems to be easily
coded. A new problem is created by instantiating the appro-
priate set of state objects. Third, the architecture allows the
system to be run in a demonstration mode that guides the stu-
dent in the use of the system (see Section 3). Each state con-
tains an explanation of what should be drawn in that state.
In demonstration mode, when a state is entered, the expla-
nation is announced to the student. Fourth, the architecture
improves recognition accuracy by limiting the number of
graphical objects that are expected at any given time, thus
limiting opportunities for confusion.

4.2. Recognition

Newton’s Pen must recognize a variety of hand-drawn ob-
jects including: text, force arrows, leader lines and arcs used
to indicate angles, and bodies. In most recognition-based
systems, the task is to determine which of many possible
classifications should be assigned to an arbitrary symbol. By
contrast, our task is to determine whether or not a given ob-
ject matches the expected classification. For example, our
system must determine if a symbol is or is not an arrow. Be-
cause of the nature of our task, we can use a set of efficient,
special-purpose recognizers, each suited for specific types of
symbols. The current state of the finite state machine deter-
mines which recognizer is used at any given time. This is
less expensive than using a single, general-purpose recog-
nizer. Also, because our task is typically to verify the class
of a symbol, rather than to select the classification from mul-
tiple possibilities, our recognizers need not be as robust as
those required for typical recognition-based interfaces. The
following sections describe the various recognizers we use.

4.2.1. Character Recognizer

The FLY has an integrated character recognizer which we
use to recognize force and angle labels, and the characters
in equations. To improve accuracy while recognizing labels,
we bias the character recognizer to the force and angle la-
bels used in the problem. Biasing the recognizer helps to

prevent situations when “T1” is misclassified as “TI”, for in-
stance. The character recognizer provides a confidence value
for the recognition result. If the confidence is below a thresh-
old, Newton’s Pen considers the ink to be unrecognizable.

4.2.2. Image-Based Recognizer

We have implemented a computationally-inexpensive,
image-based recognizer for recognizing arrows and the sign
convention portion of an equation, such as “→ +”. This rec-
ognizer is based on one previously developed by our group
[KS05], but is modified for the limited computational re-
sources of the FLY.

Symbols are internally represented as binary, bitmap im-
ages or “templates.” To construct a template, the initial im-
age is framed and sampled into a 17x17 square grid. To
frame the image, a bounding box aligned with the screen
axes is constructed and then scaled to form a square. Pen
strokes often have sparse data points. When sampling the
framed image, it is necessary to interpolate between consec-
utive points in the pen strokes.

We use a dissimilarity score to compare an unknown sym-
bol, U , to a definition symbol, D. The dissimilarity score,
h(U,D), is defined as:

h(U,D) =
1

NU
∑

u∈U
min
d∈D

‖u−d‖ (1)

where u is a black pixel in the unknown symbol, d is a
black pixel in the definition symbol, Nu is the number of
black pixels in the unknown, and ‖u− d‖ is the Euclidean
distance from u to d. This is similar to the Modified Haus-
dorff Distance (MHD) [DJ94], except that we consider a uni-
directional rather than bi-directional match: MHD(U,D) =
max(h(U,D),h(D,U)). A uni-directional match is adequate,
in part, because we have few definitions. Also, the non-
uniform scaling used to frame the unknown helps prevent
some false-positive matches that could occur if the unknown
were a subset of a definition. For example, when framed, a
(nearly) vertical line becomes a diagonal line, and thus does
not match the definition of a vertical arrow.

The computation in Equation 1 can be accelerated by
transforming the definition template into a “distance map,”
in which each pixel encodes the Euclidean distance to the
nearest black pixel in the definition template. Using the dis-
tance map, the min

d∈D
‖u− d‖ can be determined by simply

reading the value encoded in the definition pixel that corre-
sponds to u.

To reduce computation, we use integer math, rather than
floating point math, whenever possible. Thus, distance maps
are constructed with integer values. To maintain accuracy,
distances are initially computed using floating point math,
and are then scaled by 10 before converting to integers. The
maps are constructed off-line (on a PC) and are compiled
into the executable as “const” data.
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Figure 6: (a) A 7x7 binary bitmap of an arrow. (b) The cor-
responding distance map.

We use a 17x17 grid to reduce storage. With a grid this
size, the largest-possible, scaled, integer distance (the dis-
tance between diagonally opposed corners) can be repre-
sented with a single byte. We use a grid with odd, rather
than even, numbers of rows and columns so that we can ac-
curately represent shapes that have a line along the center of
the template, such as a horizontal or vertical arrow.

Figure 6 shows an example of a distance map for a 7x7
image of an arrow. (Here we show a 7x7 rather than 17x17
grid for clarity of illustration.) The distance map values start
at 0 for pixels that are themselves black, and increase as one
moves farther into the white space. For example, the distance
transform value of the lower left white pixel is 30 because
the nearest black pixel is 3 units away.

Our library of definitions includes eight arrows oriented
at 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o. It also in-
cludes two symbols for sign convention: “→ +” and “↑ +”.
(In the future, we will allow more general sign conventions,
but this was adequate for our initial set of problems.)

An unknown symbol is classified by the definition that
matches with the minimum dissimilarity score computed
with Equation 1. However, if the minimum score is greater
than 26, the symbol is considered to be unrecognizable. The
distance map is scaled by 10, thus the threshold is actually
2.6 drawing units, or about 10% of the length of the diagonal
of the 17x17 grid.

4.2.3. Body Recognizer

For the problems we have considered, bodies are either cir-
cles or polygons. A circular body must be drawn with a sin-
gle pen stroke, and is recognized as a closed contour whose
bounding box is approximately the same size as the body
in the problem description. The edges of a polygonal body
must be drawn with separate pen strokes. Each edge is char-
acterized by a relative length and an approximate angle. The
relative length of an edge is the ratio of the length of that
edge to the sum of the lengths of all of the edges. For exam-
ple, the relative length of each edge in a square is 0.25. An-
gles are specified with a resolution of 45o. If a set of edges
form a closed polygon, and are within tolerance of the ex-
pected angles and relative lengths, those edges are a match
for the body.

4.2.4. Angle-Indicator Recognizer

The angle of a force is indicated with a leader line and arc
as shown in Figure 4. A leader line is a pen stroke that is
roughly straight, and approximately horizontal or vertical.
Here we make use of the “straightness ratio,” defined as the
ratio of the distance between the first and last points of a
stroke, to the total length of the stroke. If the straightness
ratio is less than or equal to 0.2, the stroke is considered
straight. A line is assumed to be horizontal if its vertical ex-
tent is less than 30% of its horizontal extent. Vertical lines
are defined analogously. A pen stroke is considered to be an
arc if the straightness ratio is greater than 0.2.

4.3. Equation Interpreter

Our current system can interpret only a limited class of equa-
tions appropriate for the set of problems we have considered
thus far. Currently, the system can interpret force equilibrium
equations, but not moment equilibrium equations. The lat-
ter are unnecessary for particle equilibrium problems. Also,
equations cannot have parentheses.

We use FLY’s character recognizer to recognize the indi-
vidual characters in an equation. We then use a simple tok-
enizer to identify the specific terms in an equation, includ-
ing: variable names, single digits, “SIN”, “COS”, “+”, “-”,
and “=”. A variable name is a single capital letter, optionally
followed by a single digit. If the program finds any variable
names that are not in the problem description, an error is re-
ported to the student. Otherwise, the equation is parsed using
a simple parser.

The results of parsing are stored in a matrix representa-
tion. For the class of problems we consider, a term in an equi-
librium equation will consist of a sign, a force label, and a
force component. The component is either the sine or cosine
of an angle, or 1.0. Thus, all possible terms in an equation
can be represented by a matrix in which the rows correspond
to the possible force labels, and the columns correspond to
the sines and cosines of the possible angles, and 1.0. A “1”
in the matrix indicates that the term exists in the equation. A
“-1” indicates that the term exists, and has a negative sign. A
“0” indicates that the term does not exist in the equation.

Consider, the problem in Figure 3a which has three forces,
T1, T2, andW , and two angles,U , and Q. Equilibrium equa-
tions for this problem can be represented by the 3x5 matrix
shown in Table 1. Equation 2 shows one of the two equilib-
rium equations for this problem. The first term in the equa-
tion, “T1 SIN Q”, is represented by the “1” in the upper left
corner of the matrix. The second term, “T2 SIN U”, is repre-
sented by the “1” in row two, column three. The third term,
“−W”, is represented by the “-1” in the lower right corner.

The program derives the correct equation matrices for
each problem directly from the problem description. When
the student’s equations have been parsed, the resulting ma-
trices are compared to the correct ones to detect errors. By
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comparing the matrices term by term, the program can iden-
tify missing terms, extra terms, and sign errors.

T1SINQ+T2SINU −W = 0 (2)

SINQ COSQ SINU COSU 1

T1 1 0 0 0 0
T2 0 0 1 0 0
W 0 0 0 0 - 1

Table 1: The matrix representation of Equation 2.

4.4. Tutoring

Our system’s finite state machine architecture enables it to
provide context sensitive help. As discussed in Section 4.1,
each state contains a set of help messages that are announced
to the student with a speech synthesizer when the “HELP”
button is tapped. Because the program’s state mirrors the
student’s problem-solving progress, the help messages are
always relevant. The first time a student taps the “HELP”
button in a given state, he or she receives general help. Suc-
cessive taps of the button result in more specific help. For ex-
ample, when the current state requires the student to draw the
body for the free body diagram in Figure 3a, the sequence of
help messages is: “draw the body”, “the body is a ring”, and
“draw a circle .”

The equation interpreter, described in Section 4.3 also
provides some tutorial feedback. In particular, it notifies the
student of errors in the equilibrium equations.

5. User Study and Results

We conducted a pilot study to assess the educational value
of Newton’s Pen and to obtain a preliminary evaluation of
the usability of its user interface. The study included nine
volunteer test subjects from an introductory physics class
at the University of California, Riverside. The subjects had
just completed lectures on free body diagrams, and had been
assigned homework problems, but had not yet begun solv-
ing them. During hour-long sessions, students were given a
pre-test problem to be solved with ordinary pen and paper, a
model-problem using Newton’s Pen in demonstration mode,
a transfer problem using Newton’s Pen (i.e., with scaffold-
ing), and a “re-test” of the pre-test using Newton’s Pen. The
problems were comparable to the one in Figure 2.

At the time of the pilot study, the free body diagram inter-
preter was implemented. The equation interpreter, and the
portion of the demonstration mode in which the student
practiced drawing an isolated force, were simulated with
a Wizard-of-Oz approach. A member of the research team
read a script to simulate the audio feedback the system would
have provided had this functionality been implemented.

From an educational perspective, the results were clear
and encouraging: Every student was stymied by the pretest.
Every student then worked carefully through the model

problem in demonstration mode. Every student successfully
solved the first transfer problem, and was then successful
when retested on the pretest (one student did not do the
retest). The “diagram time” – the time from presentation of
the problem to completion of the free body diagram – de-
creased steadily from the model to the pretest-retest. Thus,
learning with evidence of transfer occurred over the course
of an hour.

The pilot study suggested that the user interface could use
refinement. Most students eventually became proficient with
the interface, but initially needed assistance in using the sys-
tem. For example, some students initially needed reminders
about pausing at the right time or about drawing compound
objects in the correct order. Nevertheless, students were ex-
tremely enthusiastic about the system. They made comments
such as “it answered all of the questions I would have asked
the professor” and “it was like having the professor in my
hand.”

6. Discussion and Future Work

Currently, Newton’s Pen can handle a select class of prob-
lems having to do with the equilibrium of particles. We are
working to extend the system to a much broader class of
problems, including finite bodies requiring moment equi-
librium equations, friction, springs, multi-body devices, etc.
This extension will require expanding the system’s knowl-
edge of free body diagrams and the range of equations it can
interpret.

We are also working to improve the user interface. Syn-
thesized speech is efficient for development, but can become
irritating. We plan to use recorded audio clips in the future.
Also, we plan to allow more flexibility in the order in which
objects are drawn. We currently enforce specific drawing or-
ders because this reduces computational complexity – the
system has only a few interpretations to consider at any given
time. However, a rigid drawing order can be unnatural. For
example, some users prefer to draw all of the force arrows
first, and then label the angles. Others like to completely
specify one force before considering the next. Additionally,
we currently require each edge of a polygonal body to be
drawn with a separate pen stroke. We plan to use a pen stroke
segmenter we developed [Sta04] to allow multiple edges, or
even entire polygons, to be drawn with a single stroke.

Newton’s pen currently has a simple tutorial help system,
which was adequate for our initial prototype. Our technique
of providing successively more concrete help with each tap
of the “HELP” button has proven to be an effective instruc-
tional design. However, we need to improve the content of
the tutorial help. For example, if a student draws a force in
the wrong direction, the system currently reports that the
force is incorrect. A better approach would be to explain
what the likely misconception is. For example, if the student
draws the weight force inclined from vertical, and perpen-
dicular to a surface on the body, the system could report that
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the student has confused weight and normal forces: weight
forces are vertical while normal forces are determined by
the surface normal. In this sense, our improved tutorial help
system will be a form of the “buggy rules” approach to in-
telligent tutoring [FAR84].

7. Conclusion
We have presented Newton’s Pen, a statics tutor imple-
mented on the LeapFrog FLY pentop computer. A pentop is
a writing instrument with an integrated digitizer and embed-
ded processor. Our tutor, intended for undergraduate educa-
tion, scaffolds students in the construction of free body dia-
grams and equilibrium equations for a selected class of prob-
lems. This project has entailed the development of sketch-
understanding techniques and user-interface principles for
creating pedagogically-sound instructional tools for pentop
computers. Development on the pentop platform presented
novel challenges because of limited computational resources
and a visually static, ink-on-paper display (the only dynamic
output device is an audio speaker). We have demonstrated
that a system architecture based on a finite state machine
reduced the computational complexity, and served as a con-
venient means for providing context-sensitive tutorial feed-
back. Newton’s Pen is a prototype, and there is more work
to be done, including improving its user interface and ex-
panding its tutorial knowledge base. Nevertheless, our pilot
study suggests that Newton’s Pen has potential as an effec-
tive teaching tool.
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