
Sketch Based Interfaces: Early Processing for Sketch
Understanding

Tevfik Metin Sezgin
MIT AI Laboratory

Massachusetts Institute of
Technology

Cambridge MA 02139, USA

mtsezgin@ai.mit.edu

Thomas Stahovich
CMU Deptarment of

Mechanical Engineering
Pittsburgh, PA 15213

stahov@andrew.cmu.edu

Randall Davis
MIT AI Laboratory

Massachusetts Institute of
Technology

Cambridge MA 02139, USA

davis@ai.mit.edu

ABSTRACT
Freehand sketching is a natural and crucial part of every-
day human interaction, yet is almost totally unsupported
by current user interfaces. We are working to combine the
flexibility and ease of use of paper and pencil with the pro-
cessing power of a computer, to produce a user interface
for design that feels as natural as paper, yet is considerably
smarter. One of the most basic steps in accomplishing this is
converting the original digitized pen strokes in a sketch into
the intended geometric objects. In this paper we describe
an implemented system that combines multiple sources of
knowledge to provide robust early processing for freehand
sketching.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces;
H.5.2 [User Interfaces]: Input Devices and strategies; J.6
[Computer Aided Engineering]: CAD

General Terms
Design, Human Factors

Keywords
freehand sketching, natural interaction, multiple sources of
knowledge

1. INTRODUCTION
Freehand sketching is a familiar, efficient, and natural way

of expressing certain kinds of ideas, particularly in the early
phases of design. Yet this archetypal behavior is largely un-
supported by user interfaces in general and by design soft-
ware in particular, which has for the most part aimed at
providing services in the later phases of design. As a re-
sult designers either forgo tool use at the early stage or end

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PUI 2001 Orlando FL, USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

up having to sacrifice the utility of freehand sketching for
the capabilities provided by the tools. When they move to
a computer for detailed design, designers usually leave the
sketch behind and the effort put into defining the rough ge-
ometry on paper is largely lost.

We are working to provide a system where users can sketch
naturally and have the sketches understood. By “under-
stood” we mean that sketches can be used to convey to the
system the same sorts of information about structure and
behavior as they communicate to a human engineer.

Such a system would allow users to interact with the com-
puter without having to deal with icons, menus and tool se-
lection, and would exploit direct manipulation (e.g., specify-
ing curves by sketching them directly, rather than by spec-
ifying end points and control points). We also want users
to be able to draw in an unrestricted fashion. It should,
for example, be possible to draw a rectangle clockwise or
counterclockwise, or with multiple strokes. Even more gen-
erally, the system, like people, should respond to how an
object looks (e.g., like a rectangle), not how it was drawn.
This will, we believe, produce a sketching interface that feels
much more natural, unlike Graffiti and other gesture-based
systems (e.g., [9], [14]), where pre-specified motions (e.g.,
an L-shaped stroke or a clockwise rectangular stroke) are
required to specify a rectangular shape.

The work reported here is part of our larger effort aimed at
providing natural interaction with software, and with design
tools in particular. That larger effort seeks to enable user
to interact with automated tools in much the same man-
ner as they interact with each other: by informal, messy
sketches, verbal descriptions, and gestures. Our overall sys-
tem uses a blackboard-style architecture [6], combining mul-
tiple sources of knowledge to produce a hierarchy of succes-
sively more abstract interpretations of a sketch.

Our focus in this paper is on the very first step in the
sketch understanding part of that larger undertaking: inter-
preting the pixels produced by the user’s strokes and pro-
ducing low level geometric descriptions such as lines, ovals,
rectangles, arbitrary polylines, curves and their combina-
tions. Conversion from pixels to geometric objects is the
first step in interpreting the input sketch. It provides a
more compact representation and sets the stage for further,
more abstract interpretation (e.g., interpreting a jagged line
as a symbol for a spring).

2. THE SKETCH UNDERSTANDING TASK

1

Sketch understanding overlaps in significant ways with the
extensive body of work on document image analysis gener-
ally (e.g., [2]) and graphics recognition in particular (e.g.,
[16]), where the task is to go from a scanned image of, say,
an engineering drawing, to a symbolic description of that
drawing.

Differences arise because sketching is a realtime, interac-
tive process, and we want to deal with freehand sketches,
not the precise diagrams found in engineering drawings. As
a result we are not analyzing careful, finished drawings, but
are instead attempting to respond in real time to noisy, in-
complete sketches. The noise is different as well: noise in
a freehand sketch is typically not the small-magnitude ran-
domly distributed variation common in scanned documents.
There is also an additional source of very useful information
in an interactive sketch: as we show below, the timing of
pen motions can be very informative.

Sketch understanding is a difficult task in general as sug-
gested by reports in previous systems (e.g., [9]) of a recogni-
tion rate of 63%, even for a sharply restricted domain where
the objects to be recognized are limited to rectangles, circles,
lines, and squiggly lines (used to indicate text).

Our domain–mechanical engineering design–presents the
additional difficulty that there is no fixed set of shapes to
be recognized. While there are a number of traditional sym-
bols with somewhat predictable geometries (e.g., symbols for
springs, pin joints, etc.), the system must also be able to deal
with bodies of arbitrary shape that include both straight
lines and curves. As consequence, accurate early processing
of the basic geometry–finding corners, fitting both lines and
curves–becomes particularly important.

3. SYSTEM DESCRIPTION
Sketches can be created in our system using any of a vari-

ety of devices that provide the experience of freehand draw-
ing while capturing pen movement. We have used tradi-
tional digitizing tablets, a Wacom tablet that has an LCD-
display drawing surface (so the drawing appears under the
stylus), and a Mimio whiteboard system. In each case the
pen motions appear to the system as mouse movements,
with position sampled at rates between 30 and 150 points/sec,
depending on the device and software in use.

In the description below, by a single stroke we mean the
set of points produced by the drawing implement between
the time it contacts the surface (mouse-down) and the time
it breaks contact (mouse-up). This single path may be com-
posed of multiple connected straight and curved segments
(see, Fig. 1).

Our approach to early processing consists of three phases
approximation, beautification, and basic recognition. Ap-
proximation fits the most basic geometric primitives–lines
and curves–to a given set of pixels. The overall goal is to
approximate the stroke with a more compact and abstract
description, while both minimizing error and avoiding over-
fitting. Beautification modifies the output of the approxi-
mation layer, primarily to make it visually more appealing
without changing its meaning, and secondarily to aid the
third phase, basic recognition. Basic recognition produces
interpretations of the strokes, as for example, interpreting a
sequence of four lines as a rectangle or square. (Subsequent
recognition, at the level of mechanical components, such as
springs, and pin joints is accomplished by another of our
systems [1]).

Figure 1: The stroke on the left contains both
curves and straight line segments. The points we
want to detect in the vertex detection phase are in-
dicated with large dots in the figure on the right.
The beginning and the end points of the stroke are
indicated with smaller dots.

3.1 Stroke Approximation
Stroke processing consists of detecting vertices at the end-

points of linear segments of the stroke, then detecting and
characterizing curved segments of the stroke.

3.1.1 Vertex detection
We use the sketch in Fig. 1 as a motivating example of

what should be done in the vertex detection phase. Points
marked in Fig. 1 indicate the corners of the stroke, where
the local curvature is high.

Note that the vertices are marked only at what we would
intuitively call the corners of the stroke (i.e., endpoints of
linear segments). There are, by design, no vertices marked
on curved portions of the stroke because we want to handle
these separately, modeling them with curves (as described
below). This is unlike the well studied problem of piecewise
linear approximation [13].

Figure 2: Stroke representing a square.

Our approach takes advantage of the interactive nature of
sketching, combining information from both stroke direction
and speed data. Consider as an example the square in Fig. 2;
Fig. 3 shows the direction, curvature (change in direction
with respect to arc length) and speed data for this stroke.
We locate vertices by looking for points along the stroke that
are minima of speed (the pen slows at corners) or maxima
of the absolute value of curvature.1

While extrema in curvature and speed typically corre-
spond to vertices, we cannot rely on them blindly because
noise in the data introduces many false positives. To deal
with this we use average based filtering.

1From here on for ease of description we use curvature to
mean the absolute value of the curvature data.

2

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Direction, curvature and speed graphs for
the stroke in Fig. 2

Average based filtering
We want to find extrema corresponding to vertices while
avoiding those due to noise. To increase our chances at do-
ing this, we look for extrema in those portions of the curva-
ture and speed data that lie beyond a threshold. Intuitively,
we are looking for maxima of curvature only where the cur-
vature is already high and minima of speed only where the
speed is already low. This will help to avoid selecting false
positives of the sort that would occur say, when there is
a brief slowdown in an otherwise fast section of a straight
stroke.

To avoid the problems posed by choosing a fixed threshold,
we set the threshold based on the mean of each data set.2

We use these thresholds to separate the data into regions
where it is above/below the threshold and select the global
extrema in each region that lies above the threshold.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Curvature graph for the square in Fig. 2
with the threshold dividing it into regions.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Speed graph for the stroke in Fig. 2 with
the threshold dividing it into regions.

2The exact threshold has been determined empirically; for
curvature data the threshold is the mean, while for the speed
the threshold is 90% of the mean.

Figure 6: At left the original sketch of a piece of
metal; at right the fit generated using only curvature
data.

Figure 7: At left the speed graph for the piece; at
right the fit based on only speed data.

Application to curvature data

Fig. 4 shows the curvature graph partitioned into regions
of high and low curvature. Note that this reduces but doesn’t
eliminate the problem of false positives introduced by noise
in the stroke. We deal with the false positives using the
hybrid fit generation scheme described below.3

While average based filtering performs better than simply
comparing the curvature data against a hard coded thresh-
old, it is still clearly not free of empirical constants. As we
explain when considering future work, scale space provides
a better approach for dealing with noisy data without hav-
ing to make a priori assumptions about the scale of relevant
features.

Application to speed change
Our experience is that curvature data alone rarely provides
sufficient reliability. Noise is one problem, but variety in
angle changes is another. Fig. 6 illustrates how curvature
fit alone misses a vertex (at the upper right) because the
curvature around that point was too small to be detected
in the context of the other, larger curvatures. We solve this
problem by incorporating speed data into our decision as an
independent source of guidance.

Just as we did for the curvature data, we reduce the num-
ber of false extrema by average based filtering, then look for
speed minima. The intuition here is simply that pen speed
drops when going around a corner in the sketch. Fig. 7
shows (at left) the speed data for the sketch in Fig. 6, along
with the polygon drawn from the speed-detected vertices (at
right).

3An alternative approach is to detect consecutive almost-
collinear edges (using some empirical threshold for collinear-
ity) and combine them into one edge, removing the vertex
in between. Our hybrid fit scheme deals with the problem
without the need to decide what value to use for “almost-
collinear.”

3

Using speed data alone has its shortcomings as well. Poly-
lines formed from a combination of very short and long line
segments can be problematic: the maximum speed reached
along the short line segments may not be high enough to
indicate the pen has started traversing another edge, with
the result that the entire short segment is interpreted as the
corner. This problem arises frequently when drawing thin
rectangles, common in mechanical devices. Fig. 8 illustrates
this phenomena. In this figure, the speed fit misses the up-
per left corner of the rectangle because the pen failed to
gain enough speed between the endpoints of the short verti-
cal segment. The curvature fit, by contrast, detects all cor-
ners, along with some other vertices that are artifacts due to
hand dynamics during freehand sketching. This illustrates
the utility of having both fits available.

(a) Input, 63
points

(b) Using
speed data,
4 vertices

(c) Using
curvature
data, 7
vertices

Figure 8: Average based filtering using speed data
misses a vertex. The curvature fit detects the missed
point (along with vertices corresponding to the ar-
tifact along the left edge of the rectangle).

We use information from both sources, generating hybrid
fits by combining the set of candidate vertices derived from
curvature data Fd with the candidate set from speed data
Fs, taking into account the system’s certainty that each can-
didate is a real vertex.

Generating hybrid fits
Hybrid fit generation occurs in three stages: computing ver-
tex certainties, generating a set of hybrid fits, and selecting
the best fit.

Our certainty metric for a curvature candidate vertex vi

is the scaled magnitude of the curvature in a local neighbor-
hood around the point, computed as |di−k − di+k|/l. Here
l is the curve length between points Si−k, Si+k and k is a
small integer defining the neighborhood size around vi. The
certainty metric for a speed fit candidate vertex vi is a mea-
sure of the pen slowdown at the point, 1 − vi/vmax, where
vmax is the maximum pen speed in the stroke. The certainty
values are normalized to [0, 1].

While both of these metrics are designed to produce val-
ues in [0, 1], they have different scales. As the metrics are
used only for ordering within each set, they need not be
numerically comparable across sets. Candidate vertices are
sorted by certainty within each fit.

The initial hybrid fit H0 is the intersection of Fd and Fs. A
succession of additional fits is then generated by appending
to Hi the highest scoring curvature and speed candidates
not already in Hi.

To do this, on each cycle we create two new fits: H ′
i =

Hi+vs (i.e., Hi augmented with the best remaining speed fit
candidate) and H ′′

i = Hi + vd (i.e., Hi augmented with the
best remaining curvature candidate). We use least squares
error as a metric of the goodness of a fit: the error εi is

computed as the average of the sum of the squares of the
distances to the fit from each point in the stroke S:

εi =
1

|S|
∑

s∈S

ODSQ(s, Hi)

Here ODSQ stands for orthogonal distance squared, i.e., the
square of the distance from the stroke point to the relevant
line segment of the polyline defined by Hi. We compute the
error for H ′

i and for H ′′
i ; the higher scoring of these two (i.e.,

the one with smaller least squares error) becomes Hi+1, the
next fit in the succession. This process continues until all
points in the speed and curvature fits have been used. The
result is a set of hybrid fits.

In selecting the best of the hybrid fits the problem is as
usual trading off more vertices in the fit against lower error.
Here our approach is simple: We set an error upper bound
and designate as our final fit Hf , the Hi with the fewest
vertices that also has an error below the threshold.

3.1.2 Handling curves
The approach described thus far yields a good approxima-

tion to strokes that consists solely of line segments, but as
noted our input may include curves as well, hence we require
a means of detecting and approximating them.

The polyline approximation Hf generated in the process
described above provides a natural foundation for detecting
areas of curvature: we compare the Euclidean distance l1
between each pair of consecutive vertices in Hf to the accu-
mulated arc length l2 between those vertices in the input S.
The ratio l2/l1 is very close to 1 in the linear regions of S,
and significantly higher than 1 in curved regions.

We approximate curved regions with Bézier curves, de-
fined by two end points and two control points. Let u = Si,
v = Sj , i < j be the end points of the part of S to be ap-
proximated with a curve. We compute the control points
as:

c1 = kt̂1 + v

c2 = kt̂2 + u

k =
1

3

∑

i≤k<j

|Sk − Sk+1|

where t̂1 and t̂2 are the unit length tangent vectors pointing
inwards at the curve segment to be approximated. The 1/3
factor in k controls how much we scale t̂1 and t̂2 in order to
reach the control points; the summation is simply the length
of the chord between Si and Sj .

4

As in fitting polylines, we want to use least squares to
evaluate the goodness of a fit, but computing orthogonal dis-
tances from each Si in the input stroke to the Bézier curve
segments would require solving a fifth degree polynomial.
(Bézier curves are described by third degree polynomials,
hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree poly-
nomial, equivalent to solving a fifth degree polynomial.) A
numerical solution is both computationally expensive and
heavily dependent on the goodness of the initial guesses for

4The 1/3 constant was determined empirically, but works
very well for freehand sketches. As we discovered subse-
quently, the same constant was independently chosen in [15].

4

Figure 9: Examples of arbitrary stroke approxima-
tion. Boundaries of Bézier curves are indicated with
crosses, detected vertices are indicated with dots.

roots [12], hence we resort to an approximation. We dis-
cretize the Bézier curve using a piecewise linear curve and
compute the error for that curve. This error computation is
O(n) because we impose a finite upper bound on the number
of segments used in the piecewise approximation.

If the error for the Bézier approximation is higher than
our maximum error tolerance, the curve is recursively sub-
divided in the middle, where middle is defined as the data
point in the original stroke whose index is midway between
the indices of the two endpoints of the original Bézier curve.
New control points are computed for each half of the curve,
and the process continues until the desired precision is achieved.

Examples of the capability of our approach is shown in
Fig. 9, a hastily-sketched mixture of lines and curves. Note
that all of the curved segments have been modeled curves,
rather than the piecewise linear approximations that have
been widely used previously.

3.2 Beautification
Beautification refers to the (currently minor) adjustments

made to the approximation layer’s output, primarily to make
it look as intended. We adjust the slopes of the line seg-
ments in order to ensure the lines that were apparently
meant to have the same slope end up being parallel. This
is accomplished by looking for clusters of slopes in the fi-
nal fit produced by the approximation phase, using a simple
sliding-window histogram. Each line in a detected cluster is
then rotated around its midpoint to make its slope be the
weighted average of the slopes in that cluster. The (new)
endpoints of these line segments are determined by the in-
tersections of each consecutive pair of lines. This process
(like any neatening of the drawing) may result in vertices
being moved; we chose to rotate the edges about their mid-
points because this produces vertex locations that are close
to those detected, have small least square errors when mea-

Figure 10: At left the original sketch of a piece of
metal revisited, and the final beautified output at
right.

sured against the original sketch, and look right to the user.
Fig. 10 shows the original stroke for the metal piece we had
before, and the output of the beautifier. Some examples of
beautification are also present in Fig. 13.

3.3 Basic Object Recognition
The final step in our processing is recognition of the most

basic objects that can be built from the line segments and
curve segments produced thus far, i.e., simple geometric ob-
jects (ovals, circles, rectangles, squares).

Recognition of these objects is done with hand-tailored
templates that examine various simple properties. A rectan-
gle, for example, is recognized as a polyline with 4 segments
all of whose vertices are within a specified distance of the
center of the figure’s bounding box; a stroke will be recog-
nized as an oval if it has a small least squares error when
compared to an oval whose axes are given by the bounding
box of the stroke.

3.4 Evaluation
We have conducted a user study to measure the degree to

which the system is perceived as easy to use, natural and
efficient. Study participants were asked to create a set of
shapes using our system and Xfig, a Unix tool for creating
diagrams. Xfig is a useful point of comparison because it
is representative of the kinds of tools that are available for
drawing diagrams using explicit indication of shape (i.e.,
the user indicates explicitly which parts of the sketch are
supposed to be straight lines, which curves, etc.) As in other
such tools, XFig has a menu and toolbar interface; the user
selects a tool (e.g., for drawing polygons), then creates the
shapes piece by piece.

Thirteen subjects participated in our study, including com-
puter science graduate students, computer programmers and
an architecture student. Subjects were given sufficient time
to get familiar with each system and then asked to draw a
set of 10 shapes (examples given in Fig 11). All of the sub-
jects reported our system being easier to use, efficient and
more natural feeling. The subjects were also asked which
system they would prefer when drawing these sort of infor-
mal shapes on a computer. All but one subject preferred
our system; the sole dissenter preferred a tablet surface that
had the texture and feel of paper.

Overall users praised our system because it let them draw
shapes containing curves and lines directly and without hav-
ing to switch back and forth between tools. We have also
observed that with our system, users found it much easier
to draw shapes corresponding to the gestures they routinely
draw freehand, such as a star.

While the central point of this comparison was to deter-

5

Figure 11: Examples of the shapes used in the user
study.

mine how natural it felt to use each system, we also evalu-
ated our system’s ability to produce a correct interpretation
of each shape (i.e., interpret strokes appropriately as lines
or curves). Overall the system’s identification of the vertices
and approximation of the shapes with lines and curves was
correct 96% of the time on the ten figures.

In addition to the user studies we have conducted, we
wrote a higher level recognizer for evaluation purposes. The
higher level recognizer takes the geometric descriptions gen-
erated by the basic object recognition module of our system
and combines them into domain specific objects.

Fig. 13 shows the original input and the program’s anal-
ysis for a variety of simple but realistic mechanical devices
drawn as freehand sketches. The last two of them are differ-
ent sketches for a part of the direction reversing mechanism
for a tape player. Recognized domain specific components
include gears (indicated by a circle with a cross), springs (in-
dicated by wavy lines), and the standard fixed-frame symbol
(a collection of short parallel lines). Components that are
recognized are replaced with standard icons scaled to fit the
sketch.

An informal comparison of the raw sketch and the sys-
tem’s approximations shows whether the system has selected
vertices where they were drawn, fit lines and curves accu-
rately, and successfully recognized basic geometric objects.
While informal, this is an appropriate evaluation because
the program’s goal is to produce an analysis of the strokes
that “looks like” what was sketched.

We have also begun to deal with overtracing, one of the
(many) things that distinguishes freehand sketches from care-
ful diagrams. Fig. 12 illustrates one example of the limited
ability we have thus far embodied in the program.

4. RELATED WORK
In general, systems supporting freehand sketching lack

one or more of the properties that we believe a sketching
system should have:

Figure 12: An overtraced oval and a line along with
and the system’s output.

• It should be possible to draw arbitrary shapes with a
single stroke, (i.e., without requiring the user to draw
objects in pieces).

• The system should do automatic feature point detec-
tion. The user should not have to specify vertex posi-
tions by hand.

• The system should not have sketching modes for draw-
ing different geometric object classes (i.e., modes for
drawing circles, polylines, curves etc.).

• The sketching system should feel natural to the user.

The Phoenix sketching system [15] had some of the same
motivation as our work, but a more limited focus on inter-
active curve specification. While the system provided some
support for vertex detection, its focus on curves led it to
use Gaussian filters to smooth the data. While effective for
curves, Gaussians tend to treat vertices as noise to be re-
duced, obscuring vertex location. As a result the user was
often required to specify the vertices manually.

Work in [5] describes a system for sketching with con-
straints that supports geometric recognition for simple strokes
(as well as a constraint maintenance system and extrusion
for generating solid geometries). The set of primitives is
more limited than ours: each stroke is interpreted as a line,
arc or as a Bézier curve. More complex shapes can be formed
by combinations of these primitives, but only if the user lifts
the pen at the end of each primitive stroke, reducing the
feeling of natural sketching.

The work in [3] describes a system for generating realtime
spline curves from interactively sketched data. They focus
on using knot removal techniques to approximate strokes
known to be composed only of curves, and do not handle sin-
gle strokes that contain both lines and curves. They do not
support corner detection, instead requiring the user to spec-
ify corners and discontinuities by lifting the mouse button,
or equivalently by lifting the pen. We believe our approach
of automatically detecting the feature points provides a more
natural and convenient sketching interface.

Zeleznik [7] describes a mode-based stroke approxima-
tion system that uses simple rules for detecting the drawing
mode. The user has to draw objects in pieces, reducing
the sense of natural sketching. Switching modes is done by
pressing modifier buttons in the pen or in the keyboard.
In this system, a click of the mouse followed by immediate
dragging signals that the user is drawing a line. A click fol-
lowed by a pause and then dragging of the mouse tells the
system to enter the freehand curve mode. Our system allows
drawing arbitrary shapes without any restriction on how the
user draws them. There is enough information provided by
the freehand drawing to differentiate geometric shapes such
as curves, polylines, circles and lines from one another, so

6

we believe requiring the user to draw things in a particu-
lar fashion is unnecessary and reduces the natural feeling of
sketching. Our goal is to make computers understand what
the user is doing rather than requiring the user to sketch in
a way that the computer can understand.

Among the large body of work on beautification, Igarashi
et al. [8] describes a system combining beautification with
constraint satisfaction, focusing on exploiting features such
as parallelism, perpendicularity, congruence and symmetry.
The system infers geometric constraints by comparing the
input stroke with previous ones. Because sketches are inher-
ently ambiguous, their system generates multiple interpreta-
tions corresponding to different ways of beautifying the in-
put, and the most plausible interpretation is chosen among
these interpretations. The system is interactive, requiring
the user to do the selection, and doesn’t support curves. It
is, nevertheless, more effective then ours at beautification,
but beautification is not the main focus of our work and is
present for the purposes of completeness.

The works in [15] and [3] describe methods for generating
very accurate approximations to strokes known to be curves
with precision several orders of magnitude below the pixel
resolution. The Bézier approximations we generate are less
precise but are sufficient for approximating free-hand curves.
We believe techniques in [15] and [3] are excessively pre-
cise for free-hand curves, and the real challenge is detecting
curved regions in a stroke rather than approximating those
regions down to the numerical machine precision.

5. FUTURE WORK
We are working to link this early processing to other work

in our group that has focused on recognition [1] of higher
level mechanical objects. This will provide the opportunity
to add model-based processing of the stroke, in which early
operations like vertex localization may be usefully guided by
knowledge of the current best recognition hypothesis.

In addition, incorporating ideas from scale space theory
looks like a promising way of detecting different scales in-
herent in the data and avoiding a priori judgments about
the size of relevant features. In the pattern recognition com-
munity [4], [11] and [10] apply some of the ideas from scale
space theory to similar problems. We are currently working
on ways of applying these techniques to speed and curvature
data. We believe this may allow us to deal more effectively
with sketches that contain relevant details at a variety of
scales. There is no guaranteed way of deciding which scales
are important at the geometric level, so using constraints
and/or information provided by the domain of application
may help in scale selection.

Humans naturally seem to slow down when they draw
things carefully as opposed to casually, so another inter-
esting research direction would be to explore the degree to
which one can use the time it takes to draw a stroke as an
indication of how careful and precise the user meant to be.

6. CONCLUSION
We have built a system capable of using multiple sources

of information to produce good approximations of freehand
sketches. Users can sketch on an input device as if drawing
on paper and have the computer detect the low level geome-
try, enabling a more natural interaction with the computer,
as a first step toward more natural user interfaces generally,

and toward earlier use of automated tools in the design cycle
in particular.

7. REFERENCES
[1] C. Alvarado. A natural sketching environment:

Bringing the computer into early stages of mechanical
design. Master’s thesis, Massachusetts Institute of
Technology, 2000.

[2] H. S. Baird, H. Bunke, and K. Yamamoto. Structured
document image analysis. Springer-Verlag, Heidelberg,
1992.

[3] M. Banks and E. Cohen. Realtime spline curves from
interactively sketched data. In SIGGRAPH,
Symposium on 3D Graphics, pages 99–107, 1990.

[4] A. Bentsson and J. Eklundh. Shape representation by
multiscale contour approximation. IEEE PAMI 13, p.
85–93, 1992., 1992.

[5] L. Eggli. Sketching with constraints. Master’s thesis,
University of Utah, 1994.

[6] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R.
Reddy. The hearsay-ii speech understanding system:
Integrating knowledge to resolve uncertainty.
Computing Surveys, 12:213–253, 1980. Reprinted in:
Readings in Artificial Intelligence, Bonnie L. Webber
and Nils J. Nilssen (eds.)(1981), pp 349-389. Morgan
Kaufman Pub. Inc., Los Altos, CA.

[7] A. Forsberg, K. Herndon, and R. Zeleznik. Sketch: An
interface for sketching 3d scenes. In Proceedings of
SIGGRAPH’96, pages 163–170, 1996.

[8] T. Igarashi, S. Matsuoka, S. Kawachiya, and
H. Tanaka. Interactive beautification: A technique for
rapid geometric design. In UIST ’97, pages 105–114,
1997.

[9] J. A. Landay and B. A. Myers. Sketching interfaces:
Toward more human interface design. IEEE
Computer, vol. 34, no. 3, March 2001, pp. 56-64.

[10] T. Lindeberg. Edge detection and ridge detection with
automatic scale selection. ISRN
KTH/NA/P–96/06–SE, 1996., 1996.

[11] A. Rattarangsi and R. T. Chin. Scale-based detection
of corners of planar curves. IEEE Transactionsos
Pattern Analysis and Machine Intelligence,
14(4):430–339, Apr. 1992.

[12] N. Redding. Implicit polynomials, orthogonal distance
regression, and closest point on a curve. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pages 191–199, 2000.

[13] R. Rosin. Techniques for assessing polygonal
approximations of curves. 7th British Machine Vision
Conf., Edinburgh, 1996.

[14] D. Rubine. Specifying gestures by example. Computer
Graphics, 25(4):329–337, 1991.

[15] P. Schneider. Phoenix: An interactive curve design
system based on the automatic fitting of
hand-sketched curves. Master’s thesis, University of
Washington, 1988.

[16] K. Tombre. Analysis of engineering drawings. In
GREC 2nd international workshop, pages 257–264,
1997.

7

Figure 13: Performance examples: The first two pair are sketches of a marble dispenser mechanism and a
toggle switch. The last two are sketches of the direction reversing mechanism in a tape player.

8

