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Symbol Recognition in Sketch-
Based Interfaces

Lecture #10: Symbol Recognition
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Symbol Recognition

Want to recognize handwritten symbols
h tcharacters

shapes
gestures

Use machine learning approach
Which algorithm?
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g
depends on number of symbols in alphabet
complexity (i.e., similarity of symbols)
distribution assumptions

Recognition Algorithms

Many different approaches
Machine learning techniques (classification)ac e ea g tec ques (c ass cat o )

linear classifiers
k-means classifiers
neural networks
Hidden Markov Models
template matching
support vector machines
AdaBoost
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AdaBoost
Curve matching

elastic matching
Primitive decomposition
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Rubine’s Gesture Recognition Algorithm 
(Rubine 1991)

Simple linear classifier
Utilizes rejection metrics
Assumes normality for features
Simple to implement
Does not need a lot of training samples
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Recall Rubine’s Feature Set

Cosine and sine of initial angle
Length and angle of bounding box diagonalLength and angle of bounding box diagonal
Distance between first and last point
Cosine and sine of angle between first and last point
Total gesture length
Total angle traversed
Sum of absolute value of the angle at each point
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g p
Sum of squared values of the angle at each point
Maximum speed
Stroke duration
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Rubine Classifier
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Evaluate each gesture 0 ≤ c < C.
= value = goodness of fit for that gesture c.cv ˆ

Rubine Classifier Training
Collect E samples for each symbol class
Calculate feature vector for each sample for each 
class

= the feature value of the ith feature for the eth sample of 
the cth symbol

For each symbol calculate the mean value for each 
feature

eicf ˆ
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Rubine Classifier – Computing Weights

We first need the covariance matrix of each class c
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Rubine Classifier – Computing Weights (2)

Using the covariance matrices from each class, find 
the common covariance matrix

numerator = non normalize total covariancenumerator = non-normalize total covariance
denominator = normalization factor = total number of 
examples – total number of shapes
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Rubine Classifier – Computing Weights (3)

Using the common covariance matrix and the mean 
feature vectors from each class we can compute thefeature vectors from each class, we can compute the 
weights
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Rubine Classifier – Rejection Measures

Linear classifier always will classify a symbol 
as one of the C classesas one of the C classes

want to try to reject outliers and ambiguous 
symbols
two approaches

probabilistic
distance measure
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distance measure
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Rubine Classifier – Probabilistic Rejection 
Measure

Given a symbol g with feature vector f classified as 
class i ( )ijvv ≠∀>class i (                  )
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Rubine Classifier – Rejection based on 
Distance

Mahalanobis distance – the number of standard deviations a 
symbol g is away from the mean of its chosen class iy g y
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May need to be careful not to reject too many good symbols 
(a simple alternate list to correct mistakes will be helpful)

2
for which symbols Rejecting F>δ
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AdaBoost (Schapire 1997)
Not really a classification algorithm – more 
like a framework
Can use many different classificationCan use many different classification 
algorithms within AdaBoost framework
Works with series of weak (base) classifiers

Want to increase the importance of incorrectly 
classified examples

series of weak hypotheses and weights form a strong 
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yp g g
hypothesis
need to ensure weak learners output either 1 or -1

Many different variants (M1,M2, etc…)

AdaBoost Algorithm
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More Information on Machine Learning
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