
Assignment 2 -- Corner Finding
CAP6105

Due: 10/2/09 11:59pm

This purpose of this assignment is twofold. First, it is designed to give you a feel for the
intricacies and complexities of corner finding, an important tool used in gesture and
sketch-based interfaces. Second, it is to give you experience in implementing a state of
the art algorithm from a research paper and to study its performance.

Requirements
There are two main requirements for this assignment. First, you will implement IStraw, a
corner finding technique that was published in the Eurographics Symposium on Sketch-
Based Interfaces and Modeling in August 2009. The paper is attached to this document.
Second, you will compare this algorithm to the cusp finding algorithm found in starPad.

Finally, as part of your deliverables, you are to provide a 1 page report on how IStraw
compares to starPad’s cusp finder.

Testing
To test the corner finding algorithms, create a set of polyines based on the ones found in
the IStraw paper. You should create 5 to 10 samples of each polyline you find in the
paper.

Deliverables

You must submit a zip file containing your source and any relevant files needed to
compile and run your application. Also include your report and a README file
describing what works and what does not, any known bugs, and any problems you
encountered. To submit, you can email me your zip file.

Grading

Grading will be loosely based on the following:

70% correct implementation of IStraw
20% analysis of IStraw compared to starPad’s cusp finder
10% documentation

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

C. Grimm and J. J. LaViola Jr. (Editors)

Revisiting ShortStraw – Improving Corner Finding in

Sketch-Based Interfaces

Yiyan Xiong† and Joseph J. LaViola Jr.‡

University of Central Florida, School of EECS, Orlando, FL USA

Abstract

We present IStraw, a new corner finding technique based on an analysis of the ShortStraw algorithm. Our analysis

reveals several limitations in ShortStraw and we develop techniques to overcome them. We also present an exten-

sion to our corner finding approach for dealing with ink strokes that contain curves and arcs. An evaluation of

our approach shows significant accuracy improvements over ShortStraw for polyline ink strokes with and without

curves using an all-or-nothing accuracy metric while still maintaining ShortStraw’s computational complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation H.5.2 [Computer Graphics]: User Interfaces—Graphics user interfaces

1. Introduction

Corner finding is a fundamental component in creating pen-
based interfaces. Since it is often used in the segmentation of
ink strokes into lower level primitives, it is one of the most
important steps in the process of free-form sketch recogni-
tion and understanding [KS05, AD05, HD04, HR07, PH08].
Corner finding is also used in the heuristic-based recognition
of gestures, such as erasing ink using a pen scribble, circling
a handwritten mathematical expression to invoke a recog-
nizer [LZ04], or as part of a feature set in a machine learn-
ing algorithm [LJZ07]. Other uses of corner finding include
pen-based word entry on virtual keyboards [ZKS05] and in
sketching simple animations for 2D characters [TBP04].

Given corner finding’s utility in building pen-based in-
terfaces and the fact that finding corners accurately will, in
many cases, help to determine the overall accuracy of a pen-
or sketch-based recognizer, an accurate corner finding tech-
nique is essential. In 2008, Wolin et al. introduced Short-
Straw, a simple and efficient corner finding algorithm that
was shown to be highly accurate in both total correct corners
and all-or-nothing corner accuracy benchmarks [WEH08].
In this paper, we revisit the ShortStraw algorithm by exam-
ining its components. We uncover several limitations with
ShortStraw and present a new corner finding algorithm, IS-

† e-mail: lucy@cs.ucf.edu
‡ email: jjl@eecs.ucf.edu

traw, thats attempts to alleviate ShortStraw’s shortcomings
while maintaining ShortStraw’s computational complexity.
We also extend IStraw to deal with ink strokes with curves.
An evaluation of our algorithm shows significant improve-
ments in all-or-nothing corner accuracy compared to Short-
Straw for polyline ink strokes. The evaluation also shows
IStraw, with our curve finding extension, has significantly
higher all-or-nothing corner accuracy than using ShortStraw
alone and in combination with our curve finding extension.

In the next section we examine work related to corner
finding followed by a discussion of the ShortStraw algo-
rithm and its limitations. Section 4 presents IStraw, which
handles ink strokes with both arcs and polylines in addition
to just polyline drawings. Section 5 discusses the computa-
tional complexity of our improved approach and presents a
series of experiments comparing IStraw to ShortStraw. Sec-
tion 6 discusses our findings and Sections 7 and 8 present
areas for future work and conclusions.

2. Related Work

There has been several algorithms developed to find corners
in sketch-based interfaces. One approach looks for extrema
in the portions of the curvature and speed data that lie be-
yond a given threshold, taking these points as stroke cor-
ners [SSD01, QWJ01, Sta04]. Sezgin et al. [SSD01] look
for maxima of curvature where it is already high and min-
ima of speed only when it is already low. After the system
combines the set of candidate corners from both curvature

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

and speed data, a set of hybrid fits is found to detect the
real corners. Other approaches to detect corners by estimat-
ing curvature directly from input data have also been devel-
oped [RW75, FYH97].

Kim and Kim created a new curvature measurement in
their corner finding algorithm [KK06]. They avoid the need
for arc length calculations because they resample the raw
input such that adjacent resampled points have constant dis-
tance. This simplification allows for the curvature calcula-
tion to be defined as the direction change at a given point.

Another technique for finding corners is with a scale-
based approach. Rattarangi and Chin smooth a stroke’s
points with a varying Gaussian scale in their system to elim-
inate noise to improve the corner detection process [RC92].
Sezgin improved upon this algorithm by using scale-space
feature point detection [SD06], and Lee et al. developed
a multi-scale corner finder by using the wavelet trans-
form [LSC95].

Combining segmentation and primitive recognition to-
gether to find dividing points has also been utilized in corner
detection [Yu03, HSN04]. For example, Yu recursively se-
lects points that are farthest from the line passing through
the first and last stroke (sub-stroke) points to split the origi-
nal stroke (sub-stroke) into two sub-strokes until the segment
can be approximated by one of the primitive shapes.

All the algorithms mentioned above rely on more ad-
vanced mathematical knowledge. However, Wolin et al.
built an accurate and simple polyline corner finder, Short-
Straw [WEH08], introducing the concept of "straws", which
relies on a window of constant size to examine contiguous
pieces of an ink stroke. This approach is in contrast to Teh
and Chin’s corner finder [TC89], which uses a variable win-
dow for each point during corner finding. Our algorithm, like
ShortStraw, only uses "straws" of constant size to find possi-
ble corners and, in order to get higher accuracy, we set corner
detection thresholds dynamically based on shape instead of
changing window size during post-processing.

3. The ShortStraw Algorithm

ShortStraw is an accurate polyline corner finder that is easy
to understand and implement [WEH08]. After resampling
the input data, ShortStraw finds corners using both a bottom-
up and top-down approach. In this system, users can draw
polylines free-form while achieving a high total corners and
all-or-nothing accuracy. Furthermore, the algorithm can be
quickly integrated into sketch-based interfaces. However,
there is still room to improve its accuracy and to extend the
technique to deal with polyline ink strokes containing arcs
and curves. In this section, we will discuss the implementa-
tion of ShortStraw and its shortcomings.

3.1. ShortStraw Implementation

The first pass of ShortStraw involves resampling the input
data, which is an important component necessary for achiev-

ing high corner finding accuracy using Wolin et al.’s ap-
proach. The resampling algorithm used by ShortStraw is
based upon [WWL04], but uses a different interspacing dis-
tance between points.

ShortStraw then finds corners with two steps: a bottom-up
and top-down approach. First, ShortStraw defines the con-
cept of "straws" from primitive information. A straw for a
point at resampled point pi is computed as:

strawi = |pi−W , pi+W |

where W is a constant window equal to 3 and |pi−W , pi+W | is
the Euclidean distance between the resampled points pi−W

and pi+W . The shorter the straw, the more likely the point
will be a corner. The initial corner set is taken from the
resampled stroke points that are a local minimum below a
threshold t, based on the median of the computed straw list.

After the bottom-up approach, some higher-level process-
ing is used to find missed corners and remove false positives.
ShortStraw checks to see whether two adjacent corners pass
a line test. If not, then there must be additional corners be-
tween these two corners, and the point with the minimum
straw value will be added to the possible corner set. The pro-
cess is repeated until all of the stroke segments between pairs
of consecutive corners are lines. A collinear check is then
run on subsets of triplet, consecutive corners. If the three
corners are collinear, the middle one is not a real corner and
is removed from the corner set.

3.2. ShortStraw Limitations

Although ShortStraw achieves outstanding accuracy com-
pared to other corner finding algorithms [KK06, SSD01],
there are still some issues ignored by Wolin et al. [WEH08].
During the bottom-up approach of ShortStraw, the first three
and last three resampled points do not have straw values,
given the window size W = 3 is constant. In addition, tim-
ing information can be useful for corner finding, since users
prefer to slow down on the corner, but ShortStraw does not
take advantage of the speed change.

In the top-down step, the triplet collinear check will be
unreliable if some corners are missed between these points
and may lead to a false deletion of the correct corner. An-
other issue with the ShortStraw approach is the best way to
set the threshold for a collinear check. The constant thresh-
old used by ShortStraw is not robust to all kinds of shapes.
In addition, noise caused by resampling is also an issue.

Finally, ShortStraw only works well for polyline ink
strokes (see Section 5.2) but not for ink strokes with curves
and arcs. However, free-hand shapes with both lines, curves,
and arcs are necessary in most sketch-based system. Thus,
dealing with the removal of false positive corners on a curve
is important to address.

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

4. IStraw - A New Corner Finding Approach

To improve the accuracy and extend the scope of Short-
Straw we analyzed the issues listed above and developed
techniques to alleviate them.

4.1. Straws

The original ShortStraw algorithm uses a window size W

of 3, resulting in the straws of the first three and last three
resampled points to not be computed, but remain a default
number, 0. Thus, these resampled points might be selected
as corners during a post processing step. We can set values
for the straws for these points. Given the indices of the re-
sampled points pi where i goes from 0 to N−1, the compu-
tations are shown as follows

straws1← DISTANCE(p0, p1+w)×
2w

(w+1)

straws2← DISTANCE(p0, p2+w)×
2w

(w+2)

strawsN−2← DISTANCE(pN−1, pN−2−w)×
2w

(w+1)

strawsN−3← DISTANCE(pN−1, pN−3−w)×
2w

(w+2)
.

Note that having the straws for the start point p0 and end
point pN−1 be zero is acceptable, since these two points
will always be chosen as corners. Also note we found
changing the threshold t from MEDIAN(straws)× 0.95 to
MEAN(straws)×0.95 tends to give higher corner detection
accuracy based on our early experimentation.

4.2. Timing Information

By using timing information we can get missed possible cor-
ner candidates, due to the typical case that users are more
likely to slow down while coming to a corner [SSD01]. So
we introduced timing data into our corner finding algorithm
to assist "straws". When resampling the ink stroke, we com-
pute the timing information for each resampled point by cal-
culating the mean time of all the raw points between the cur-
rent resampled point and the previous one. Then during the
bottom-up step, we look for extrema in those portions of the
mean time that is beyond a threshold. Those points have the
minimum speed in the local area.

4.3. Consecutive False Corners Avoidance

Consecutive false corners is a special case defined as miss-
ing a correct corner, caused by failing to detect a corner
or falsely removing one, bringing about the false deletion
of subsequent corners. This phenomena occurs because the
missing corner decreases the reliability of the collinear test
on the triplet in the top-down component of ShortStraw.

Figure 1: An example of consecutive false corner deletion.

Consider Figure 1. Points A to E are all the correct corners
and point F is a unwanted corner. Since F is close to B, the
Euclidean distance and the path distance from A to F have
so little difference that B is defined as a wrong corner. The
existence of F can lead to the false deletion of point B, then
the triplet collinear check of point F will be with A, F , and
C instead of B, F , and C. In this case, the system will leave
F as a correct corner and go on to the next corner candidate
C. Without deleting F , corner C will face the same problem
as B and be identified as a unwanted corner.

To avoid this situation, it is necessary to delete F before
the triplet collinear check of point B. We solve this problem
by asking all the candidate corners go through the triplet
collinear pass twice. The first pass has a higher threshold,
and then we relax the threshold for the second pass. This
dual pass approach will remove a false corner who distances
between the previous and next corner are small (e.g., remov-
ing F in Figure 1).

4.4. Dynamic Threshold

Figure 2: Length of segment will affect corner decision: a

longer segment (left) and a shorter segment (right)

During our initial exploration of ShortStraw, we found,
for example, that the point on the left stroke in Figure 2 is
more likely to be a corner than the point on the right stroke
in Figure 2, even if the angle between the two line segments
for both strokes are equal. Thus, the threshold for calculating
the initial corner set should change based on line segment
length.

During the second collinear pass on any three consecu-
tive corners, we set the threshold based on the length of the
segment, if the difference between the first and third cor-
ner indices is larger than ten, then we increase the threshold
from 0.974 to 0.98. In this case, length not only means the
Euclidean distance between the first and the third points, but

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

also the difference between the resampled point indices of
the two corners.

4.5. Sharp Noise Avoidance

Figure 3: Two example of sharp noise: caused by hook (left)

and caused by sharp angle (right).

Sharp noise manifests itself in two situations. The first
situation occurs in the start or end of the stroke (e.g. Fig-
ure 3 (left)). As we take the beginning and the end resam-
pled points as corners, the hooks in a stroke normally will
cause unwanted corners close to these points. The second
situation exists with corners with sharp angles (e.g. Figure 3
(right)). This case is induced by the distortion of the stroke
after resampling, which might change the shape from one
sharp angle to two angles (e.g. Figure 4). Both situations can
result in correct corners.

Figure 4: Properly resampled sharp angle(left) and improp-

erly resampled sharp angle (right).

Often, two adjacent resampled points are both treated as
corners. However, it is impossible for a user a draw a stroke
with two corners so close together. Therefore, we can take
one of the two adjacent resampled points as the correct cor-
ner to avoid sharp noise. In our approach, we choose the
one with the smaller straw value, which has been empirically
shown to achieve good results.

4.6. Curve Detection

Thus far, we have focused on strategies for improving the
ShortStraw algorithm that works well for polyline-based ink
strokes. However, these methods do not work well when
strokes contain curves and arcs, finding many unnecessary
corners on the curve. Therefore, we need an approach to de-
crease the false positives caused by the curves and arcs.

To remove unwanted corners, it is necessary to be aware
of the difference between a real corner and a fake one. Ide-
ally, a candidate corner ci is the vertex of an angle defined
by two rays generated from ci and a resampled point on each
side of the vertex. If it is a real corner, this angle will not

Figure 5: Difference between the corner and the curve: the

angle does not change with a real corner as the vertex (left)

and the angle will increase with a false corner on a curve

(right).

Figure 6: Difference between α and β based upon the value

of α: α is small (left) and α is large (right).

significantly increase by choosing rays using other resam-
pled points closer to the vertex. However, if it is a curve,
this angle will get larger. This approach requires finding all
possible angles from the resampled point data.

Instead of comparing all the possible angles, we can pick
two representative angles for comparison to enhance effi-
ciency. As in Figure 5, the further angle α is formed by ci

with the two resampled points A and B, whose indices are
equal to the index of ci plus/minus a shift value. The two
points, D and E, for the closer angle β have the indices
equal to the index of ci plus/minus the shift value divided
by 3. If β− α is below the threshold ta, then ci is a cor-
rect corner, otherwise it is a point on the curve. In our ap-
proach, the ta is set dynamically based on the value of α.
From Figure 6, we can see the value β−α will increase if
α decreases, requiring ta to be increased. ta was derived em-
pirically with to be between 14 and 33 degrees, calculated
using 10+800/(α+35).

Setting the shi f t value is crucial to the reliability of this
approach. Figure 7 shows one possible case that can lead to
a wrong decision if shi f t is chosen unwisely. The best shi f t

value is the local minimum angle closest to the candidate
corner, but this will sacrifice the simplicity of the algorithm.
Thus, we chose shi f t = 15, which we determined empiri-
cally. However, if the previous corner, ci−1, is too close to

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

Figure 7: Example 1 of unwise shift value: β−α is large

even though ci is a correct corner (left) and a smaller shift

value which moves point B closer to ci is needed to make the

right decision (right).

ci, we change the value of shi f t to the difference between
the indices of these two corners. This approach also works
for the corner ci+1.

As with handling polylines, falsely deleting a correct cor-
ner may cause sequential problems, and we use the approach
discussed in Section 4.3 by having all possible corners to go
through the curve detection pipeline twice to avoid consecu-
tive false corner deletion.

5. Evaluation

To evaluate IStraw, we focused on computational complexity
of the algorithm and its accuracy compared to ShortStraw.

5.1. Analysis of Computational Complexity

In order to get higher corner finding accuracy, we developed
IStraw by making several changes and adding new compo-
nents to the ShortStraw algorithm. The question arises as
to how these changes will increase the computational com-
plexity of our approach compared with ShortStraw. To do
this, we examine each change made and compare the compu-
tational complexity between our algorithm and ShortStraw.
First, we set the number of raw points to M and number of
resampled points to N.

During resampling, we use the same algorithm as the one
in [WEH08] and the runtime is O(M + N). For the polyline
corner finding component, we did not modify the bottom-up
component of the algorithm, O(N), but use the speed data
to add more potential corners. We have many enhancements
in the top-down approach, but all these will not affect the
computational complexity, so this part runs in time O(CN)

and the running time for the worst scenario will be O(N2).
To avoid consecutive false corners, we need one more loop,
whose iteration time is C, the number of corners. However,
O(2C) is equal to O(C).

The last part of our algorithm is curve detection, and the
algorithm contains two loops to remove the unnecessary cor-
ners. These two loops are similar. The iteration number of
each one is C, so the computational complexity is O(C). In
conclusion, the computational complexity of our algorithm

is O(M +N2 +C), exactly the same as ShortStraw.

Figure 8: The 11 polyline shapes used for corner finding

testing from ShortStraw. There are 87 corners including the

start and end points in total, which are marked with red

points.

5.2. Evaluation Tests

As in [WEH08], we use two different measures to determine
the accuracy of IStraw. The first one, "Correct Corners Accu-
racy", described in [SSD01], is equal to the number of cor-
rect corners found divided by the total number of correct
corners a human would perceive. The second one, "All-or-
Nothing Accuracy", defined in [WEH08], take false corners
into account, which means a correct stroke should have no
false positives or negatives. This accuracy metric is calcu-
lated by dividing the number of correctly segmented strokes
by the total number of strokes.

We used the test data, 244 polyline strokes in [WEH08]
to configure the polyline ink stroke part of our algorithm.
This set of data, which consists of the 11 shapes in Figure 8,
was drawn by six users. The configuration data, 120 strokes
in total, for curve detection was gathered from six students
with the shapes from Figure 9.

To test IStraw, we collected data from 15 different users
(6 female and 9 male) from computer science, electrical en-
gineering or mechanical engineering fields. Nine out of the
fifteen users had tablet PC experience. User wrote samples
for 21 shapes including the 11 found in Figure 8 and the
10 in Figure 9. After getting familiar with the system, each
user was asked to draw each shape four times. 1260 strokes
were collected, but 14 were removed because they were very
poorly written. Thus, our test set contained 1246 strokes, 656
from polyline ink strokes and 590 from curve ink strokes.

To make a thorough comparison, we tested two other algo-

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

Figure 9: The 10 new shapes with curves used for corner

finding testing. There are 59 corners including the start and

end points in total, which are marked with red points.

rithm variations, in addition to ShortStraw and IStraw. The
first one is ShortStraw+C, ShortStraw combined with our
curve detection approach and the second is IStraw-C, our
basic algorithm without curve detection.

5.2.1. Original ShortStraw Data

The results in Table 1 are based on the test set use in the
ShortStraw paper, and we used it to help set the thresholds
for IStraw-C. We also chose to use this data to ensure our
implementation of the original ShortStraw algorithm had the
same results as Wolin et al. [WEH08]. The results show that
our ShortStraw implementation did indeed give us the same
results as [WEH08] and that IStraw-C obtains very high
correct corners and all-or-nothing accuracy with optimized
parameters.

ShortStraw IStraw-C

False Positives 32 2

False Negatives 38 1

Correct Corners 1804 1840

Total Corners 1842 1842

Correct Corners Accuracy 0.979 0.999

All-or-Nothing Accuracy 0.741 0.998

Table 1: Accuracy results for ShortStraw and IStraw-C, our

algorithm without curve detection. The results are for the

data used in the original ShortStraw paper.

5.2.2. Polyline Ink Stroke Test

For the polyline ink stroke test, we wanted to examine IS-
traw with and without our curve detection extension to deter-
mine if it would cause any accuracy degradation for polyline
ink strokes. Thus, we ran two separate tests on the polyline
stroke part of our dataset. The results from Table 2 show ac-
curacy values for ShortStraw compared to IStraw-C. Table
3 shows the accuracy results for both ShortStraw+C and IS-
traw.

ShortStraw IStraw-C

False Positives 32 2

False Negatives 93 12

Correct Corners 5059 5140

Total Corners 5152 5152

Correct Corners Accuracy 0.983 0.997

All-or-Nothing Accuracy 0.838 0.979

Table 2: Accuracy results for ShortStraw and IStraw-C, our

algorithm without curve detection (656 polyline strokes).

ShortStraw+C IStraw

False Positives 30 1

False Negatives 168 21

Correct Corners 4984 5131

Total Corners 5152 5152

Correct Corners Accuracy 0.967 0.996

All-or-Nothing Accuracy 0.777 0.968

Table 3: Accuracy results for ShortStraw+C, ShortStraw

with our curve detection approach and IStraw, our complete

corner finding algorithm (656 polyline strokes).

5.2.3. Curve Detection Tests

To test whether IStraw works for strokes containing curves,
we conducted experiments with the stroke data with curves
dataset (see Figure 9). Table 4 show the results of testing
ShortStraw and IStraw-C while Table 5 shows the test results
of testing both ShortStraw+C and IStraw.

ShortStraw IStraw-C

False Positives 8297 8613

False Negatives 34 10

Correct Corners 3438 3462

Total Corners 3472 3472

Correct Corners Accuracy 0.990 0.997

All-or-Nothing Accuracy 0 0

Table 4: Accuracy results for ShortStraw and IStraw-C, our

algorithm without curve detection (590 strokes with curves).

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

ShortStraw+C IStraw

False Positives 172 28

False Negatives 130 37

Correct Corners 3342 3435

Total Corners 3472 3472

Correct Corners Accuracy 0.963 0.989

All-or-Nothing Accuracy 0.634 0.908

Table 5: Accuracy results for ShortStraw+C, ShortStraw

with our curve detection extension and IStraw (590 strokes

with curves).

6. Discussion

Our test results show that IStraw has significantly higher all-
or-nothing accuracy over ShortStraw. For polyline shapes,
IStraw-C, our algorithm without curve detection, improves
the all-or-nothing corner finding accuracy from 83.8% to
97.9%. Adding the curve part to the algorithms will induce
a lower accuracy, but IStraw still achieves an all-or-nothing
accuracy of 96.8% compared to ShortStraw’s 77.7%. In ad-
dition, our algorithm shows correct corners accuracy greater
than 99.5

Both ShortStraw and IStraw-C did not perform well on
the strokes with curves data (0.0% all-or-nothing accuracy)
due to too many false positives. Although, the strokes cannot
be properly segmented without curve detection, it is interest-
ing to note that the correct corners accuracy is high, which
means there are usually only a few corners that are false pos-
itives or negatives for each stroke. Once the curve detection
component was added to our algorithm, the all-or-nothing
accuracy improved to 90.8% compared to 63.4% with Short-
Straw+C.

Tables 6 and 7 show the results of our algorithm and
ShortStraw with and without curve detection on the com-
plete dataset. In both cases, the results show IStraw has
higher accuracy than ShortStraw, especially the all-or-
nothing accuracy of our complete algorithm (94.0% versus
70.9%). Finally, Figures 10 and 11 show some examples of
strokes from our dataset where corners were found correctly
and incorrectly with the IStraw algorithm.

ShortStraw IStraw-C

False Positives 8326 8615

False Negatives 127 22

Correct Corners 8497 8602

Total Corners 8624 8624

Correct Corners Accuracy 0.985 0.997

All-or-Nothing Accuracy 0.441 0.515

Table 6: Accuracy results for ShortStraw and IStraw-C, our

algorithm without curve detection (1246 strokes with and

without curves).

ShortStraw+C IStraw

False Positives 202 29

False Negatives 298 58

Correct Corners 8326 8566

Total Corners 8624 8624

Correct Corners Accuracy 0.965 0.993

All-or-Nothing Accuracy 0.709 0.940

Table 7: Accuracy results for ShortStraw+C, ShortStraw

with our curve detection extension and IStraw (1246 strokes

with and without curves).

Figure 10: Examples of correctly segmented strokes by IS-

traw. These strokes come from the set of 1246 symbols drawn

by fifteen test users.

7. Future Work

We see two potential areas for future work. First the ques-
tion of how to optimize the parameters is important to our
approach, since we need to set many parameters in deciding
the thresholds. So far, we have chosen these values empir-
ically. One way to fix this problem is to use numerical op-
timization techniques or machine learning algorithms to al-
gorithmically find these parameters. Second, the distortion
between the resampled points and the original stroke can
cause corner detection problems so we would like to deter-
mine how to best utilize the original stroke data to reduce
this distortion.

c© The Eurographics Association 2009.

Yiyan Xiong & Joseph J. LaViola Jr. / Revisiting ShortStraw

Figure 11: Examples of incorrectly segmented strokes by IS-

traw.

8. Conclusion

We have presented, IStraw, a new corner finding algorithm
that handles both polyline ink strokes and ink strokes with
curves. By analyzing ShortStraw, we have developed sev-
eral new methods to overcome ShortStraw’s shortcomings
and have created a curve detection method for dealing with
a large class of ink strokes. Our algorithm improves upon
the state of the art in terms of all-or-nothing corner find-
ing accuracy without increasing ShortStraw’s computational
complexity. Our approach is a fundamental step in sketch
recognition, which will enable humans to express their ideas
through sketch-based interface more efficiently and natu-
rally.

Acknowledgements

This work is supported in part by IARPA, SAIC, and NSF
CAREER award IIS-0845921. We also thank the anonymous
reviewers for their valuable feedback.

References

[AD05] ALLVARADO C., DAVIS R.: Sketchread: A multi-domain
sketch recognition engine. In UIST ’04: Proceedings of the 17th

annual ACM symposium on User interface software and technol-

ogy (2005), vol. 29, pp. 518–532. 1

[FYH97] FU A. M. N., YAN H., HUANG K.: A curve bend func-
tion based method to characterize contour shapes. Pattern Recog-

nition 30, 30 (1997), 1661–1671. 2

[HD04] HAMMOND T., DAVIS R.: Ladder, a sketching language
for user interface developers. Elsevier, Computers and Graphics

(2004), 35. 1

[HR07] HOU S., RAMANI K.: Classifier combination for sketch-
based 3d part retrieval. In Computers and Graphics (2007),
vol. 31, pp. 598–609. 1

[HSN04] HSE H., SHILMAN M., NEWTON A. R.: Robust
sketched symbol fragmentation using templates. In IUI’04: Pro-

ceedings of the 9th international conference on Intelligent user

interfaces (2004), pp. 156–160. 2

[KK06] KIM D., KIM M.-J.: A curvature estimation for pen in-
put segmentation in sketch-based modeling. In Computer-Aided

Design (2006), vol. 38, pp. 238–248. 2

[KS05] KARA L., STAHOVICH T.: An image-based trainable
symbol recognizer for sketch-based interfaces. In Computers and

Graphics (2005), vol. 29, pp. 501–517. 1

[LJZ07] LAVIOLA JR. J. J., ZELEZNIK R. C.: A practical ap-
proach for writer-dependent symbol recognition using a writer-
independent symbol recognizer. IEEE Trans. Pattern Anal.

Mach. Intell. 29, 11 (2007), 1917–1926. 1

[LSC95] LEE J.-S., SUN Y.-N., CHEN C.-H.: Multiscale corner
detection by using wavelet transform. Image Processing, IEEE

Transactions on 4 (1995), 100–104. 2

[LZ04] LAVIOLA J., ZELEZNIK R.: Mathpad2: A system for the
creation and exploration of mathematical sketches. ACM Trans-

actions on Graphics 23, 3 (Aug. 2004), 432–440. (Proceedings
of SIGGRAPH 2004). 1

[PH08] PAULSON B., HAMMOND T.: Paleosketch: Accurate
primitive sketch recognition and beautification. In IUI ’08:Pro-

ceedings of the 13th international conference on Intelligent user

interfaces (2008), pp. 1–10. 1

[QWJ01] QIN S. F., WRIGHT D. K., JORDANOV I. N.: On-
line segmentation of freehand sketches by knowledge-based non-
linear thresholding operations. Pattern Recognition 34 (2001),
1885–1893. 1

[RC92] RATTARANGSI A., CHIN R.: Scale-based detection of
corners of planar curves. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 14 (1992), 430–449. 2

[RW75] ROSENFELD A., WESZKA J. S.: An improved method
of angle detection on digital curves. IEEE Trans. Comput. 24, 9
(1975), 940–941. 2

[SD06] SEZGIN T., DAVIS R.: Scale-space based feature point
detection for digital ink. In SIGGRAPH ’06: ACM SIGRRAPH

2006 Courses (New York, NY, USA, 2006), ACM, p. 29. 2

[SSD01] SEZGIN T., STAHOVICH T., DAVIS R.: Sketch based in-
terfaces: Early processing for sketch understanding. In Workshop

on Perceptive User Interfaces (2001). 1, 2, 3, 5

[Sta04] STAHOVICH T.: Segmentation of pen strokes using pen
speed. In Proceedings 2004 AAAI Fall Symposium on Making

Pen-Based Interaction Intelligent and Natural (2004). 1

[TBP04] THORNE M., BURKE D., PANNE M.: Motion doodles:
an interface for sketching character motion. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers (2004), pp. 424–431. 1

[TC89] TEH C., CHIN R.: On the detection of dominant points on
digital curves. IEEE Trans. Pattern Anal. Mach. Intell 17 (1989),
859–872. 2

[WEH08] WOLIN A., EOFF B., HAMMOND T.: Shortstraw:
A simple and effective corner finder for polylines. In EURO-

GRAPHICS 5th Annual Workshop on Sketch-Based Interfaces

and Modeling (2008), pp. 33–40. 1, 2, 5, 6

[WWL04] WOBBROCK J., WILSON A., LI Y.: Gestures without
libraries, toolkits or training: a $1 recognizer for user interface
prototypes. In Proceedings of the Nineteeth National Conference

on Artificial Intelligence (AAAI-04) (San Jose, California, USA,
2004), pp. 159–168. 2

[Yu03] YU B.: Recognition of freehand sketches using mean
shift. In IUI ’03: Proceedings of the 8th international confer-

ence on Intelligent user interfaces (2003), ACM, pp. 204–210.
2

[ZKS05] ZHAI S., KRISTENSSON P.-O., SMITH B. A.: In search
of effective text input interfaces for off the desktop computing. In
Interacting with Computers (2005), vol. 17, pp. 229–250. 1

c© The Eurographics Association 2009.

	asgn2.pdf
	final_paper.pdf

