
University of Central Florida

Suffix Tree
A suffix tree is a compressed trie of all suffixes of a string x$
x=abaab (x has length m-1, $ is an unique sentinel character,

thus x$ has a length m).

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

a
b a a b $

b

b
a a

$ $$$
$

ab

1
2

3 45 6
Each leaf node is marked with an integer j corresponding to suffix S[j…m]

University of Central Florida

O(m) Storage Suffix Tree
A suffix tree is a compressed trie of all suffixes of a string x$
The path labels are specified by two integers (k,l), k=start index

or position of the path and l= end position of the path.

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

(1,1)
(2,2)

(3.6)

(2,1)

(4,6)

1
2

3 45 6

(3,6) (6,6)

(6,6)
(6,6)

Each leaf node is marked with an integer j corresponding to suffix S[j…m]

University of Central Florida

Implicit Suffix Tree
Remove all $. Remove all edges without any label. Remove
all nodes with a single child and the merge the path labels
into one label.

1: abaab$
2: baab$
3: aab$
4: ab$
5: b$
6: $

a
b a a b

b

b
a a ab

13

4
5

6

2
Suffixes 4,5 and 6 appear implicitly.

University of Central Florida

Ukkonen’s Algorithm
This an on-line algorithm. Given the
sequence S[1,2,….m], it constructs implicit
suffix trees Ii for the prefix S[1,2,…i] starting
from I1 incrementing i by 1until Im is built.
There are m phases. In phase i+1 Ii+1 is
constructed from Ii . The (i+1) phase has
(i+1) extensions. Extension j (1<=j<=i+1)
deal with the sequence S[j,…(i+1)]

University of Central Florida

High-Level Description
Construct I1
For i from 1 to m-1

(begin phase i+1)
For j from 1 to i+1

(begin extension j)
Walk down the tree from root along the path

S[j…i] in the current implicit tree. If needed, add
S[i+1] at the end of the path to insure S[j…i+1] is in
the tree.

end
end

University of Central Florida

Types of Nodes
Leaf Node: corresponds to a suffix
Explicit Node: Internal node that has at least two
branches
Implicit Nodes: corresponds to a suffix but due to
path compression resulting from elimination of $, it
only has one child and hence has been reduced to
an implicit node.

We will use Greek symbols α, β, γ to denote strings
and symbols x,y,z to denote single characters. Let
β=S[j…i] be a suffix of S[1…i]

ij1 β

University of Central Florida

Suffix Extension Rules
Rule 1: Once a leaf, always a leaf.
Rule 2: No path from end of string β in Ii starts with
S[i+1] but the path continues. Then attach an edge
with label S[i+1] at the end of β creating an explicit
node if necessary.

β
S[i+1]

β
S[i+1]

(The ‘white’ tree is in Ii. White plus purple is in Ii+1)

University of Central Florida

Extension Rule 3
Rule 3: Some path from the end of β
starts with S[i+1] so βS[i+1] is already
in the tree. Do nothing.

ββ
S[i+1]

S[i+1]

University of Central Florida

An example: S=axabxb
Phase i=1 (Note, in phase i=0, the tree simply a single

node, the root corresponding to the empty string ε)

β=ε; Only one extension. βS[i+1]=a.
Rule 2 is applicable and I1 is a

Phase i=2 Two extensions for suffixes ax
and x . Suffix ax is inserted using Rule 1
and x in inserted by using Rule 2 ax

x
(Rule Sequence:12)

1

1
2

University of Central Florida

Example (continued)
Phase i=3
Three extensions for suffixes axa, xa and a. Note, the

first two extensions are simply copying I2 and
adding last character S[i+1]=a to it at the leaf
nodes by applying Rule 1. Then the last suffix is a
single character a which is handled, in this case, by
Rule 3 (do nothing).

aa
a xx(Rule Sequence: 113)

1
2

3

University of Central Florida

Phase 4
Phase i=4
The four suffixes are axab,xab,ab and b
The Rule sequence (1122). Note due to

Rule 2, two explicit nodes have been
added.

aax
a x

b

b

b b
1 3 2

4

University of Central Florida

Phase 5
Phase i=5
The sequencesare axabx,
xabx,abx.bx and x.
Rule Sequence
(11113)

aax
a x

bb b

1 3 2

4b x

x x x

5

(Node 5 isimplicit)

University of Central Florida

Phase 6
Phase i=6
The suffixes are axabxb,xabxb,abxb,
bxb,xb and b

The Rule
Sequence: (111123)

a
a bb

b b
bb

b
b

b x

xx
xx

x

1 3 5

a

2

4
6

University of Central Florida

Properties of Rule Sequence
A very important property of the Rule sequence is
that it consists of an initial sequence of 1’s (except
for phase 1 which has one Rule 2) followed by
possibly a sequence of 2’s and if a 3 occurs at the
end, further application of Rule 3 can be
abandoned.
Another property is that the length of the Rule 1
sequence in phase i+1 is equal or strictly one more
than the length of Rule 1 sequence in phase i.

(Justify the above statements)

University of Central Florida

The Naïve Algorithm
In the naïve algorithm that follows from the ‘High Level
Description’, once we locate the end of the string β in the current
tree Ii , inserting S[i+1] after it, takes constant amount of work.
The crux of the problem is to find out where β ends in the current
tree. For this, we engaged in walking down the tree matching
characters taking O(|β|) time for |β|=i,i-1,….,2,1 for the (i+1)
phase.
So, Ii+1 is created from Ii making O(i2) character comparisons. So,
total number of comparisons for all phases is

123 i i+1

--
-

)()(3

1

2 mOio
m

i

=∑
=

University of Central Florida

Suffix Link- how to be lazy but smart
(or walking is good for your health but not

for your algorithm)

To avoid walking down the tree for each β,
suffix links are introduced
Definition: Let an internal node v has a path
label x α where x is a character and α is a a
string (possibly empty). If there is another
node s(v) in the tree with path label α, then
a pointer from v to s(v) is called a suffix link,
denoted (v,s(v)). If α is empty string ε, the
suffix with path label x goes to the root. The root is
not considered internal and has no suffix link.

University of Central Florida

Suffix Link Examples
S=abababc S=aaaa$

o
o

o
o

o

o

a
a

a
a

a

a
a

a

a

b
b b

bb

c
bc

c

c

c

c

c o
o

o

o

$
$

$
$

$
1

1 22
3

3

4
4

5

5

6

7

University of Central Florida

Suffix Link Creation
Lemma: Let an internal node v with path
label x α be added to the current tree Ii in
extension j of the (i+1) phase. Then
Either an internal node with edgelabel α
already exits in the current tree Ii
Or an internal node with path label αwill be
created in extension j+1 in the same phase
i+1.

University of Central Florida

Suffix Link Creation
Corollary 1: In Ukkonen’s algorithm,
any newly created internal node will
have a suffix link from it by the end of
the next extension.
Corollary 2: In any suffix tree Ii , if an
internal node v has a path label x α,
then there is a node s(v) of Ii with path
label α.

University of Central Florida

First Extension
Using Rule 1 (once a leaf, always a leaf),
the first extension can be done in
constant time. Keep a pointer to the leaf
node 1 of current tree Ii corresponding to
S[1…i]. Just add s[i+1] at the end , node
label still remains 1 and the pointer is
adjusted to point to new node 1.

University of Central Florida

Second Extension
Let S[1..i] =x α (X a character, α could be
ε). To do the extension, we need
to find the end of S[2..i]= α in the
current tree Ii . Let (v,1) be the
edge that enters leaf 1 { Node v
could be the root [viz. for
S=aaaa$] or an internal node.
If v is the root, walk down the tree
following the path label α.

University of Central Florida

Second Extension
If v is an internal node, walk up from leaf 1 via edge
(v,1) to node v.
Follow the suffix link (v,s(v)).
Walk from s(v) down the path checking for all the
characters in the string γ which is the path label of (v,1).
This journey may use more than one edge.
Update the tree following the applicable extension rule
at the end of the path (it could be Rule 1,2 or 3).

dc ba
γ

γ= abcd
v s(v)

a b cd
(v,1)

University of Central Florida

General Extension j>2
The procedure is essentially the same as for j=2 except we
start from string S[j-1..i] in the curent tree Ii and walk up at
most one node to either root or node v, follow path γ to the
end of S[j..i] and then extend the suffix to s[j..i+1] using the
applicable extension rule.
There is one difference: the end of S[j-1..i] may itself have a
suffix link; then do not walk up any node, just follow the suffix
link.
If a new internal node was created in extension j-1(by
extension Rule 2) then a string α must end at node s(w) [by
Lemma]. Then create the suffix link (w, s(w)).

University of Central Florida

Single Extension Algorithm
Find the first node v at or above the end of S[j-i..i] that either
has a suffix link from it or is the root. This requires walking up
at most one edge with label γ .
If v is not the root , traverse suffix link (v,s(v)) and then walk
down γ from s(v). If v is the root follow the path S[j..i] from
root, as in the naïve algorithm.
Using the extension rules, ensure that S[j..i]S[i+1] is in the
tree.
If a new internal node was created in extension j-1(by
extension Rule 2) then a string α must end at node s(w) [by
Lemma]. Then create the suffix link (w, s(w)).

The suffix link improves the performance in practice but so far
the worst case time complexity is still O(m3).

University of Central Florida

Trick 1: Skip and Count
The complexity of walking down γ from s(v) is
O(|γ|). g=| γ|=number of character in γ. No two
edges out of s(v) have the sme character; so the
first charcater of γ appears in a unique path from
s(v). Let g’ be the number of characters in the edge
with this unique character. If g’<g the algorithm can

γ
g

g’
γ

simply skip to the node at the end of the edge
and set g<- g-g’

h<- g’+1
and look for h th character of for the next
match to follow the downward path.

γ

University of Central Florida

Skip and Count
This process can be iterated for the succeeding
edges as long as g’<g. When an edge is reached
such that g<=g’, the algorithm skips to character
number g in the path.

g=10

zabcdefghy

za
bc

def

ghy
a

v

s(v)
g’=2,g=8,h=3

g’=2,g=6,h=3

g’=3,g=3,h=4

Here g=g’
Skips to 3rd ch. y

University of Central Florida

Complexity of Skip and Count
It should be obvious that moving from node to node using (k,l)
labels and the g and h values on the γ path takes constant
time. The total time to traverse the path is thus depends on
the number of nodes traversed rather than the number of
characters.
Node Depth: Node depth of a node u is the number of nodes
on the path from the root to u.
Lemma: Let (v,s(v)) be the suffix link traversed at any time in
the algorithm. At this time, the node depth of v is at most 1
greater than node depth of s(v)
Theorem: Using skip and count technique, any phase of
Ukkonen’s algorithmtakes O(m) time
Corollary: Ukkonen’s algorithm can be implemented with
suffix link to run in O(m2) time.

University of Central Florida

Trick 2: Rule 3 is a show stopper
Rule 3 means do nothing because the path labeled
s[j..i] continues with character S[i+1]. So, do the
paths labeled S[j+1..i], S[j+2..i] ,..,S[i]. Thus if
extension Rule 3 applies in extension j, the same
Rule 3 must apply to all succeeding extensions in
(i+1) phase. This leads to:
Trick 2: End any phase i+1 the first time Rule 3
applies. If this happens in extendsion j, then there
isno need to explicitly find the end of any string
S[k..i] for k>j.

University of Central Florida

Extensions 1 in bulk
First, to conserve storage, we are not going to write the
character sequences in any edge. Instead we use a pair of
indices (k,l) to limit storage to O(m).
Second, due to “once a leaf, always a leaf” rule, once
there is a leaf labeled j, extension Rule 1 will apply always
to extension j in any successive phase.
In any phase I, there is an initial sequence of consecutive
extensions (starting with extension 1) where extension
Rule 1 or 2 applies. Let ji denote the last extension in
phase i. It follows from “Once a leaf, always a leaf” that
j,i<=ji+1 That is, the initial sequence of extension rules 1 or
2 cannot shrink in successive phases.
Let us take an example.

University of Central Florida

An example: S=axabxb
Phase i=1 (Note, in phase i=0, the tree simply a single

node, the root corresponding to the empty string ε)

β=ε; Only one extension. βS[i+1]=a.
I1 is with value of e=1 (1,e)

Phase i=2 Two extensions for
suffixes ax and x . Suffix ax is
inserted using Rule 1 and x in
inserted by using also Rule 1.
Root node is not considered an
Internal node.

(2,e)

(Rule Sequence:11)

1

1 2
(1,e)

e=2

University of Central Florida

Example (continued)
Phase i=3
Three extensions for suffixes axa, xa and a. Note, the

first two extensions are simply copying I2 and
adding last character S[i+1]=a to it at the leaf
nodes by applying Rule 1. Then the last suffix is a
single character a which is handled, in this case, by
Rule 3 (do nothing). (2,e)

(Rule Sequence: 113)
1

2
3(1,e)

e=3

University of Central Florida

Phase 4
Phase i=4
The four suffixes are axab,xab,ab and b
The Rule sequence is (1122). Note due to Rule 2, two explicit

nodes have been
added. Thek values in (k.e)
for the edges are determined
at the time Rule 2 is applied.
Note e=4 for all leaf nodes. 1 3 2

4(4,4)

(2,4)(4,4)

(1,1)

(2,4)

University of Central Florida

Phase 5
Phase i=5
The sequencesare axabx,
xabx,abx.bx and x.
Rule Sequence
(11113) e=5

1 3 2

4
5

(Node 5 is implicit)

(4,5)

(2,5)

(1,1)

(2,5)
(4,5)

University of Central Florida

Phase 6
Phase i=6
(Wait, wait!! You have been misleading us saying all these e-values are changed in
O(m) times. If we change the value of e at every phase, it is going to take O(m2) time.)

Here’s the punch line! Don’t change the value
of e until the last phase and make e equal to
the value of maximum phase for the
i+1 extension, which is i+1. Since there
are total of m extensions , the work
involved in all the Rule 1
applications is

O(m)
1 3 5

2

4
6

The suffixes are axabxb,xabxb,abxb,

bxb,xb and b

The Rule

Sequence: (111123)

(4,6)
(2,1)

(6,6) (3,6)

(1,1)

(2,6)
(3,6)

University of Central Florida

Extension Sequences

The extension sequences for different phases
are (1),(11),(113),(1122),(11113) and
(111123). Note j1<j2=j3<j4=j5<j6..This
suggests an implementation trick that
avoids in phase i+1 all explicit extensions 1
through ji. Only constant time will be
needed to do all these extensions.

University of Central Florida

Trick Number 3
In phase i+1, when a leaf is first created and would
normally be labeled as S[p…i+1] written as (p,i+1)
on the edge, write this as (p,e), where e (denoting
“the current end”) is a global variable to that is set
to value i+1 once in each phase.
In phase i+1, the algorithm knows that Rule 1 will
apply in extensions 1 through ji at least, only
constant amount of work is needed up to
extensions ji to increment the value of e. The
algorithm can then proceed to extension ji+1 and
perform explicit work if needed.

University of Central Florida

The Punch Line
With tricks 2 and 3, explicit extensions
in phase i+1 (using SEA – Single
Extension algorithm) are only required
from extension ji+1 until the first Rule
3 applies or until i+1 is done. All other
extensions before or after those
explicit extensions, are done implicitly.

University of Central Florida

The Single phase Algorithm SPA
begin

1. Increment index e by i+1. By Trick 3, this
correctly implements all implicit extensions 1
through ji.

2. Explicitly compute successive extensions
(using SEA) starting at ji+1 until reaching first
extension j* where Rule 3 applies or until all
extensions are done in this phase. By Trick 2
(show stopper), this correctly implements all the
additional implicit extensions j* +1 through j+1.

3. Set ji+1 to j* to prepare for the next phase.
end

	Suffix Tree
	O(m) Storage Suffix Tree
	Implicit Suffix Tree
	Ukkonen’s Algorithm
	High-Level Description
	Types of Nodes
	Suffix Extension Rules
	Extension Rule 3
	An example: S=axabxb
	Example (continued)
	Phase 4
	Phase 5
	Phase 6
	Properties of Rule Sequence
	The Naïve Algorithm
	Suffix Link- how to be lazy but smart�(or walking is good for your health but not for your algorithm)
	Suffix Link Examples
	Suffix Link Creation
	Suffix Link Creation
	First Extension
	Second Extension
	Second Extension
	General Extension j>2
	Single Extension Algorithm
	Trick 1: Skip and Count
	Skip and Count
	Complexity of Skip and Count
	Trick 2: Rule 3 is a show stopper
	 Extensions 1 in bulk
	An example: S=axabxb
	Example (continued)
	Phase 4
	Phase 5
	Phase 6
	Extension Sequences
	Trick Number 3
	The Punch Line
	The Single phase Algorithm SPA

