
A SpaceA Space--Economical Suffix Tree Economical Suffix Tree 
Construction AlgorithmConstruction Algorithm

Edward M. McCreight (1976)Edward M. McCreight (1976)

{  {  From Ukkonen to McCreight and Weiner: A Unifying }From Ukkonen to McCreight and Weiner: A Unifying }
View of LinearView of Linear--Time Suffix Tree Construction Time Suffix Tree Construction 

R. Giegerich and S. Kurtz (1997)R. Giegerich and S. Kurtz (1997)



OverviewOverview

Algorithm for constructing auxiliary digital 
search trees to help in search operations of 
substrings. 
Advantages over other algorithms: 

Economical in Space.
We describe the algorithm
Incremental changing of the search tree 
corresponding to changes in the text. 



MotivationMotivation

Text editors 
Automatic command completion



Constructing a Suffix Tree Constructing a Suffix Tree 
AlgorithmAlgorithm

Given a string S, we build an index to S in the 
form of  a search tree T, whose paths are the 
suffixes of S.
Each path starting from the root of this tree 
represents a different suffix. 
An edge is labeled with a string.
the concatenation of these labels on through a 
path gives us a suffix.
Each leaf correspond uniquely to positions within 
S.



Mapping the string 
ababc into a 
suffix tree.

ab

abc

b
c

abc c

root

c

ExampleExample



Constructing a Suffix Tree Constructing a Suffix Tree 
Algorithm by McCreight: Algorithm by McCreight: 

denoted denoted mccmcc



Algorithm Algorithm mccmcc
The algorithm requires that:
S1. The final character of the string S should 

not appear elsewhere in S.

S1 yields:
1. No suffix of S is a prefix of a different 

suffix of S.
2. There is a leaf for each suffix of S.



Algorithm Algorithm mccmcc
Constraints on the TreeConstraints on the Tree

T1. An edge of T may represent any 
nonempty substring of S.

T2. Each internal node of T, except the root, 
must have at least two outgoing edges.

T3. Siblings edges represent substrings with 
different starting characters.



Algorithm Algorithm mccmcc
Constraints on the TreeConstraints on the Tree

Since every leaf maps uniquely to a suffix 
of S, then T2 yields that the number on 
internal nodes in T ≤ n=|S| (since every 
branching yields another leaf).
Proposition: The mapping of S into T, 
unique, up to order among siblings. 



Mapping the string 
ababc into a 
suffix tree.

ab

abc

b
c

abc c

root

c

ExampleExample
Algorithm Algorithm mccmcc



DefinitionsDefinitions
Σ – the alphabet 
We use a,b,c,d to denote characters in Σ.
p, q, s, t, u, v, w, y, z to denote strings.
If t = uvw for some strings (possibly empty) 

u,v,w then u is a prefix of t , v is a t -word, and 
w is a suffix of t.

Algorithm Algorithm mccmcc



DefinitionsDefinitions
A prefix or suffix of t is proper, if it is 

different from t.
By path(k) we denote the concatenation of the 

edge labels on the path from the root of T to the 
node k. 

By T3 path labels are unique and we can 
denote k by w, if and only if path(k) = w.

Algorithm Algorithm mccmcc



DefinitionsDefinitions
Another terminology (McCreight):

Definition: 
Node k is called the locus of the string uv, if 
the path from the root to k denotes uv.

hence, the locus of uv is uv.

Algorithm Algorithm mccmcc



DefinitionsDefinitions
Example:

Algorithm Algorithm mccmcc

root

u

v

uv

u

k

Path(k) = uv  k=uv

The locus of uv



DefinitionsDefinitions
The Extended Locus of a string u is the locus of the 

shortest extension of u, uw (w is possibly empty), .s.t. 
uw is a node in T.
Example: u=hello, w=p

Algorithm Algorithm mccmcc

root
hell

uw

The extended 
locus of  u

op



DefinitionsDefinitions
The Contracted Locus of a string u is the locus of 

the longest prefix of u, x (x is possibly empty), s.t. x
is a node in T.
Example:   u=hello, x=hell

Algorithm Algorithm mccmcc

root
hell

uw

The contracted 
locus of  u

op



Let S be our main string
Sufi is the suffix of S beginning at the ith

position (position are counted from 1 
suf1 = S).
headi is the longest prefix of sufi , which is 
also a prefix of sufj for some j<i.
taili is defined s.t. sufi = headi taili

Algorithm Algorithm mccmcc

DefinitionsDefinitions



Example:
S=ababc, suf3=abc, head3=ab, tail3=c

suf4=bc, head3=b, tail3=c

Constraint S1 assures that taili is never empty.

Algorithm Algorithm mccmcc

DefinitionsDefinitions

a b c

a b a b c

b c

a b a b c

S:

suf3:

S:

suf4:



To build the suffix tree for ababc mcc inserts 
every step i the sufi into tree Ti-1:

Algorithm Algorithm mccmcc

Overview of Overview of mccmcc

a b a b c

b a b c

a b c

b c

c

Step 1

Step 2

Step 3

Step 4

Step 5



To do this we have to insert every step sufi without duplicating 
its prefix in the tree, so we need to find its longest prefix in the 
tree.
Its longest prefix in the tree is by definition headi . 
Example:

Algorithm Algorithm mccmcc

Overview of Overview of mccmcc

So what we do is finding the extended locus of  headi in Ti-1 and its incoming 
edge is split by a new node which spawns a new edge labeled taili.

ababc

T2

babc
Suf3=abc. Since we already have the word 
ab in the tree thus we need to start from 
there bulding our new suffix. Note that 
indeed ab=head3, taili=c.

c

T3



Overview of mcc’s operations via example of ababc:

Algorithm Algorithm mccmcc

Overview of Overview of mccmcc

Step i=1
rootT0

ababc babcc

ab

T1
2

T2
3

T3
4 b

c

T4
5 c

T5

abc abc



Notice that headi is the 
longest prefix of sufi that 
its extended locus exists 
within Ti-1.

Algorithm Algorithm mccmcc

ababc babc

root

T2

We have entered 2 
suffixes by now.

Overview of Overview of mccmcc

The extended 
locus of head3



For efficiency we would represent each label of an 
edge by 2 numbers denoting its starting and 
ending position in the main string.

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure

ab

abc c

b
c

abc c

root(0,0)

(2,2) (5,5)(1,2)

(3,5) (5,5) (3,5) (5,5)

1 2 3 4 5
a b a b cS:



Thus, the actual insertion of an edge to the 
tree takes O(1).
The introduction of a new internal node and 
taili takes O(1) , hence, 
if mcc could find the extended locus of headi
in Ti-1 in constant time, in average over all 
steps, then mcc is linear in n.
This is done by exploiting the following 
lemma:

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure



Lemma 1: If headi-1 = xu for some character x and some string u
(possibly empty), then u is a prefix of headi .

Proof. headi-1=xu, hence, there is a j<i s.t. xu is a prefix of both 
sufj-1 and sufi-1.

1. xu is a prefix of sufj-1 u is a prefix of sufj .
2. xu is a prefix of sufi-1 u is a prefix of sufi .
By (1), (2): there is some j<i such that u is a prefix of both sufj

and sufi .
Hence, by definition of head: u is a prefix of headi.

S: …xu…..xu…

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure

j-1 i-1



S=bdababdc, head5=ab, head6=bd

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure

b d a b a b d $

h a l y h a l $

h a l $

S:

Suf5:

a b d $



To exploit this we introduce Suffix Links:
From each internal node xu , where |x|=1, we 

add a pointer to the node u. root

Algorithm Algorithm mccmcc

TheThe Data StructureData Structure

xu

u

Suffix link



Our example:

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure

ab

abc

b
c

abc c
c

root(0,0)

(2,2) (5,5)(1,2)

(3,5) (5,5) (3,5) (5,5)



Note: All suffix links are atomic in the sense 
that xu is suffix linked to u where |x| =1.

Algorithm Algorithm mccmcc

The Data StructureThe Data Structure



We shall present mcc and prove by induction 
on i, the step number of mcc, that

P1: in Ti every internal node, except perhaps 
the locus of headi (headi), has a valid suffix 
link.

P2: in step i  mcc visits the contracted locus of 
headi in Ti-1 .

P2 yields that we can use the contracted locus of 
headi-1 to jump with the suffix link to some prefix 
of headi. P1 assure us that there is such suffix link.

Algorithm Algorithm mccmcc



i=1:

Algorithm Algorithm mccmcc

Base case for P1Base case for P1
root

ababc

P1 holds since there is no internal nodes.
(note that head1=ε (ε=root)).

T1



i=1:

Algorithm Algorithm mccmcc

Base case for P2Base case for P2

P2 holds since head1=ε and in step 1 mcc 
visits the root which is the locus of ε
(ε=root) in T0 . 

root

ababc

T1rootT0



In this substep mcc will identify strings it had 
already dealt with in the previous steps, in 
order to make a shortcut leap to the 
‘middle’ of its current head.

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



Identify 3 strings: xuw s.t.
1. headi-1= xuw
2. xu is the contracted locus of headi-1 in Ti-2

, i.e. xu is a node in Ti-2 . If the contracted 
locus of headi-1 in Ti-2 is the root then u=ε.

3. |x| ≤ 1. x=ε only if headi-1=ε .

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



Algorithm Algorithm mcc:mcc: substep Asubstep A
Illustrating substep A in the ith step: the move 

from Ti-1 to Ti

Ti-2
Ti-1

Ti

Step i-1
Step i

Headi-1= xuw
Headi= uwv

xu

root
u

wy

Contracted locus 
of xuw

xu

root
u

xu

root
u

w

y wv
w

c

y

taili-1

taili-1



Our goal here is to go directly to the 
locus of u in the tree so that we could 
seach for w (substep B) and then for v
(substep C).

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



Notice that:
In the previous step headi-1 was found.
Since |x| ≤ 1 then by lemma 1:
headi = uwv for some, yet to be discovered,  
string (possibly empty) v.
By induction hyp P2, mcc visited xu in the 
previous step (i-1), hence it can identify xu.

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



If u=ε then  c root
(note that root = u )

else, c {suffix link of xu} (note that c=u)
explanation:  
u≠ε thus by definition xu existed (as the 
contracted locus of xuw) in Ti-2 hence by 
P1: the internal node xu has a suffix link.
By P2 we remember xu from step i-1 and 
we can now follow its suffix link.

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



uwv = headi hence from the definition of 
head, the extended locus of uw exists in Ti-1.
Now we can start going down the edges, 
from u to find the extended locus of uw.

Algorithm Algorithm mccmcc

mcc mcc –– substep Asubstep A



To rescan w:
Find the edge that starts with the first character of w.
Denote the edge’s label z and the node it leads to f.
If |w| > |z| then start a recursive rescan of w-z (or w|z| ) 
from f.
If |w| ≤ |z| , then w is a prefix of z , and we found the 
extended locus of uw.
Construct a new node (if needed): uw .
d uw

Algorithm Algorithm mccmcc

Mcc Mcc –– substep B: substep B: RescanningRescanning



Algorithm Algorithm mcc:mcc: substep B substep B -- rescanningrescanning
Illustrating substep B in the ith step: rescanning 

substring w.

Ti-1

Step iHeadi-1= xuw
Headi= uwv

wv

xu

root
u

w

y

c

w

y

Ti

xu

root
u

w
f

c

v

z

z

fd

In this case uw
already exists



Make the suffix link of 
xuw point to d .

Hence, we have defined a 
suffix link to the node 
constructed in step i-1. 
By this and induction 
hyp P1 holds in Ti .

Algorithm Algorithm mccmcc

mcc mcc –– substep B: Scanningsubstep B: Scanning

Ti

xu

root
u

w
c

v
fd

w

xuw

Headi= uwv



Scan the edges from d in order to find the extended 
locus of uwv. 
Since we don’t know yet what is v we must scan 
each character in the path from d downward, 
comparing it to taili-1.
When we ‘fall out of the tree’ we have found v.
The last node in this trek is the contracted locus of 
headi in Ti-1, which proves P2.
When we reach the extended locus of uwv we 
construct the new node uwv, if needed.
Construct the new leaf edge taili .

Algorithm Algorithm mccmcc

mcc mcc –– substep substep C C -- ScanningScanning



Algorithm Algorithm mccmcc

mcc mcc –– substep C: Scanningsubstep C: Scanning
root

Scanning for the 
requested v.

Comparing each 
character of the 
downward path 
beginning at d to 

taili. When the 
comparison fails we 
have reached headi .

Ti

xuu

vt

d

w

Headi= uwv

w

v

tailit



We shall prove that when we add a new node in the end 
of substep B as the locus of uw then we obey 
constraint T2 that an internal node has at least 2 son 
edges.

Algorithm Algorithm mccmcc

Maintaining T2Maintaining T2



Algorithm Algorithm mccmcc

Maintaining T2Maintaining T2

uw

vz

Ti

Lemma: In step i, at  the end of substep B we add a new node 
only if v is empty.
Proof. In step i, If v is not empty then headi=uwv and 

headi-1=xuw hence, w.l.g. we can write S as follows:

S=……xuwz…..uwv…..xuwv…
Thus, we have 2 occurences of uw with different 
extensions, uwv, uwz, that occur already in the tree.
Hence, there is a branching node uw.

Position i-1



Corollary: In the ith step if v is empty then we add 
an outgoing edge from the locus of uv=headi. 
Thus the only case where we add a node we add 
an outgoing edge to it.

Algorithm Algorithm mccmcc

Maintaining T2Maintaining T2



Define: resi = wv{taili} in step i .
Hence, resi is the suffix of S rescanned and 
scanned during step i.

Observation: For every intermediate node f
encountered in the rescan phase of step i, 
the substring z, labeling the edge to f , is 
contained in resi but not in resi+1.

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis



Illustrating substep B in the ith step: rescanning 
substring w.

Step i
Headi= uwv

w

y

Ti

sz1

root
u=xs

w
f

c

v

z1

z2

fd

Time Complexity AnalysisTime Complexity Analysis



Explanation: if we encounter node f in step i
during the rescan phase of substep B then f must be 
an internal node in Ti-1 hence P1 yields that in  Ti+1,  
f has a suffix link.
Assume w.l.g that f = az
This suffix link serves us in substep A of 
step i+1 to reach the node z , hence we do 
not have to rescan substring z again.

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis



Example:

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis

Suffix link

z

root
az

c

f

u
u



Define: inti = number of intermediate nodes (f ) rescanned 
during step i.
The observation yields: 
|(resi+1)| ≤ |(resi)| – inti

Hence, 
1 = |(resn)| ≤ |(resn-1)| – intn-1 ≤ … ≤ |(res1)| – ∑n

i=1inti ( since 
intn=0) ⇒

1 ≤ |(res1)| – ∑n
i=1inti = n - ∑n

i=1inti  ⇒
∑n

i=1inti ≤ n -1
i.e., the total number of intermediate nodes rescanned ≤ n .

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis



The total number of characters scanned in substep C to 
locate headi (the length of v):
In step i the number of characters scanned during step 
C is 

|(headi)|-|(headi-1)| +1
since we already rescanned w (the suffix of headi-1) in 

substep B. +1 comes from the first character of headi-1).
The number of characters scanned is:

∑n
i=1 [|(headi)|-|(headi-1)|+1] = |(headn)|-|(head0)|+n = n
Therefore, the total time complexity is O(n+n)=O(n)

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis



Updating the suffix treeUpdating the suffix tree
We shall see how to update the suffix 

tree (not online), when a substring of 
the main string is being replaced by 
another.



Updating the suffix treeUpdating the suffix tree

Goal:
Given a string S = uwv, and its 
corresponding suffix tree, we change S, so 
that: S = uzv .
We wish to update the suffix tree to 
represent the change in S.



Updating the suffix treeUpdating the suffix tree

In order to make it possible to update the tree 
effectively, i.e., not change the whole tree, we 
would adopt a numbering scheme representing the 
positions of S, in which a position number need 
never change after it has been assigned.
Also, the position numbers are strictly monotonic.
Hence, the suffixes of v, for instance, need not to 
be changed, when we change uwv to uzv.
This requires a large pool of  position numbers.



Paths in need to be changedPaths in need to be changed

We consider what kind of paths might need to 
change, by the change: uwv uzv.
Denote  u* as the longest suffix of u that appears 
elsewhere in uwv.
Definition: a w-splitters (w.r.t uwv uzv) are the 
strings of the form tv, where t is a nonempty suffix 
of u*w.
Equivalently, splitters are the paths which 
properly contain v and whose last edge do not 
contain wv.



Paths in need to be changedPaths in need to be changed
Illustrating the paths not affected by the change:

v

root
Suffix = v:

Stays as it is.

(1) root(2) Suffix = u’u*wv:

(by definition of 
u*) yx=u’u*, for 
some y,x≥0 and 
|xy|>0, s.t. the 
branching occurs at 
the end of y. Stays 
as it is. 

xwv

y

Note that due to our numbering 
scheme and data structure the label 
xwv ‘changes’ automatically to xzv.



Paths in need to be changedPaths in need to be changed
Illustrating paths that are affected by the change:
Suffix = u’wv, u’=suf(u*):

root(2) Need to update the 
last edge label, since 
the position index in 
the leaf changes.wv

u’
root(1) xy=w:

need a change, 
since the 
positions indices 
of the leaf and its 
father change.

yv

u’x

y



Overview of the algorithmOverview of the algorithm

The updating algorithm removes all w-
splitters paths and inserts all z-splitters 
paths,
while preserving properties T1,T2,T3.



Overview of the algorithmOverview of the algorithm

3 stages of the algorithm, umcc:
1. Discover u*wv, the longest w-splitter.
2. Delete all paths tv, t=suf(u*w), from the 

tree.
3. Insert all paths sv, s=suf(u*z), into the 

tree.



Stage 1Stage 1

Phase 1:
Denote u(i) the suffix of u of length i.
Examine the paths u(1)wv, u(2)wv, u(4)wv, 
u(8)wv, …
until a non w-splitter is discovered, say, 
u(k)wv.
Every path u(i)wv examined takes O(i)
time.



Stage 1Stage 1
Phase 2:

Examine the paths u(k)wv, u(k-1)wv, …
until the longest w-splitter is discovered, u*wv.

Time complexity:
This search can take full advantage of the suffix 
links, as in mcc, since k is incremented by 1, each 
step, hence it takes O(k) time.
|u*|>k/2
Phase 1 takes O(1+2+4+…+k)
Phase 2 takes O(k)
Hence, stage 1 takes O(u*)



Stage 2Stage 2
Delete all paths tv, t=suf(u*w), |t|≠0, from the 
tree. 
The deletion is done in order, from the longest to 
the shortest. 
Suppose that for all suffixes s of u*w longer 
than t, the deletion of sv has been already done.
We now consider how to delete tv.



Stage 2Stage 2
The general case is illustrated

delete the edge labeled q and 
its leaf. 
If node f has more than 2 
sons than this is enough.
Otherwise, delete node f, and 
make k the son of p; label 
turn to yo.
Potential problem: an 
existing suffix link to f.

root

y

x

p

q
f

k

m

tv

o

Potential 
suffix link

axy



Stage 2Stage 2
Denote the last internal node in the path 
xu*zv by s* where |x|=1.
We show that this problem could arise 
only for a unique node, s*.

Lemma 2:
1. Whenever a node f is deleted there is no 

suffix link pointing to it, except perhaps that 
of node s*.

2. Every path in T has a suffix path, except 
perhaps xu*zv.



Stage 2Stage 2
proof:

Base: (1) is trivially true. (2) is true, since we haven’t 
change the tree, so the only path without a suffix path is

root

l

r

p

qf

k

m

tv

o

arl

the path whose suffix path is the longest 
w-splitter, xu*zv.
Induction: 

(1)
assume m is a node having its suffix 
link point to f, than m could not have 
an outgoing edge labeled q, since arlq
would be a longer splitter than rlq so it 
would have been already deleted.



Stage 2Stage 2
Thus, node f has only one son edge that has a prefix path 
in T. Hence, node m has exactly 2 son edges (otherwise 
there would be more than 1 paths in T without a suffix 
path, in contrast to induction hyp), and the path having no 
suffix path must pass through m, so node m is actually s*.
(2)

– If we delete u*wv then since we have already changed 
xu*wv to xu*zv, hence its prefix path doesn’t exist 
anyway.

– If we delete a proper suffix of u*wv then, we have 
already deleted its prefix path in T.

In both cases we haven’t prevented any path in T of a 
suffix path.



Stage 3Stage 3
Insert all paths sv, s=suf(u*z), into the tree.

We do it as if we are running mcc with a pre-initialized 
suffix tree that already contains all suffixes of v. Denote 
that tree T(v), and this variant algorithm as umcc(v).
We already have all the suffixes longer than u*zv, so we 
start running mcc from there:
Denote j=|(u)|-|(u*)|+1
Denote k=|(uz)|
We will insert the paths u*zv, …, dv (where d is the last 
character of uz), by running mcc from step j through 
k+1’s rescanning substep (in order to connect the a suffix 
link to headk)



Stage 3Stage 3
We remember node s* and its father (this settles 
the problem of the suffix link of s*).
The following 2 observations, corresponding to 
P1, P2, enable us to start running mcc from the 
jth step, with T(v):

1. s* or its father are the contracted locuses of 
head(v)j-1 in T(v)j-1.

2. s* is the only internal node that might not 
have a suffix link in T(v)j-1.



Time Complexity AnalysisTime Complexity Analysis
We saw that finding u* takes O(|u*|).
Deleting all the paths of the form tv, where t is a 
nonempty suffix of u*w, requires finding the leaf
edge of each path and deleting its leaf. Deleting 
the leaf is constant. 
Finding the leaf edges of all these paths can be 
done in a similar manner of mcc(v):

– Find the path u*wv; remember its last internal node; 
follow its suffix link to find the last internal node of 
sufi(u*wv).

Hence, deleting the paths takes O(|u*wv|).



Time Complexity AnalysisTime Complexity Analysis
Running mcc from step j through step k+1:

Everything but scanning and rescanning takes 
constant time.
Denote the last character of u*w by d.
Define v* as the longest prefix of dv that occurs 
elsewhere in uzv.



Time Complexity AnalysisTime Complexity Analysis
During rescanning (substep B) we encounter: 

∑k+1
i=jint(v)i ≤ |(res(v)j)|- |(res(v)k+1)| +int(v)k+1 

|(res(v)j)| ≤ |(sufj)| = |(u*zv)|
For all i: int(v)i ≤ |(w)| ≤ |(headi-1(v))|, where w is 
the substring rescanned in substep B.
Hence, int(v)k+1 ≤ |(headk(v))|.
For all i: |(res(v)i)| ≥ |(suf(v)i-1)|- |(headi-1(v))|.
Hence, |(res(v)k+1)| ≥ |(suf(v)k)| - |(headk(v))|.



Time Complexity AnalysisTime Complexity Analysis
Thus, ∑k+1

i=jint(v)i ≤ |(u*zv)| +|(headk(v))| -
|(suf(v)k)|+ |(headk(v))|

= |(u*zv)| +2 |(v*)| - |(dv)|
Hence, rescanning takes O(|u*zv|+|v*|).

Scanning (substep C):
As in mcc analysis:

– The number of character scanned in steps j through k
is exactly (k-j+1)+|head(v)k| - |head(v)j-1|

– |head(v)k|= |v*| , |head(v)j-1| = 0 , hence
– Scanning takes O(|u*z|+|v*|)



In total, updating the suffix tree takes 
O(|u*|+|w|+|z|+|v*|)

Algorithm Algorithm mccmcc

Time Complexity AnalysisTime Complexity Analysis


	A Space-Economical Suffix Tree Construction Algorithm�Edward M. McCreight (1976)���{  From Ukkonen to McCreight and Weiner: A 
	Overview
	Motivation
	Constructing a Suffix Tree Algorithm
	Example
	Constructing a Suffix Tree Algorithm by McCreight: denoted mcc
	Algorithm mcc
	Algorithm mcc
	Algorithm mcc
	Example
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Overview of mcc
	Overview of mcc
	Overview of mcc
	Overview of mcc
	The Data Structure
	The Data Structure
	The Data Structure
	The Data Structure
	The Data Structure
	The Data Structure
	The Data Structure
	Algorithm mcc
	Base case for P1
	Base case for P2
	mcc – substep A
	mcc – substep A
	Algorithm mcc: substep A
	mcc – substep A
	mcc – substep A
	mcc – substep A
	mcc – substep A
	Mcc – substep B: Rescanning
	Algorithm mcc: substep B - rescanning
	mcc – substep B: Scanning
	mcc – substep C - Scanning
	mcc – substep C: Scanning
	Maintaining T2
	Maintaining T2
	Maintaining T2
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Updating the suffix tree
	Updating the suffix tree
	Updating the suffix tree
	Paths in need to be changed
	Paths in need to be changed
	Paths in need to be changed
	Overview of the algorithm
	Overview of the algorithm
	Stage 1
	Stage 1
	Stage 2
	Stage 2
	Stage 2
	Stage 2
	Stage 2
	Stage 3
	Stage 3
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis
	Time Complexity Analysis

