Homework Description
In this assignment, you will be given a C/C++ code for creating a decision tree. You are asked to provide the code for the pruning part of the tree. The necessary files are given in “decision tree.zip”. Below is a brief explanation of these files:

1. train.cpp: This is the main application that reads the input and outputs the decision tree. It makes use of the classes described below. The program takes the input filename, which is the training data, as command line argument. If the executable is “train.exe”, then the program should be run as “train <filename>”. The training set should be in a text file where each training example is given with a separate line. The format is:

feature1<tab>feature2<tab>...<featuren><tab><class label><tab><x><tab><x><tab>
An example training file is given in “training_data.txt”. The output is a binary file that represents the resulting binary tree. An example output file is given in “output.bin”. Notice that this is a binary file and is only readable by a corresponding program. Before creating the output file, the main program runs the method “traverse” described below to create the output array “arr”. The output file contains each element of this array in sequential order. The format is:

Number of nodes in the tree (int)
Decision attribute of the first array element (int)

Decision point (float)

Decision (int)

Left child index (int)

Right child index (int)

Decision attribute of the second array element (int)

:

:

:

The testing procedure reads this binary file and reconstructs the array. The information in this array is sufficient to reconstruct the tree. Each array element represents a node of the tree, root being the first element of the array. Since each node contains the pointer to the left child and the right child, the tree can be reconstructed using this array.

2. DTree.cpp: This is the class that represents the decision tree. It also contains the “traverse” method mentioned above. This is a recursive method that creates the output array to be printed as output. 

3. DTnode.cpp: This is the class that represents each node in the decision tree.

The following piece of code can be used to read the output binary file and re-build the decision tree.
FILE *treef;

treef = fopen(".\\decision_tree\\output.bin", "rb");

float tf;

int arr_size, ti, ti2,ti3, ti4;

fread(&arr_size, 1, sizeof(int), treef);


DTNode* arr;

arr = new DTNode[arr_size];

for (i=0; i< arr_size; i++){


fread(&ti, 1, sizeof(int), treef);


fread(&tf, 1, sizeof(float), treef);



fread(&ti2, 1, sizeof(int), treef);


fread(&ti3, 1, sizeof(int), treef);


fread(&ti4, 1, sizeof(int), treef);


arr[i].set_decision_attribute(ti);


arr[i].set_decision_point(tf);


arr[i].set_decision(ti2);


arr[i].set_l_c_index(ti3);


arr[i].set_r_c_index(ti4);

}

DTree dt(0,0,0);

dt.build(arr, dt.get_root(),0);

It is obvious that this tree is the complete tree, and needs to be pruned for better performance. In this assignment, you are asked to provide the C/C++ code for the pruning. Implement the pruning process as either a separate program or a method in one of the files given along this assignment. Also included in the zip file are the project files for Visual Studio C++ for simple compiling, although you don’t have to use these to be able to compile the program.
You are encouraged to implement the program using the class notes provided in

http://bruce.engr.ucf.edu/~mge/courses/courses.htm
