
Using a Qualitative Sketch to Control a Team of Robots

Marjorie Skubic, Derek Anderson, Samuel Blisard Dennis Perzanowski, Alan Schultz

Electrical and Computer Engineering Department Navy Center for Applied Research in Artificial Intelligence
University of Missouri-Columbia Naval Research Laboratory

Columbia, MO Washington, DC

 Abstract – In this paper, we describe a prototype interface
that facilitates the control of a mobile robot team by a single
operator, using a sketch interface on a tablet PC. The user
sketches a qualitative map of the scene and includes the robots
in approximate starting positions. Both path and target
position commands are supported as well as editing
capabilities. Sensor feedback from the robots is included in the
display such that the sketch interface acts as a two-way
communication device between the user and the robots. The
paper also includes results of a usability study, in which users
were asked to perform a series of tasks.

 Index Terms – human-robot interaction, sketch-based
navigation, qualitative map.

I. INTRODUCTION

Currently, most of the mobile robots used in operational
settings rely on teleoperated control using live video. This
requires intensive interaction with a human operator. Often,
more than one person is required to deploy the robot. At
best, one operator is required per robot, making control of a
multi-robot team complicated and difficult to synchronize.

There is interest in moving towards an interface that
allows one operator to manage a team of robots. Certainly,
this would be advantageous for military applications such as
surveillance and reconnaissance. It would also be helpful for
many humanitarian efforts such as in the relief efforts for the
recent hurricane disaster in New Orleans and the U.S. Gulf
Coast. Robots could be helpful in search and rescue, as well
as in assessing damage or the extent of hazardous
conditions. Deploying a team of robots means a larger area
can be covered more quickly, provided there is some method
of coordinating their control.

In this paper, we describe a prototype interface in which
a single operator can control a team of robots using a sketch-
based interface on a tablet PC. A precise map of the
environment is not required. Rather, the user sketches a
qualitative map of a live scene and includes each robot in an
approximate starting location. We assert that, in the cases
mentioned, requiring a precise map of the environment may
slow the efforts, as the landscape may have changed in
hostile or natural disaster environments. Therefore, the
ability to use an approximate, hand-drawn map is viewed as
a matter of convenience and efficiency.

The proposed interface allows the user to sketch a route
map for controlling a team of robots, as might be done in
directing a team of people. In addition, the interactive sketch

interface acts as a two-way communication device between
the user and each of the robots. We assume that each robot
has low level behaviors to handle obstacle avoidance. The
sketch interface provides a mechanism for directing each
robot according to task needs, where each directed move is
viewed as a guarded move.

A sketch-based interface has been proposed previously.
Perzanowski et al. [1] have developed a multi-modal robot
interface that includes a PDA in which a quantitative map is
displayed based on the robot’s sensors as it travels through
an environment. The user can draw gestures on top of the
map to indicate target positions of the robot. Lundberg et al.
[2] have developed a similar PDA interface, which supports
the display of a map that can be used to designate a target
location or a region to explore. Fong’s PDA interface [3]
includes the ability to sketch waypoints on top of a robot-
sensed image, which allows live imagery to be used in the
control. Another version of the PDA interface also supports
multi-robot control and sketching waypoints on top of a map
as well as an image [4].

Other work has included the use of a qualitative map.
Chronis et al. [5] have developed a PDA interface in which
the user sketches a route map as a means of directing a
single robot along a designated path. Navigation is done
using landmark states. Kawamura et al. [6] also use a
landmark-based approach, where artificial landmarks are
placed in the scene and on top of a sketched map drawn on a
PDA screen. Freksa et al. [7] have proposed the use of a
schematic map which they describe as an abstraction
between a sketch map and a topological map, e.g., a subway
map. Finally, Setalaphruk et al. [8] use a scanned, hand-
drawn map of an indoor scene (with walls and corridors) and
extract a topological map for controlling a robot.

Fig. 1. The team of robots included in the usability study

Fig. 2.
Sketching landmarks

Fig. 3
Sketching robots

Fig. 4
Lassoing a group of robots

With the exception of Fong’s work, none of the related

work has attempted to control multiple robots with one sketch-
based interface. Here, we describe an interface that supports
the control of multiple robots using a qualitative, hand-drawn
map. The interface has been investigated with a usability study
in which 23 users were asked to perform a series of tasks. The
robot team is shown in Fig. 1.

In the remaining paper, we describe components of the
system: the algorithms used to process the sketch, the
translation of sketch information into robot commands, and
synchronization issues that provide feedback from the robot to
the sketch platform. A usability study and results are also
included.

II. SKETCH UNDERSTANDING

Our sketch interface incorporates intuitive management of
multiple robots simultaneously in combination with the display
of sensor feedback and the synchronization of robot locations.
Users sketch a qualitative map of the environment that
describes the scene and then sketch navigation gestures to
direct the robots. Feedback from the robots’ sensors is
displayed on the sketch to help the user keep a current
representation of a possibly dynamic environment, or to adjust
an initial sketch that was not accurate enough.

Users add environment landmarks by sketching a closed
polygon anywhere on the screen (shown in Fig. 2). The user
provides an identifier for each landmark, which is used to
correlate objects in the sketch with objects in the real robot
environment. Objects in the robots’ environment correspond
to what is observed and segmented from an evidence grid map.
In the prototype interface, this correlation between sketch and
robot objects is manually handled by the user providing the
identifiers.

To create a robot, the user sketches a small concentrated
stroke anywhere on the screen and labels the robot with a

name. A robot icon is displayed in place of the stroke and, if
communications can be established with the real robot, then
sensor feedback is shown from the range sensors. Fig. 3 shows
three connected robots with laser rangefinders that span the
front 180 degrees of the robots.

Individual robots and landmarks can be selected by
clicking on the robot or landmark. The user can then edit the
sketch by dragging the selected entity to a new location. Such
editing features allow the user to fine tune the sketch without
redrawing but do not result in robot commands. A group of
robots can be selected by drawing a lasso around a subset of
robots. Fig. 4 shows two robots being selected; their color
changes to purple to indicate selection.

Identifying the robots in a lasso is done using the
Bresenham line algorithm [9] on simple closed polygons,
dilating each point on the lasso, and then picking a point inside
the lasso and doing a flood fill. To determine which robots are
in the lasso, the pixel at the robot’s center location is checked
to see if it was a flood filled or boundary point.

Feedback from robot sensors can be used to detect the
present environment configuration, which allows a user to
adjust the current placement of landmarks and robots by
dragging them. If the shape and size of a landmark does not
match what is being detected from feedback, then a user can
delete and redraw landmarks. Right clicking or holding the
pen on a robot or landmark will delete it. If a robot encounters
additional landmarks, if a landmark was moved, or if a
landmark was removed, users can sense this from sensor
feedback and edit the sketch to show a more accurate scene.

Navigational commands may be issued to robots after one
or more landmarks are sketched. Because we use qualitative
and not quantitative information, navigational commands are
issued relative to landmarks. Sketching an “X”, which is two
intersecting short lines, issues a Go-to command for all
selected robots. If a user wants the robots to follow a route, he
sketches a path that originates from a single robot or a location

inside a lasso. Paths are segmented into a series of Go-to
commands and issued to all robots in a group.

Fig. 5 shows a scenario in which both path and Go-to
commands are issued. The landmark that is closest to the last
sketched goal point changes color to indicate its use as a
reference object. The segmented path is shown as a sequence
of gray triangles. All target locations are drawn the same color
as the corresponding robot for clarity. The center of each
robot changes color to yellow to indicate its motion.

In Fig. 5, the sensor readings of robot 3 indicate the
presence of an object. Note that the sensor readings match the
position of the box. Inconsistencies in sensor readings and
sketched landmarks can be used to adjust positions to match
the sensor feedback or to inform the user of an unknown
landmark that should be included in the sketch.

As a default mode, robots are automatically dispatched
once a navigation command is registered. If a user wants to
postpone navigational commands (e.g., for synchronization of
robots), a menu option allows simultaneous execution of robot
commands after an arrow is sketched. The symbol recognition
method used to classify the arrow is based on Hidden Markov
Models [10].

Fig. 5. Robots 1 and 2 are instructed to follow a path while robot 3 is
directed to a target location. The path has been segmented into a sequence of
intermediate points, shown as gray triangles along the path. The yellow
center of the robot indicates motion. Each robot displays its laser readings in
its corresponding color.

III. TRANSLATING A SKETCH INTO ROBOT COMMANDS

Go-to commands are computed for each robot by looking
at the relative position of the robot to the landmark closest to
the goal point and the relative position of the goal point to the
same landmark. These two quantities are extracted from the
sketch as vectors and sent to the robot to be recomputed
according to the relative positions of the robot and the
landmark in the real environment. If, due to sketch
inaccuracies, the computed point is inside a landmark or on
top of another robot, the target point is shifted along the target

vector. Fig. 6 shows how these two vector quantities are
computed in the sketch and for the robot.

(a)

(b)

 || RV2 || = (||V2|| / ||V1||) * || RV1 ||
 RV2 = (V2 / ||V2||) * || RV2 ||

(c)

Fig. 6. Conversion of a Go-to command from the sketchpad to world
coordinates in the robot scene. (a) Sketchpad. (b) Robot scene. (c) Equations.
“X” marks the goal location sketched by the user. Vector V1 describes the
relation between the robot and the landmark; vector V2 describes the relation
between the goal and the landmark. The computed target location is
identified by using V1 and V2 in combination with RV1 and RV2, from the
real robot environment. RV2 is the only quantity that is not initially known.

If a single Go-to command is issued for a group of robots,
then the robot that is closest to the goal is given this location
as its target. All other robots are ordered according to their
respective distances to the goal point. Remaining robots are
assigned different goals that are computed at different
respective offset values along a line that originates at the goal
location and is in the direction of a vector from the centroid of
the landmark to the goal point. Fig. 7 shows an example.
Offset values can be changed via a menu option. The order of
the robots is used to determine how long each should wait to
begin moving in order to avoid congestion in navigation.

Path commands are computed by segmenting a stroke into
a series of intermediate points based on a fixed interval length
(set as a parameter in the options menu). Each consecutive
pair of intermediate points is turned into a Go-to command in
the same fashion as described above. For each pair of
intermediate points, the Go-to command is computed with
respect to the landmark that is closest to the ending
intermediate point. Fig. 8 illustrates this procedure.

Fig. 7. For robot group commands, target points are computed according to
the distance of each robot to the sketched goal point.

Fig. 8. The segmentation of a sketched path and the sequence of computed
Go-to commands. The path originates at the robot and is drawn up to the
point where the “X” is displayed. Intermediate points are calculated and
shown as gray triangles that appear along the path. Path navigation is
performed by sending each robot to the sequence of computed intermediate
points, and then to the goal location. Vectors V1 and V2 are the first to be
extracted and sent to the robot for navigation. The robot is then sent V1’ and
V2’, which are computed from the intermediate point to the goal, and are to
be carried out after the intermediate point is reached.

IV. SYNCHRONIZATION OF THE SKETCH WITH THE ROBOTS

 To provide real time feedback of robot locations on the
sketchpad, information about each robot relative to the
landmarks in the real environment is extracted and sent to the
interface. If a robot is not in motion, it sends back a command
that tells the interface not to update. Moving robots send back
their starting and ending vectors, along with a present vector
that is computed from the robot’s current location to the
landmark closest to the goal. These vectors are used in
combination with V1 and V2 to compute a new updated
location. An example is shown in Fig. 9.

(a)

(b)

 || V3 || = (||RV3|| / ||RV2||) * || V2 ||
 V3 = (RV3 / ||RV3||) * || V3 ||

(c)

Fig. 9. Calculation of the robot’s updated location on the sketchpad from the
robot location in the real world. (a) Robot scene. (b) Sketchpad. (c)
Equations. Vectors RV2 and RV3 convey the relationship between the robot
and the real world landmark. The computed position on the sketchpad is
identified by using RV2 and RV3 in combination with V2 and V3 from the
sketch pad. V3 is the only quantity that is not initially known.

There is a final, subjective matter about how to display the
stopping location on the interface after a robot makes it to the
goal. If a robot completed the command and moved to the
desired position in the real world, then the robot is translated
on the sketchpad to the goal location that the user sketched.
Another option, which can be enabled through the options
menu, involves keeping the robot at its last updated location.
However, depending on the quality of the sketch and where the
robot stopped in the real environment, there can be a
discrepancy in where the robot is displayed on the sketchpad
and where the user expected to see the robot. Our default mode
is to move the robot icon to the sketched target position.

V. USABILITY STUDY

A usability study was conducted in conjunction with the
Robotics Competition at the AAAI 2005 conference. The
study was designed to test the sketch interface concept with a
group of users that are not necessarily robot experts. We also
designed the study to investigate how users compensate for a
change in the environment. As part of the study, we collected
data on the participants’ backgrounds and suggestions for
improvements.

A. Experimental Set-up
Participants were first acquainted with the sketch interface

and allowed to use it until they felt comfortable. They were
then shown the environment (Fig. 10) in which they were to
perform the experiment. The environment consisted of the
three robots named 1, 2, and 3, a box, a crate, and a ball. The
numeric robot names were chosen so that users could easily
remember them. The sketch interface does not restrict the
naming of robots.

The participant was then taken to an isolated area where
he was unable to see the robots. Each participant was asked to
perform the following five tasks:

1. Draw and label the robots and the objects;
2. Navigate the robots to a position to the northwest of the

ball;
3. Navigate robot 3 to a position south of the ball;
4. Navigate robot 1 to the north of the ball, robot 3 to the

west of the ball but out of robot 1’s sight, and robot 2 to
the north of the box so that robot 1 can see robot 2 but
robot 3 cannot;

5. Send the robots back to their starting positions.
To simplify the experiment, we fixed the menu options in

the interface for a set of standard parameters. The arrow option
for issuing robot commands was not used in the study.

Fig. 10. The environment of the experiment.

B. Participants

The average age of participants was 33.5 years; most held
advanced degrees in computer related fields. Participants were
not paid. While most were very familiar with computers, few
had experience using tablet PCs. Several participants had
extensive experience with video games. Only a few had
experience with robots.

Each participant was randomly assigned to one of two
groups: one group with an unaltered environment and one
group with a slightly altered environment from the one shown.
In the altered environment, the box was moved to the west of
the ball and shifted slightly south. This allowed us to see what
kinds of coping strategies people use to compensate for the

changed state of the environment. Participants were told that
the environment might change after they began using the
sketch interface to control the robots; however, they were not
told that there were two experimental conditions, nor in which
condition they were participating. Participants filled out
questionnaires at the beginning and at the end of the
experiment to provide feedback. This information was
collected to help guide future improvements.

C. Robot Implementation
 The robots used for this experiment were commercially
available, four-wheeled, slip-steer robots equipped with laser
rangefinders and internal gyroscopes (Fig. 1). The robots were
controlled with software developed through the Player/Stage
project [11]. The robots used wireless access bridges to
communicate with the controlling computer through the use of
the IEEE 802.11b protocol. In order to provide a consistent
experimental environment, participants interacted with the
simulator, and the robots were directed by manually issuing
waypoints from the controlling computer.

D. Performance Results

Most of the sketches drawn by the participants were an
accurate qualitative representation of the environment. To be
considered an accurate sketch, the participant had to correctly
draw the three objects and the three robots and assign correct
labels. Of the 23 subjects, only 2 had to be eliminated for
incorrect sketches of the environment. The remaining sketches
appeared qualitatively similar to those shown in Fig. 11 and
12. Five additional test subjects were excluded due to
incomplete data collection (i.e., problems in video taping). We
report results on 16 participants (8 in each group).

Typical sketches collected from the participants are shown
in Fig 11 and 12. Generally, participants tended to favor one of
the navigation commands (either path or Go-to commands).
However, no statistically significant difference was found in
the performance of the two command types. We did not find
statistically significant differences in navigation task time or
task completion for the two experimental conditions or for any
other grouping, including those participants with some prior
experience with robots. In general the standard deviations
tended to be large for each group.

Task times for the two experimental groups are
summarized in Fig. 13 and 14. In the unmodified environment,
participants took an average of 765 seconds to perform the
experiment, while the participants in the changed environment
took an average of 842 seconds (with standard deviations of
216 and 220 seconds, respectively). In both groups, task 4
took the most time.

If the subjects in either group correctly labelled the
environment, they had a very high probability of successfully
completing all of the tasks. All participants for the unmodified
environment completed all tasks except for task 4; only 67%
of these participants completed task 4. For participants with a
modified world, 77% completed task 4 and all completed the
remaining tasks.

Fig. 11. A participant uses a Path command to move robot 3 to a position
south of the ball.

Fig. 12. Another sketch from a different user, directing robot 3 to go south of
the ball.

Task Times Unmodified Environment

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

Task

se
co

nd
s

Fig. 13. . Task Times for the Unmodified Environment with Error Bars at One
Standard Deviation.

Task Times Modified Environment

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6

Task

se
co

nd
s

Fig. 14. Task Times for the Modified Environment with Error Bars at One
Standard Deviation.

E. Discussion
Most users felt that the interface was highly applicable to

the task of guiding mobile robots. The average rating given in
the post-experiment survey was 4.2 with 1 being very negative
and 5 being very positive. Participants indicated in the survey
that the system was good enough to accomplish the tasks they
were assigned; the average overall opinion of the interface was
rated 3.5. Most also felt that with some enhancements, such as
the ability to hear audio output when errors had been
committed, and the ability to verbally command robots to
make minor adjustments, e.g. “Move slightly more to the left,”
the sketch interface would be particularly useful in similar
scenarios.

The interface was apparently easy to learn. We did not
time participants’ training times, but it is our observation that
all participants took a relatively short time in learning the
environment and the interface.

Users had the ability to “tweak” their sketches, i.e. move
objects if they thought they were positioned incorrectly based
on sensor feedback. There were very few participants who
used this feature to make major moves of objects, where the
move was more than the size of the object being moved. Most
object moves were minor, consisting mainly of “tweaks”. This
shows that for the most part, the sketches preserved the
qualitative information of the environment and were “good
enough” to accomplish the task at hand.

There is room for improvement. One usability problem
resulted from the small space in which the study was
conducted (6.7 x 7 m). When the robots were moved to the
northwest of the ball, there was a tendency for them to get
stuck in the corner. This was due to the robots using VFH for
obstacle avoidance and being too close to each other. Also,
there was a problem when the goal location was calculated
very close to an obstacle (or another stationary robot), which
caused it to be unrealizable.

Some users noted that the behavior of the robot deviated
from the sketched path, which was due to an obstacle (either
known or unknown by the user). This problem could have
been exacerbated by the relatively slow update rate (2 sec.),
thereby causing all participants to react in similar ways,
regardless of their experimental condition. The slow update

rate was artificially constrained and will be increased in the
future.

We conjecture that, another reason why the reaction times
and coping strategies between the two groups were not
statistically significant is that humans are talented at coping
with a dynamic environment. In the study, there was not
enough of a change to cause a significant burden for the
participants.

V. CONCLUDING REMARKS

As robotics research matures, it is moving toward systems
that support the management of multiple robots and teams of
collaborative agents. To this end, and because exact
representations of environments are not always available to
human users of such systems, we designed a sketchpad
interface that handles qualitative input from human users
rather than one that has to rely solely on quantitative
information.

We conducted a usability study with the sketchpad
interface to determine how people manage multiple robots
simultaneously. Unbeknownst to the subjects, participants
were randomly assigned to one of two groups. The first group
controlled the robots in an unaltered environment. The second
group controlled robots via the sketchpad in a slightly altered
environment from the one they had been shown.

We found no significant differences in task time
completion in either group, thereby suggesting that when slight
changes are made in the environment from the one that is
expected, humans are well-prepared to cope with those
changes. From this, we conclude that our approach in
designing an interface that tolerates the qualitative interchange
of information can be useful in working with collaborative
teams of robots.

The results of the usability study validate the concept of a
sketchpad interface for controlling a team of robots. In future
work, we will extend the interface to provide automated scene
matching between the sketch and the physical world as sensed
by the robots. Suggestions from the participants in the study
will also drive the next iteration of the sketchpad interface.

ACKNOWLEDGEMENTS

Funding for the project was provided in part by the Naval
Research Laboratory and the Office of Naval Research under
work order N0001405WX20057. The authors also thank Scott
Thomas and Greg Trafton from NRL as well as Vince Cross
from Auburn University for their help in conducting the
usability study and analysis.

REFERENCES
[1] D. Perzanowski, A.C. Schultz, W. Adams, E. Marsh, M. Bugajska,

“Building a multimodal human-robot interface,” IEEE Intelligent
Systems, pp. 16-20, Jan/Feb, 2001.

[2] C. Lundberg, C. Barck-Holst, J. Folkeson, and H.I. Christensen, “PDA
interface for a field robot,” in Proc. 2003 IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, Las Vegas, NV, Oct., 2003, pp. 2882-
2887.

[3] T.W. Fong, C. Thorpe, and B. Glass, "PdaDriver: A Handheld System
for Remote Driving," IEEE Intl. Conf. on Advanced Robotics 2003,
July, 2003.

[4] T. Fong, C. Thorpe, and C. Baur, “Multi-Robot Remote Driving with
Collaborative Control,” IEEE Transactions on Industrial Electronics,
vol. 50, no. 4, pp. 699-704, 2003.

[5] G. Chronis and M. Skubic, “Robot Navigation Using Qualitative
Landmark States from Sketched Route Maps,” in Proc. 2004 IEEE Intl.
Conf. on Robotics and Automation, New Orleans, LA, April, 2004, pp.
1530-1535.

[6] K. Kawamura, A.B. Koku, D.M. Wilkes, R.A. Peters II and A. Sekmen,
“Toward Egocentric Navigation”, Intl. Journal of Robotics and
Automation, vol. 17, no. 4, 2002, pp. 135-145.

[7] C. Freksa, R. Moratz, and T. Barkowsky, “Schematic Maps for Robot
Navigation”, in Spatial Cognition II: Integrating Abstract Theories,
Empirical Studies, Formal Methods, and Practical Applications, C.
Freksa, W. Brauer, C. Habel, K. Wender (ed.), Berlin: Springer, 2000,
pp. 100-114.

[8] V. Setalaphruk, A. Ueno, I. Kume, and Y. Kono, “Robot Navigation in
Corridor Environments using a Sketch Floor Map,” in Proc. 2003 IEEE
Intl. Symp. On Computation Intelligence in Robotics and Automation,
July, 2003, Kobe, Japan, pp. 552-557.

[9] Jack E. Bresenham, Algorithm for Computer Control of a Digital
Plotter, IBM Systems Journal, 4(1):25-30, 1965

[10] Anderson, D., Bailey, C., and Skubic, M. 2004. Hidden Markov Model
Symbol Recognition for Sketch Based Interfaces. AAAI Fall Workshop
on Making Pen-Based Interaction Intelligent and Natural. Washington,
DC. October 2004.

[11] http://playerstage.sourceforge.net

